Exploring Analytic Geometry
with Mathematica®

LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

ACADEMIC PRESS (“AP”) AND ANYONE ELSE WHO HAS BEEN INVOLVED IN THE CREATION OR
PRODUCTION OF THE ACCOMPANYING CODE (“THE PRODUCT”) CANNOT AND DO NOT WAR-
RANT THE PERFORMANCE OR RESULTS THAT MAY BE OBTAINED BY USING THE PRODUCT.
THE PRODUCT IS SOLD “AS IS” WITHOUT WARRANTY OF ANY KIND (EXCEPT AS HEREAFTER
DESCRIBED), EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY WAR-
RANTY OF PERFORMANCE OR ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE. AP WARRANTS ONLY THAT THE CD-ROM ON WHICH THE
CODE IS RECORDED IS FREE FROM DEFECTS IN MATERIAL AND FAULTY WORKMANSHIP UN-
DER THE NORMAL USE AND SERVICE FOR A PERIOD OF NINETY (90) DAYS FROM THE DATE
THE PRODUCT IS DELIVERED. THE PURCHASER’S SOLE AND EXCLUSIVE REMEDY IN THE
EVENT OF A DEFECT IS EXPRESSLY LIMITED TO EITHER REPLACEMENT OF THE CD-ROM
OR REFUND OF THE PURCHASE PRICE, AT AP’S SOLE DISCRETION.

IN NO EVENT, WHETHER AS A RESULT OF BREACH OF CONTRACT, WARRANTY, OR TORT
(INCLUDING NEGLIGENCE), WILL AP OR ANYONE WHO HAS BEEN INVOLVED IN THE CRE-
ATION OR PRODUCTION OF THE PRODUCT BE LIABLE TO PURCHASER FOR ANY DAMAGES,
INCLUDING ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF INABILITY TO USE THE PRODUCT OR ANY MODIFICA-
TIONS THEREOF, OR DUE TO THE CONTENTS OF THE CODE, EVEN IF AP HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

Any request for replacement of a defective CD-ROM must be postage prepaid and must be accompanied by
the original defective CD-ROM, your mailing address and telephone number, and proof of date of purchase
and purchase price. Send such requests, stating the nature of the problem, to Academic Press Customer
Service, 6277 Sea Harbor Drive, Orlando, FL 32887, 1-800-321-5068. AP shall have no obligation to refund the
purchase price or to replace a CD-ROM based on claims of defects in the nature or operation of the Product.

Some states do not allow limitation on how long an implied warranty lasts, nor exclusions or limitations of
incidental or consequential damages, so the above limitations and exclusions may not apply to you. This
warranty gives you specific legal rights, and you may also have other rights which vary from jurisdiction to

jurisdiction.

THE RE-EXPORT OF UNITED STATES ORIGIN SOFTWARE IS SUBJECT TO UNITED STATES LAWS
UNDER THE EXPORT ADMINISTRATION ACT OF 1969 AS AMENDED. ANY FURTHER SALE OF
THE PRODUCT SHALL BE IN COMPLIANCE WITH THE UNITED STATES DEPARTMENT OF COM-
MERCE ADMINISTRATION REGULATIONS. COMPLIANCE WITH SUCH REGULATIONS IS YOUR
RESPONSIBILITY AND NOT THE RESPONSIBILITY OF AP.

Mathematica and MathReader are registered trademarks of Wolfram Research, Inc.
Acrobat Reader is a registered trademark of Adobe Systems, Inc.

Exploring Analytic Geometry
with Mathematica®

Donald L. Vossler

BME, Kettering University, 1978
MM, Aquinas College, 1981

ACADEMIC PRESS

San Diego London Boston
New York Sydney Tokyo Toronto

Preface

The study of two-dimensional analytic geometry has gone in and out of fashion several times
over the past century, however this classic field of mathematics has once again become popular
due to the growing power of personal computers and the availability of powerful mathematical
software systems, such as Mathematica, that can provide an interactive environment for study-
ing the field. By combining the power of Mathematica with an analytic geometry software
system called Descarta2D, the author has succeeded in meshing an ancient field of study with
modern computational tools, the result being a simple, yet powerful, approach to studying
analytic geometry. Students, engineers and mathematicians alike who are interested in ana-
lytic geometry can use this book and software for the study, research or just plain enjoyment
of analytic geometry.

Mathematica provides an attractive environment for studying analytic geometry. Mathe-
matica supports both numeric and symbolic computations, meaning that geometry problems
can be solved numerically, producing approximate or exact answers, as well as producing gen-
eral formulas with variables. Mathematica also has good facilities for producing graphical
plots which are useful for visualizing the graphs of two-dimensional geometry.

Features

Exploring Analytic Geometry with Mathematica, Mathematica and Descarta2D provide the
following outstanding features:

e The book can serve as classical analytic geometry textbook with in-line Mathematica
dialogs to illustrate key concepts.

e A large number of examples with solutions and graphics is keyed to the textual devel-
opment of each topic.

e Hints are provided for improving the reader’s use and understanding of Mathematica
and Descarta2D.

e More advanced topics are covered in explorations provided with each chapter, and full
solutions are illustrated using Mathematica.

vi Preface

e A detailed reference manual provides complete documentation for Descarta2D, with com-
plete syntax for over 100 new commands.

e Complete source code for Descarta2D is provided in 30 well-documented Mathematica
notebooks.

e The complete book is integrated into the Mathematica Help Browser for easy access and
reading.

e A CD-ROM is included for convenient, permanent storage of the Descarta2D software.

e A complete software system and mathematical reference is packaged as an affordable
book.

Classical Analytic Geometry

Exploring Analytic Geometry with Mathematica begins with a traditional development of an-
alytic geometry that has been modernized with in-line chapter dialogs using Descarta2D and
Mathematica to illustrate the underlying concepts. The following topics are covered in 21
chapters:

Coordinates e Points e Equations e Graphs e Lines e Line Segments e Cir-
cles o Arcs e Triangles e Parabolas e Ellipses ® Hyperbolas e General Conics e
Conic Arcs e Medial Curves e Transformations e Arc Length e Area e Tan-
gent Lines @ Tangent Circles ® Tangent Conics e Biarcs.

Each chapter begins with definitions of underlying mathematical terminology and develops
the topic with more detailed derivations and proofs of important concepts.

Explorations

Each chapter in Fxploring Analytic Geometry with Mathematica concludes with more advanced
topics in the form of exploration problems to more fully develop the topics presented in each
chapter. There are more than 100 of these more challenging explorations, and the full solutions
are provided on the CD-ROM as Mathematica notebooks as well as printed in Part VIII of the
book. Sample explorations include some of the more famous theorems from analytic geometry:

Carlyle’s Circle e Castillon’s Problem e Euler’s Triangle Formula e Eyeball The-
orem e Gergonne’s Point e Heron’s Formula e Inversion e Monge’s Theorem e
Reciprocal Polars e Reflection in a Point e Stewart’s Theorem e plus many more.

Preface vii

Descarta2D

Descarta2D provides a full-scale Mathematica implementation of the concepts developed in
Ezxploring Analytic Geometry with Mathematica. A reference manual section explains in detail
the usage of over 100 new commands that are provided by Descarta2D for creating, manipulat-
ing and querying geometric objects in Mathematica. To support the study and enhancement
of the Descarta2D algorithms, the complete source code for Descarta2D is provided, both in
printed form in the book and as Mathematica notebook files on the CD-ROM.

CD-ROM

The CD-ROM provides the complete text of the book in Abode Portable Document Format
(PDF) for interactive reading. In addition, the CD-ROM provides the following Mathematica
notebooks:

e Chapters with Mathematica dialogs, 24 interactive notebooks

e Reference material for Descarta2D, three notebooks

Complete Descarta2D source code, 30 notebooks

Descarta2D packages, 30 loadable files

e Exploration solutions, 125 notebooks.

These notebooks have been thoroughly tested and are compatible with Mathematica Version
3.0.1 and Version 4.0. Maximum benefit of the book and software is gained by using it in
conjunction with Mathematica, but a passive reading and viewing of the book and notebook
files can be accomplished without using Mathematica itself.

Organization of the Book
Ezxploring Analytic Geometry with Mathematica is a 900-page volume divided into nine parts:

e Introduction (Getting Started and Descarta2D Tour)

e Elementary Geometry (Points, Lines, Circles, Arcs, Triangles)

Conics (Parabolas, Ellipses, Hyperbolas, Conics, Medial Curves)

Geometric Functions (Transformations, Arc Length, Area)

Tangent Curves (Lines, Circles, Conics, Biarcs)

Descarta2D Reference (philosophy and command descriptions)

Descarta2D Packages (complete source code)

viii Preface

e Explorations (solution notebooks)

e Epilogue (Installation Instructions, Bibliography and a detailed index).

About the Author

Donald L. Vossler is a mechanical engineer and computer software designer with more than
20 years experience in computer aided design and geometric modeling. He has been involved
in solid modeling since its inception in the early 1980’s and has contributed to the theoretical
foundation of the subject through several published papers. He has managed the development
of a number of commercial computer aided design systems and holds a US Patent involving
the underlying data representations of geometric models.

Contents

I Introduction

1 Getting Started
1.1 Imtroduction e
1.2 Historical Background o
1.3 What’s on the CD-ROM
1.4 Mathematica e
1.5 Starting Descarta2D L o
1.6 Outline of the Book

2 Descarta2D Tour
2.1 Pointso e
2.2 Equations e e
2.3 Lines e
2.4 Line Segments
25 Circles o
2.6 ATCS e e
2.7 Triangles e
2.8 Parabolas e
2.9 EIlipses e
2.10 Hyperbolas L
2.11 Transformations e
2.12 Area and ArcLength
2.13 Tangent Curves o oL e e e e
2.14 Symbolic Proofs
2.15 Next Steps o o e

II Elementary Geometry

3 Coordinates and Points
3.1 Numbers.
3.2 Rectangular Coordinates

Contents

3.3 Line Segments and Distance 0oL 30
3.4 Midpoint between Two Points oL 33
3.5 Point of Division of Two Points 33
3.6 Collinear Points e 36
3.7 Explorations e 37
Equations and Graphs 39
4.1 Variables and Functionso o 39
4.2 Polynomials L 39
4.3 Equations e 41
4.4 Solving Equations L 42
4.5 Graphs. 46
4.6 Parametric Equations L L o 47
4.7 Explorations 48
Lines and Line Segments 51
5.1 General Equation 51
5.2 Parallel and Perpendicular Lines 54
5.3 Angle between Lineso L 55
54 Two-Point Form 56
5.5 Point—Slope Form 58
5.6 Slope-Intercept Form 62
5.7 Intercept Form L 64
5.8 Normal Form 65
5.9 Intersection Point of Two Lines 69
5.10 Point Projected Onto a Line 70
5.11 Line Perpendicular to Line Segment 72
5.12 Angle Bisector Lines e 73
5.13 Concurrent Lines Lo 74
514 Pencilsof Lines 75
5.15 Parametric Equations L L Lo 78
5.16 Explorations 81
Circles 85
6.1 Definitions and Standard Equation 85
6.2 General Equation of a Circle 88
6.3 Circle from Diameter L 89
6.4 Circle Through Three Points 90
6.5 Intersection of a Lineand a Circle 91
6.6 Intersection of Two Circles, 92
6.7 Distance from a Point toa Circle 0oL 95
6.8 Coaxial Circles e 96
6.9 Radical Axis e 97

6.10 Parametric Equations L Lo 99

Contents Xi
6.11 Explorations e 101
7 Arcs 105
7.1 Definitions L 105
7.2 Bulge Factor Arc e 107
7.3 Three-Point Arc e 110
7.4 Parametric Equationso Lo 111
7.5 Points and Angles at Parameters L o oL 112
7.6 Arcs from Ray Points L 113
7.7 Explorations e 114
8 Triangles 117
8.1 Definitions 117
8.2 Centroid of a Triangle L 120
8.3 Circumscribed Circle 122
8.4 Inscribed Circle e 123
8.5 Solving Triangles e 124
8.6 Cevian Lengths 128
8.7 Explorations e 128
IIT Conics 133
9 Parabolas 135
9.1 Definitions 135
9.2 General Equation of a Parabola 135
9.3 Standard Forms of a Parabola 136
9.4 Reduction to Standard Form 0L 139
9.5 Parabola from Focus and Directrix 140
9.6 Parametric Equations oo 141
9.7 Explorations 142
10 Ellipses 145
10.1 Definitions e e e 145
10.2 General Equation of an Ellipse 147
10.3 Standard Forms of an Ellipse 147
10.4 Reduction to Standard Form L. 150
10.5 Ellipse from Vertices and Eccentricity 151
10.6 Ellipse from Foci and Eccentricity, 153
10.7 Ellipse from Focus and Directrix, 153
10.8 Parametric Equations L o 155
10.9 Explorations 156

xii Contents
11 Hyperbolas 159
11.1 Definitions e e e e 159
11.2 General Equation of a Hyperbola 161
11.3 Standard Forms of a Hyperbola 161
11.4 Reduction to Standard Form 166
11.5 Hyperbola from Vertices and Eccentricity 167
11.6 Hyperbola from Foci and Eccentricity 168
11.7 Hyperbola from Focus and Directrix 169
11.8 Parametric Equations L Lo 170
11.9 Explorations 173
12 General Conics 175
12.1 Conic from Quadratic Equation L. 175
12.2 Classification of Conics 184
12.3 Center Point of a Conic e 184
12.4 Conic from Point, Line and Eccentricity 185
12.5 Common Vertex Equation 186
12.6 Conic Intersections e 189
12.7 Explorations Lo 190
13 Conic Arcs 193
13.1 Definition of a Conic Arc 193
13.2 Equation of a Conic Arc 194
13.3 Projective Discriminant L Lo 196
13.4 Conic Characteristics L 196
13.5 Parametric Equations oo Lo 198
13.6 Explorations L 199
14 Medial Curves 201
14.1 Point—Point oL 201
14.2 Point-Line. oL 202
14.3 Point—Circle e 204
14.4 Line-Line e 206
14.5 Line-Circle e e 207
14.6 Circle=Circle 210
14.7 Explorations 212
IV Geometric Functions 215
15 Transformations 217
15.1 Translations e e e 217
15.2 Rotations oL 219
15.3 Scaling e 222

Contents xiii
15.4 Reflections 224
15.5 Explorations 226

16 Arc Length 229
16.1 Lines and Line Segments L o 229
16.2 Perimeter of a Triangle Lo 230
16.3 Polygons Approximating Curves 231
16.4 Circles and Arcs e e e e 231
16.5 Ellipses and Hyperbolas L o 233
16.6 Parabolas L L 234
16.7 Chord Parameters e 235
16.8 Summary of Arc Length Functions 236
16.9 Explorations L e 236

17 Area 237
17.1 Areas of Geometric Figures o 237
17.2 Curved Areas e e e 240
17.3 Circular Areas e 240
17.4 Elliptic Areas e 242
17.5 Hyperbolic Areas o e 245
17.6 Parabolic Areas L 246
17.7 Conic Arc Area e 248
17.8 Summary of Area Functions L oo o 249
17.9 Explorations L e 249

V Tangent Curves 253

18 Tangent Lines 255
18.1 Lines Tangent to a Circle 255
18.2 Lines Tangent to Conics o e 266
18.3 Lines Tangent to Standard Conics 273
18.4 Explorations 280

19 Tangent Circles 283
19.1 Tangent Object, Center Point 283
19.2 Tangent Object, Center on Object, Radius 285
19.3 Two Tangent Objects, Center on Object 286
19.4 Two Tangent Objects, Radius 287
19.5 Three Tangent Objects 288
19.6 Explorations e e 289

Xiv Contents
20 Tangent Conics 293
20.1 Constraint Equations L 293
20.2 Systems of Quadratics 294
20.3 Validity Conditionso 296
20.4 Five Points e 296
20.5 Four Points, One Tangent Line 298
20.6 Three Points, Two Tangent Lines 301
20.7 Conics by Reciprocal Polars o o 306
20.8 Explorations e 310
21 Biarcs 311
21.1 Biarc Carrier Circles 311
21.2 Knot Point 314
21.3 Knot Circles. e e 316
21.4 Biarc Programming Exampleso oL 317
21.5 Explorations 322
VI Reference 323
22 Technical Notes 325
22.1 Computation Levels 325
222 Nameso e 326
22.3 Descarta2D Objects 326
22.4 Descarta2D Packages oo 337
22.5 Descarta2D Functions 338
22.6 Descarta2D Documentation L Lo 339
23 Command Browser 341
24 Error Messages 367
VII Packages 385
D2DATC2D e 387
D2DArcLength2D 395
D2DAreal2D e e e e e e 399
D2DCircle2D e e e e e 405
D2DConic2D e e e e 411
D2DConicArc2D e e e 415
D2DE11ipse2D 421
D2DEquations2D 427
D2DExpressions2D 429

D2DGeometry2D 437

Contents XV

D2DHYPerbola2Ddo 445
D2DIntersect2D L e 453
D2DLine2D e e e e e e e e e 457
D2DLoci2D e e e e e e e e 465
D2DMaster2D e e e e 469
D2DMedial2Do e e e e e e e e e e e 473
D2DNumbers2D L. e e e e e e e 477
D2DParabola2D e e 479
D2DPencil2D L. e e e e e e e e e 485
D2DPoint2D e e e e e 489
D2DQuadratic2Do e e e e e 497
D2DSegment2D e 505
D2DSketch2D L e e e e e e e 511
D2DSolve2Do e e e e e e e e 515
D2DTangentCircles2D 519
D2DTangentConics2D L e 523
D2DTangentLines2D 531
D2DTangentPoints2D 537
D2DTransform2D e e e e e e 539
D2DTriangle2D 545
VIII Explorations 555
apollon.nb, Circle of Apollonius 557
arccent.nb, Centroid of Semicircular Arc oL 559
arcentry.nb, Arc from Bounding Points and Entry Direction 561
arcexit.nb, Arc from Bounding Points and Exit Direction. 563
archimed.nb, Archimedes’ Circles, 565
arcmidpt.nb, Midpoint of an Arc oL oL Lo 567
caarclen.nb, Arc Length of a Parabolic Conic Arc. 569
caareal.nb, Area of a Conic Arc (General) 571
caarea2.nb, Area of a Conic Arc (Parabola) 573
cacenter.nb, Center of a Conic Arc 575
cacircle.nb, Circular Conic Arc 577
camedian.nb, Shoulder Point on Median 579
caparam.nb, Parametric Equations of a Conic Arc 581
carlyle.nb, Carlyle Circle. 583
castill.nb, Castillon’s Problem 585
catnln.nb, Tangent Line at Shoulder Point 589
center.nb, Center of a Quadratic 591
chdlen.nb, Chord Length of Intersecting Circles 593
cir3pts.nb, Circle Through Three Points 595

circarea.nb, One-Third of a Circle’s Area 597

XVi

Contents

cirptmid.nb,
cramer2.nb,
cramer3.nb,
deter.nb,
elfocdir.nb,
elimlin.nb,
elimxyl.nb,
elimxy2.nb,
elimxy3.nb,
elldist.nb,
ellfd.nb,
ellips2a.nb,
elllen.nb,
ellrad.nb,
ellsim.nb,
ellslp.nb,
eqarea.nb,
eyeball.nb,
gergonne.nb,
heron.nb,
hyp2a.nb,
hyp4pts.nb,
hyparea.nb,
hypeccen.nb,
hypfd.nb,
hypinv.nb,
hyplen.nb,
hypslp.nb,
hyptrig.nb,
intrsct.nb,
inverse.nb,
johnson.nb,
knotin.nb,
1ndet.nb,
Indist.nb,
Inlndist.nb,
Inquad.nb,
1nsdst.nb,
Insegint.nb,
Insegpt.nb,
Insperp.nb,
Intancir.nb,
lntancon.nb,

Circle-Point Midpoint Theorem 599
Cramer’s Rule (Two Equations) 601
Cramer’s Rule (Three Equations) 603
Determinantso Lo 605
Focus of Ellipse is Pole of Directrix 607
Eliminate Linear Terms 609
Eliminate Cross-Term by Rotation 611
Eliminate Cross-Term by Change in Variables 613
Eliminate Cross-Term by Change in Variables 615
Ellipse Locus, Distance from Two Lines 617
Ellipse from Focus and Directrix 619
Sum of Focal Distances of an Ellipse 623
Length of Ellipse Focal Chord 625
Apoapsis and Periapsisof an Ellipse 627
Similar Ellipses 629
Tangent to an Ellipse with Slope 631
Equal Areas Point 633
Eyeball Theorem 637
Gergonne Point of a Triangle 639
Heron’s Formula oo 641
Focal Distances of a Hyperbola 643
Equilateral Hyperbolas 645
Areas Related to Hyperbolas 647
Eccentricities of Conjugate Hyperbolas 651
Hyperbola from Focus and Directrix 653
Rectangular Hyperbola Distances 657
Length of Hyperbola Focal Chord 659
Tangent to a Hyperbola with Given Slope 661
Trigonometric Parametric Equations 663
Intersection of Lines in Intercept Form 665
Inversion 667
Johnson’s Congruent Circle Theorem 671
Incenter on Knot Circle 675
Line General Equation Determinant 677
Vertical/Horizontal Distance toa Line 679
Line Segment Cut by Two Lines 681
Line Normal to a Quadratic 685
Distance Between Parallel Lines 687
Intersection Parameters of Two Line Segments 689
Intersection Point of Two Line Segments 691
Equations of Perpendicular Lines 693
Line Tangent toa Circle. 695
Line Tangent toa Conic 697

Contents xvii
mdcircir.nb, Medial Curve, Circle-Circle 699
mdlncir.nb, Medial Curve, Line—Circle. 703
mdlnln.nb, Medial Curve, Line-Line 705
mdptcir.nb, Medial Curve, Point—Circle 707
mdptln.nb, Medial Curve, Point-Line 711
mdptpt.nb, Medial Curve, Point-Point 713
mdtype.nb, Medial Curve Type 715
monge.nb, Monge’s Theorem oo 717
narclen.nb, Approximate Arc Length of a Curve 719
normal.nb, Normals and Minimum Distance 721
pb3pts.nb, Parabola Through Three Points 723
pb4pts.nb, Parabola Through Four Points 725
pbang.nb, Parabola Intersection Angle oL 727
pbarch.nb, ParabolicArch oo 729
pbarclen.nb, Arc Length of a Parabola 731
pbdet.nb, Parabola Determinant 0L 733
pbfocchd.nb, Length of Parabola Focal Chord 735
pbslp.nb, Tangent to a Parabola with a Given Slope. 737
pbtancir.nb, Circle Tangent to a Parabola 739
pbtnlns.nb, Perpendicular Tangents to a Parabola 743
polarcir.nb, Polar Equation of a Circle 745
polarcol.nb, Collinear Polar Coordinates 747
polarcon.nb, Polar Equation of a Conic 749
polardis.nb, Distance Using Polar Coordinates 751
polarell.nb, Polar Equation of an Ellipse 753
polareqgn.nb, Polar Equations 0oL 755
polarhyp.nb, Polar Equation of a Hyperbola 757
polarpb.nb, Polar Equation of a Parabola 759
polarung.nb, Non-uniqueness of Polar Coordinates 761
pquad.nb, Parameterization of a Quadratic 0000 763
ptscol.nb, Collinear Points 765
radaxis.nb, Radical Axisof Two Circles 767
radcntr.nb, Radical Center 769
raratio.nb, Radical Axis Ratio 771
reccir.nb, Reciprocalofa Circle 773
recptln.nb, Reciprocals of Points and Lines 775
recquad.nb, Reciprocal of a Quadratic 0oL, e
reflctpt.nb, Reflectionina Point 0oL, 779
rtangcir.nb, Angle Inscribed in a Semicircle oo 781
rttricir.nb, Circle Inscribed in a Right Triangle 783
shoulder.nb, Coordinates of Shoulder Point 785
stewart.nb, Stewart’s Theorem, 787

tancirl.nb,

Circle Tangent to Circle, Given Center. 789

xviii

Contents

tancir2.nb, Circle Tangent to Circle, Center on Circle, Radius 791
tancir3.nb, Circle Tangent to Two Lines, Radius 793
tancird.nb, Circle Through Two Points, Center on Circle 795
tancirb5.nb, Circle Tangent to Three Lines 797
tancirpt.nb, Tangency Point on a Circle 799
tetra.nb, Area of a Tetrahedron’s Base, 801
tncirtri.nb, Circles Tangent to an Isosceles Triangle 803
tnlncir.nb, Construction of Two Related Circles 807
triallen.nb, Triangle Altitude Length 809
trialt.nb, Altitude of a Triangle L. 811
triarea.nb, Area of Triangle Configurations. 813
triarlns.nb, Area of Triangle Bounded by Lines 815
tricent.nb, Centroid of a Triangle 817
tricev.nb, Triangle Cevian Lengths. 819
triconn.nb, Concurrent Triangle Altitudes 823
tridist.nb, Hypotenuse Midpoint Distance 827
trieuler.nb, Euler’s Triangle Formula 829
trirad.nb, Triangle Radii L . 833
trisides.nb, Triangle Side Lengths from Altitudes 835
IX Epilogue 837
Installation Instructions 839
Bibliography 843
Index 845

Part |

Introduction

Chapter 1

Getting Started

1.1 Introduction

The purpose of this book is to provide a broad introduction to analytic geometry using the
Mathematica and Descarta2D computer programs to enhance the numerical, symbolic and
graphical nature of the subject. The book has the following objectives:

e To provide a computer-based alternative to a traditional course in analytic geometry.

e To provide a geometric research tool that can be used to explore numerically and sym-
bolically various theorems and relationships of two-dimensional analytic geometry. Due
to the nature of the Mathematica environment in which Descarta2D was written, the
system can be easily enhanced and extended.

e To provide a reference of geometric formulas from analytic geometry that are not gener-
ally provided in more broad-based mathematical textbooks, nor included in mathemat-
ical handbooks.

e To provide a large-scale Mathematica programming tutorial that is instructive in the
techniques of object oriented programming, modular packaging and good overall system
design. By providing the full source code for the Descarta2D system, students and
researchers can modify and enhance the system for their own purposes.

1.2 Historical Background

)

The word geometry is derived from the Greek words for “earth measure.” Early geometers
considered measurements of line segments, angles and other planar figures. Analytic geometry
was introduced by René Descartes in his La Géométrie published in 1637. Accordingly, after
his name, analytic or coordinate geometry is often referred to as Cartesian geometry. It is
essentially a method of studying geometry by means of algebra. Earlier mathematicians had

4 Chapter 1 Getting Started

(c0)

— readme. txt

{7 AcrobatReader - installationfiles
"] Book - «.pf files

{7 Descarta2D - Descarta2Dfiles
{7 MathReader - installationfiles

Figure 1.1: Organization of the CD-ROM.

continued to resort to the conventional methods of geometric reasoning as set forth in great
detail by Euclid and his school some 2000 years before. The tremendous advances made in
the study of geometry since the time of Descartes are largely due to his introduction of the
coordinate system and the associated algebraic or analytic methods.

With the advent of powerful mathematical computer software, such as Mathematica, much
of the tedious algebraic manipulation has been removed from the study of analytic geometry,
allowing comfortable exploration of the subject even by amateur mathematicians. Mathe-
matica provides a programmable environment, meaning that the user can extend and expand
the capabilities of the system including the addition of completely new concepts not covered
by the kernel Mathematica system. This notion of expandability serves as the basis for the
implementation of the Descarta2D system, which is essentially an extension of the capabilities
of Mathematica cast into the world of analytic geometry.

1.3 What's on the CD-ROM

The CD-ROM supplied with this book is organized as shown in Figure 1.1. Detailed instruc-
tions for installing the software can be found in the chapter entitled “Installation Instructions”
near the end of the book. The file readme . txt on the CD contains essentially the same infor-
mation as the “Installation Instructions” chapter.

There are four folders at the highest directory level on the CD. The folder AcrobatReader
contains Adobe’s Acrobat Reader (used to view *.pdf files) and the folder MathReader con-
tains Wolfram Research’s MathReader (used to view *.nb files). The folder Book contains a
complete copy of the book in Adobe Portable Document Format (PFD).

The folder Descarta2D contains the software described in this book as shown in Figure 1.2.
These files are organized so that they can easily be installed for usage by Mathematica. The
correct placement of these files on your computer’s hard drive is described in the “Installation
Instructions” chapter.

1.4 Mathematica 5

Descarta?D

warranty. txt

x.m, init.m — Descarta2D files
Documentation

English

— BrowserCategories. m

— Table of Contents.nb
—EI Chapters— «.nb

—EI Explorations— = .nbfiles

{7 Packages— «.nbfiles

Figure 1.2: Organization of the Descarta2D folder.

All of the software packages and explorations in this book were developed on a Pentium
Pro computer system using version 4.0 of the Windows N'T operating system and Mathematica
version 3.0.1. Due to the portability of Mathematica, the software should operate identically
on other computer systems, including other Intel-based personal computers, Macintoshes and
a wide range of Unix workstations. The Adobe pdf files on the CD are also portable and
should be readable on a variety of operating systems.

1.4 Mathematica

In this book an assumption is made that you have at least a rudimentary understanding of
how to run the Mathematica program, how to enter commands and receive results, and how to
arrange files on a computer disk so that programs can locate them. A sufficient introduction
to Mathematica would be gained by reading the “Tour of Mathematica” in Stephen Wolfram’s
book Mathematica: A System for Doing Mathematics by Computer.

The syntax Mathematica uses for mathematical operations differs somewhat from tradi-
tional mathematical notation. Since Descarta2D is implemented in the Mathematica pro-
gramming language it follows all the syntactic conventions of the Mathematica system. See
Wolfram’s Mathematica book for more detailed descriptions of the syntax. Once you become
familiar with Mathematica you will begin to appreciate the consistency and predictability of
the system.

6 Chapter 1 Getting Started

1.5 Starting Descarta2D

All of the underlying concepts of analytic geometry presented in this book are implemented in
a Mathematica program called Descarta2D. Descarta2D consists of a number of Mathematica
programs (called packages) that provide a rich environment for the study of analytic geometry.
In order to avoid loading all the packages at one time, a master file of package declarations
has been provided. You must load this file at the beginning of any Mathematica session that
will make use of the Descarta2D packages. Once the package declarations have been loaded,
all of the additional packages will be loaded automatically when they are needed. To load the
Descarta2D package declarations from the file init.m use the command

In[1]: << Descarta2D

If this is the first command in the Mathematica session, the Mathematica kernel will be loaded
first, and then the declarations will be loaded. Depending on the speed of your computer this
may take a few seconds or several minutes. After the initial start-up, packages will load at
automatically as new Descarta2D functions are used for the first time. When a package is first
loaded, you may notice a delay in computing results; after the package is loaded, results are
computed immediately and the time taken depends on the complexity of the computation.

The examples in this book that illustrate the usage of Descarta2D were chosen primarily for
their simplicity, rather than to correspond to significant calculations in analytic geometry. At
the end of each chapter a section entitled “Explorations” provides more realistic applications
of Descarta2D. All of the examples in this book were generated by running an actual copy of
Mathematica version 3.0.1. The interactive dialogs of each Mathematica session are provided
in the corresponding chapter notebook on the CD, so very little typing is required to replicate
the output and plots in each chapter. If you choose to enter the commands yourself instead
of using the notebook on the CD, you should enter the commands exactly as they are printed
(including all spaces and line breaks). This will insure that you obtain the same results as
printed in the text. Once you become more familiar with Mathematica and Descarta2D, you
will learn what deviations from the printed text are acceptable.

Plotting Descarta2D Objects

Graphically rendering (plotting) the geometric objects encountered in a study of analytic
geometry greatly enhances the intuitive understanding of the subject. Mathematica provides a
wide variety of commands for plotting objects including Graphics, Plot and ParametricPlot.
There are also specialized commands such as ImplicitPlot and PolarPlot. Each of these
commands has a wide variety of options, giving the user detailed control over the plotted
output.

These Mathematica commands can also be used to plot Descarta2D objects, and, in fact,
the figures found in this book were generated using the Mathematica plotting commands
named above. However, the Descarta2D system provides another command, Sketch2D, for
plotting Descarta2D objects. The Sketch2D command has a very simple syntax as illustrated
in the following example.

1.6 Outline of the Book 7

Example. Plot these objects using the Sketch2D command: Point2D[{-1, 2}],
Line2D[2, -3, 1] and Circle2D[{1, 0}, 2]. (The meaning of these geometric ob-
jects will be explained in subsequent chapters; for now it is sufficient to understand
that we are plotting a point, a line and a circle.)

Solution. The Descarta2D function Sketch2D [objList] plots a list of geometric
objects.

In[2]: Sket ch2D[{Poi nt2D[{-1, 2}], Line2D[2, -3, 1], Gircle2D[{1, 0}, 2]}1;

_/

NFP,OFLDNW

1.6 Outline of the Book

The book is divided into nine sections. The first five sections deal with the subject matter
of analytic geometry; the remaining sections provide a reference manual for the use of the
Descarta2D computer program and a listing of the source code for the packages that implement
Descarta2bD, as well as the solutions to the explorations.

Part I of the book serves as an introduction and begins with the material in this chapter
aimed at getting started with the subject; the next chapter continues the introduction by
providing a high-level tour of Descarta2D. Part II introduces the basic geometric objects
studied in analytic geometry, including points and coordinates, equations and graphs, lines,
line segments, circles, arcs and triangles. Part III continues by studying second-degree curves,
parabolas, ellipses and hyperbolas. In addition, Part III provides a more general study of
conic curves by examining general conics, conic arcs and medial curves.

Part IV covers geometric functions including transformations (translation, rotation, scaling
and reflection) and the computation of areas and arc lengths. The subject of tangent curves is
covered in Part V with specific chapters dedicated to tangent lines, tangent circles and tangent
conics. The final chapter in Part V is an overview of biarc circles, which are a special form of
tangent circles. The intent of this chapter is to illustrate how new capabilities can be added
to Descarta2D.

8 Chapter 1 Getting Started

Generally, the chapters comprising Parts I through V present material in sections with
simple examples. The examples are sometimes supplemented with Descarta2zD and Mathe-
matica Hints that illustrate the more subtle usages of the commands. Each chapter ends with
an “Explorations” section containing several more challenging problems in analytic geometry.
The solutions for the explorations are provided as Mathematica notebooks on the CD, as well
as being listed alphabetically in Part VIII.

Parts VI and VII serve as a reference manual for the Descarta2D system. The reference
manual includes a description of the geometric objects provided by Descarta2D, a browser
for quickly finding command syntax and options, and a listing of the error messages that
may be generated. Part VII provides a complete listing, with comments, of all the packages
comprising Descarta2D.

Part VIII of the book contains reproductions of the notebooks which provide the solutions
to the explorations found at the end of each chapter. The notebooks are listed in alphabetical
order by their file names. The exploration notebook files may also be reviewed directly off the
CD using Mathematica or MathReader.

Part IX contains the instructions for installing Descarta2D on your computer system as
well as a Bibliography and a detailed index.

Chapter 2

Descarta2D Tour

The purpose of this chapter is to provide a tour consisting of examples to show a few of the
things Descarta2D can do. Concepts introduced informally in this chapter will be studied
in detail in subsequent chapters. The tour is not intended to be a complete overview of
Descarta2D, but just a sampling of a few of the capabilities provided by Descarta2D.

2.1 Points

The simplest geometric object is a point in the plane. The location of a point is specified
by a pair of numbers called the 2- and y-coordinates of the point and is written as (z,y).
In Mathematica and Descarta2D point coordinates are enclosed in curly braces as {z, y}. In
Descarta2D a point with coordinates (z,y) is represented as Point2D [{z, y}]. The following
commands are used to plot the points (1,2), (3,—4) and (-2, 3):

1n[1]: Sketch2D[{Poi nt 2D[{1, 2}], Poi nt2D[{3, -4}],
Poi nt 2D[{-2, 3}1}1;

Mathematica allows us to assign symbolic names to expressions. The commands

10 Chapter 2 Descarta2D Tour

In(2]: pl="Point2D[{1, 2}1;
p2 = Poi nt 2D[{3, -4}1;
p3 = Poi nt 2D[{-2, 3}1;

assign the names p1, p2 and p3 to the points sketched previously. After a name is assigned,
we can refer to the object by using its name.

In[3]: {pl, p2, p3}

out[3] {Point2D[{1, 2}], Point2D[{3, -4}], Point2D[{-2, 3}]}

Descarta2D provides numerous commands for constructing points. These commands have
the name Point2D followed by a sequence of arguments, separated by commas and enclosed
in square brackets. For example, the command

In[4]: p3 = Poi nt 2D[pl = Poi nt 2D[{-3, -2}], p2 = Poi nt2D[{2, 1}]]

-3 -]

out 4] Poi nt 2D|{

constructs a point, named p3, that is the midpoint of two other points named p1 and p2.

2.2 Equations

The underlying principle of analytic geometry is to link algebra to the study of geometry.
There are two fundamental problems studied in analytic geometry: (1) given the equation
of a curve determine its shape, location and other geometric characteristics; and (2) given a
description of the plot of a curve (its locus) determine the equation of the curve. Equations
are represented in Mathematica and Descarta2D in a manner that is very similar to standard
algebra. For example, the linear equation 2z + 3y — 4 = 0 is entered using the following
command:

1n(5]: Clear [X, YI;
2xX +3xy -4 ==

out[5] -4+2x+3y==0

Mathematica Hint. Mathematica uses the double equals sign, ==, to represent
the equality in an equation; the single equals sign, =, as has already been shown,
is used to assign names. Also, notice that Mathematica sorts all output into a
standard order that may be different than the order you typed.

The left side of the equation above is called a linear polynomial in two unknowns. The general
form of a linear polynomial in two unknowns is given by

Ax + By + C.

2.2 Equations 11

Since linear polynomials occur frequently in the study of analytic geometry, Descarta2D pro-
vides a special format for linear polynomials which is of the form Line2D[A, B, C] where A
is the coefficient of the x term, B the coefficient of the y term and C' is the constant term.
Descarta2D also provides functions for converting between linear polynomials and Line2D
objects.

n[6]: Cear [X, Y];
11 =Line2D[2, 3, -4];
polyl =2%x +3xy -4,

n[7]: Pol ynom al 2D[l 1, {x, y}]
out[7] -4+2x+3y
n[8]: Line2D[pol y1, {x, y}]

out[8] Line2D[2, 3, -4]

Frequently we will also be interested in quadratic equations which represent such curves as
circles, ellipses, hyperbolas and parabolas. The algebraic form of a quadratic equation is

Ax? + Bay + Cy* + Dx+ Ey + F = 0.
Descarta2D provides a special form for representing a quadratic polynomial which is
Quadratic2D[A4, B, C, D, E, F]
and functions for converting between polynomials and Quadratic2D objects.

In[9]: Clear [X, YI;
polyl =2%xX"2+3 %X *xy +3xy"2-4xX-5xy-3;
gl = Quadratic2D[2, 3, 3, -4, -5, -37;

In[10]: Pol ynomi al 2D[ql, {X, Y}]

out[10] -3-4x+2x2-5y+3xy+3y?

In[11]: Quadratic2D[pol y1, {X, y}]

out[11] Quadratic2D[2, 3, 3, -4, -5, -3]

Equations are often constructed so that they may be solved for numbers that make the
equality true. For example, the quadratic equation in one unknown, 2 — 7z + 10 = 0 is solved
when z = 2 or x = 5. Mathematica provides powerful functions for solving equations. For
example, the Solve command can be used to find the solutions to the equation given above.

In[12]: O ear [X];
Solve[x"2 -7%x +10 == 0, Xx]

out[12] {{X -2}, {X->5}}
The Solve command returns solutions in the form of Mathematica rules which are useful in

subsequent computations. We will often need to solve equations in order find the solutions to
geometric problems.

12 Chapter 2 Descarta2D Tour

2.3 Lines

Intuitively, a straight line is a curve we might draw with a straightedge ruler. In mathematics,
a line is considered to be infinite in length extending in both directions. We often think of a
line as the shortest path connecting two points, and, in fact, this is one of the many methods
provided by Descarta2D for constructing a line. Mathematically, a line is represented as a
linear equation of the form

Az + By+C =0

where A, B and C are called the coefficients of the line and determine its position and direction.
For example, in Descarta2D the line x — 2y + 4 = 0 is represented as Line2D[1, -2, 4]. The
following command constructs a line from two points.

In[13]: |1 =Line2D[pl = Poi nt 2D[{-3, -1}], p2 = Poi nt 2D[{3, 2}]11]

out[13] Line2D[-3, 6, -3]

This is the line —3xz 4+ 6y — 3 = 0. We can plot the points and the line to get graphical
verification that the line passes through the two points.

In(14]: Sketch2D[{pl, p2, |1}1;

4 -2 0 2 4

We might be interested in the angle a line makes measured from the horizontal. The angle
can be determined using

1n[15]: al = Angl e2D[l 11 // N,
a2 =al / Degree;
{al, a2}

out[15] {0.463648, 26.5651}

which indicates that the line makes an angle of approximately 0.463648 radians, or about
26.5651 degrees, measured from the horizontal.

/_‘k\] DescartazD Hint. All angles in Descarta2D are expressed in radians. A radian

M is an angular measure equal to 180/7 degrees (about 57.2958 degrees). The
Mathematica constant Degree has the value 7/180. Dividing an angle in radians
by Degree converts the angle from radians to degrees.

2.4 Line Segments

13

We may want to construct lines with certain relationships to another line. For example,
the following commands construct lines parallel and perpendicular to a given line through a

given point.

In[16]: pl =Point2D[{2, 1}];
I'1=Line2D[3, 1, -21;

{l 2 = Line2D[pl, |1, Parallel2D],
| 3 = Li ne2D[pl, |1, Perpendicul ar2D] }

out[16] {Line2D[-3, -1, 7], Line2D[1, -3, 1]}

In[17]: Sketch2D[{pl, |1, 12, |13}];

-4

2.4 Line Segments

-2 0 2 4

Perhaps it is more familiar to us that a line has a definite start point and end point. Such a
line is called a line segment and is represented in Descarta2D as

Segment2D [{xzo, Yo}, {1, y1}]

where (29, y0) and (x1,y1) are the coordinates of the start and end points, respectively, of the

line segment.

n[18]: Sketch2D[{l 1 = Segnent 2D[{-2, 1}, {3, -2}1}1;

1
0.5
0

-0.5
-1
-1.5
-2

-2

-1 0 1 2 3

14 Chapter 2 Descarta2D Tour

We might want to determine the midpoint of a line segment, and we could use the
Point2D [point, point] function to do so, but Descarta2D provides a more convenient func-
tion for directly constructing the midpoint of a line segment.

n[19]: pl = Point2D[l 1]

1 1]

out [19] Poi ntZD[{T -5}

In[20]: Sketch2D[{l 1, pl}];

©

1
©
NP OO0k

2.5 Circles

A circle’s position is determined by its center point and its size is specified by its radius. The
standard equation of a circle is

(z—)+ (y — k) =1

where (h, k) are the coordinates of the center point, and r is the radius of the circle. In
Descarta2D a circle is represented as Circle2D[{h, k}, 7.

1n[21]: ¢l =Crcle2D[{1, 2}, 2];
Sket ch2D[{c1, Point2D[c1]}];

4

2.6 Arcs 15

As demonstrated by the example, the function Point2D [circle] constructs the center point of
the circle. The function Radius2D [circle] returns the radius of a circle.

In[22]: Radi us2D[cl]

out [22] 2

Descarta2D provides many functions for constructing circles. For example, we can construct
a circle that passes through three given points.

In[23]: pl =Point2D[{1, 2}1;
p2 = Poi nt 2D[{-1, 2}1;
p3 = Poi nt 2D[{0, -2}1;
cl=Circle2D[pl, p2, p3]

1

out (23] Gircle2D[{0, &},

17
8 _‘}

8

In[24]: Sketch2D[{pl, p2, p3, cl}];

2.6 Arcs

Just as a line segment is a portion of a line, an arc is a portion of a circle. We can specify
the span of the arc in terms of the angles the arc’s sector sides make with the horizontal. In
Descarta2D an arc can be constructed using Arc2D [point, r, {61, 62}] (this is not the standard
representation of an arc, it is merely one of the ways Descarta2D provides for constructing an
arc).

In[25]: Al = Arc2D[Poi nt 2D[{2, 1}], 3, {Pi /6, 5Pi /6}1;
Sket ch2D[{Al, Point2D[{2, 1}]1}1;

16 Chapter 2 Descarta2D Tour

N
oD oW o

As with a circle, we can construct an arc in many ways. For example, we can construct an
arc passing through three points.

n[26]: pl =Point2D[{2, -1}];
p2 = Poi nt 2D[{1, 2}];
p3 = Poi nt 2D[{-2, 1}1;
al = Arc2D[pl, p2, p3]

out [26] Arc2D[{2, -1}, {-2, 1}, 1]

In(27]: Sketch2D[{pl, p2, p3, al}];

=

©
PO o URr N

1
N
1
=
o
[EEY
N

2.7 Triangles

Triangles are defined by three line segments connecting three points called the vertices of the
triangle. In Descarta2D a triangle is represented as

Triangle2D [{xl, y1}, {332, yz}, {373, yS}]-

1n[28]: t1 =Triangl e2D[{1, 4}, {8, 8}, {6, 1}1;
Sket ch2D[{t 1}];

2.8 Parabolas 17

P N Wb 01O N0

1 2 3 456 7 8

We can inscribe a circle inside a triangle, as well as circumscribe one about a triangle. We
can also compute properties such as its center of gravity.

In[29]: {cl=Circle2D[t1, Inscribed2D],
c2=Circle2D[t1, Circunscribed2D],
pl = Poi nt 2D[t 1, Centroi d2D]} // N

out [29] {Gircle2D[{4.83161, 3.95924}, 1.9364], Gircl e2D[{5. 03659, 5.06098}, 4.17369],
Poi nt 2D[{5., 4.33333}])

In[30]: Sketch2D[{t1, c1, c2, pl}];

2.8 Parabolas

A parabola is the cross-sectional shape required for a reflective mirror to focus light to a
single point. The standard equation of a parabola centered at (0,0) and opening to the right
is y? = 4fx, where f is the focal length, the distance from the vertez point to the focus. We
can apply a rotation, 6, to the parabola to produce a parabola of the same shape, but opening
in a different direction. In Descarta2D the expression Parabola2D[{h, k}, f, 6] is used to
represent a parabola.

18 Chapter 2 Descarta2D Tour

n[31]: pl =Parabol a2D[{1, 0}, 1/2, 0];
p2 = Parabol a2D[{-1, 0}, 1/2, Pi /2];
Sket ch2D[{pl, p2}1;

P O FLP N W >

-2

-4 -2 0 2 4

2.9 Ellipses

An ellipse is a shape of the path a planet makes as it orbits the sun. The standard equation
for an ellipse is given by
22 g2
et
where 2a is the length of the longer major axis, and 2b is the length of the minor axis. Ellipses
in other positions and orientations may be obtained by moving the center point or by rotating
the ellipse. In Descarta2D the expression E11ipse2D[{h, k}, a, b, 6] is used to represent an
ellipse.
In[32]: el =Ellipse2D[{0, 0}, 2, 1, O];
e2 =Ellipse2D[{2, 1}, 3, 2, Pi 74];
Sket ch2D[{el, e2}];

A1
SN,

-2-10 1 2 3 4

R O B N W

An ellipse has two focus points that can also be plotted.

In[33]: pts = Foci 2D[e2]

out [33] {PointZDH2+\/§, 1+ﬁ}], PointZD[{Z—Jg, l—ﬁ}]}

2.10 Hyperbolas 19

In[34]: Sketch2D[{e2, pts}];

2.10 Hyperbolas

A hyperbola in standard position has an equation similar to an ellipse that is given by

As with the ellipse, the constants a and b represent the lengths of certain axes of the hyperbola.
The hyperbola plot consists of two separate pieces, called branches, both extending to infinity
in opposite directions. The lines bounding the extent of the hyperbola are called asymptotes.
A second hyperbola, closely related to the first, is bounded by the same asymptotes and
is called the conjugate hyperbola. Hyperbolas can also be rotated in the plane and moved
by adjusting their center points. The expression Hyperbola2D[{h, k}, a, b, 0] is used to
represent a hyperbola in Descarta2D.

In[35]: hl = Hyperbol a2D[{0, 0}, 2, 1, 0];
I ns = Asynpt ot es2D[h1];
h2 = Hyper bol a2D[h1, Conj ugat e2Dj;
Sket ch2D[{l ns}];
Sket ch2D[{I ns, h1}];
Sket ch2D[{l ns, h2}];

NPk, OEFLNDN

20 Chapter 2 Descarta2D Tour

4020

NFORFLDN

~ | ~—
TR

4 -2 0 2 4

WNFRPORFRPNW

1
(o))

7
» :

2.11 Transformations

We can change the position, size and orientation of an object by applying a transformation
to the object. Common transformations include translating, rotating, scaling and reflecting.
A Descarta2D object can be transformed to produce a new object.

In[36]: el =Ellipse2D[{0, 0}, 2, 1, 0];
Sket ch2D[{el,
Transl at e2D[el, {3, 0}1,
Rot at e2D[el, Pi /2],
Scal e2D[el, 2],
Ref | ect 2D[el, Line2D[O0, 1, -111}1;

3
2
1
0
N
2
-4 -2 0 2 4

2.12 Area and Arc Length

Curves possess certain properties of interest such as area and length. These properties are
independent of the position and orientation of the curve.

n[37]: ¢l =Crcle2D[{0, 0}, 2];
{Area2D[c1], G rcunference2D[cl]}

out[37] {4 m, 4}

Additionally, it may be of interest to compute the arc length of a portion of a curve or
areas bounded by more than one curve. Descarta2D has a variety of functions for performing
such computations.

2.13 Tangent Curves 21

2.13 Tangent Curves

When two curves touch at a single point without crossing, the two curves are said to be tangent
to each other. Descarta2D provides a wide variety of functions for computing tangent lines,
circles and other tangent curves. This example produces the circles tangent to a line and a
circle with a radius of 3/8. There are eight circles that satisfy these criteria.
In[38]: | 1 =Line2D[0O, 1, -17;
cl=Crcle2D[{0, 0}, 21;

tl=TangentCircles2D[{l 1, cl1}, 3/8];
Sketch2D[{l 1, c1, t1}];

T 00 O0
OO0

-1
-2

-4 -2

o
N
N

This example produces the four lines tangent to two given circles.
In[39]: cl=Circle2D[{2, 0}, 17;
c2=Crcle2D[{-3, 0}, 2];

t 1 = Tangent Li nes2D[c1, c2];
Sket ch2D[{c1, c2, t1}];

N
=

4 -2 0 2 4

Conic curves (ellipses, parabolas and hyperbolas) can also be constructed passing through
points or tangent to lines. The following example constructs four ellipses that are tangent to
three lines and pass through two points.

In[40]: 11 =Line2D[1, O, -17;
| 2 = Li ne2D[0, 1, -17;
| 3 =Line2D[{10, 0}, {0, 6}1;
pl = Poi nt 2D[{2, 3}];
p2 = Poi nt 2D[{4, 2}];
t1 = Tangent Coni cs2D[{l 1, |2, 13, pl, p2}] // N,

22 Chapter 2 Descarta2D Tour

Pg(a, b)

Po(d, 0)
P,(0, 0) T

x

Figure 2.1: Triangle altitudes theorem.

1n[41]: Sketch2D[{l 1, 12, 13, pl, p2, t1},
Pl ot Range -> {{0, 10}, {0, 6}},
Curvelengt h2D -> 207;

OFRL NWPMOIUIO

2.14 Symbolic Proofs

As a final exercise on our tour of Descarta2D we will use the symbolic capabilities of Mathe-
matica to prove a theorem about the perpendicular bisectors of the sides of a triangle. The
symbolic capabilities of Mathematica allow us to derive and prove general assertions in analytic
geometry. Many of the built-in Descarta2D functions were derived using these capabilities.

Triangle Altitudes. The three perpendicular bisectors of the sides of a triangle
are concurrent in one point. Further, this point is the center of a circle that passes
through the three vertices of the triangle.

Without loss of generality, we pick a convenient position for the triangle in the plane as shown
in Figure 2.1. One vertex is located at the origin, the second on the +z-axis and the third is
arbitrarily placed.

2.15 Next Steps 23

In[42]: Clear [a, b, dI;
P1 = Poi nt 2D[{0, 0}1;
P2 = Poi nt 2D[{d, 0}];
P3 = Poi nt 2D[{a, b}];

The perpendicular bisectors of the sides of the triangle pass through the midpoint of each side
and are perpendicular to the side. Each of these lines is constructed using the Descarta2D
command Line2D [point, point, Perpendicular2D].

In[43]: L12 = Li ne2D[P1, P2, Perpendi cul ar 2D];
L13 = Li ne2D[P1, P3, Perpendi cul ar 2Dj;
L23 = Li ne2D[P2, P3, Perpendi cul ar 2D];

By including the semicolon, ;, at the end of each statement, we instruct Mathematica to
suppress the output from these statements. Since we are treating these lines symbolically,
we have no need at this point to examine the output. If you are curious about the form of
lines L12, L13 and L23, they can be examined by entering the command {L12, L13, L23}. We
now intersect these lines in pairs to determine the points of intersection using the Descarta2D
function Point2D [line, line] that constructs the point of intersection of two lines.

In[44]: {P4 =Point2D[L12, L13] // Sinplify,
P5 = Poi nt 2D[L12, L23] // Sinplify}

d a?+b%2-ad

d a?+b%2-ad
g st

out [44] {Poi nt 2D[{ }]. Poi ntZDH?, >
By inspection, the coordinates of these two points are identical, which proves the first part
of the theorem. To prove the second part of the theorem we determine the distance from the
intersection point to each of the vertex points and show that the distance is the same for all

three vertex points.

In[45]: {d1, d2, d3} = Map[Di st ance2D[#, P41& {P1, P2, P3}1;
(d1-d2, d2-d3, d1-d3} //FullSinplify

out [45] {0, 0, O}

Many of the explorations provided at the end of upcoming chapters were developed using
techniques similar to the one outlined above. Using Mathematica and Descarta2D to prove
general assertions in analytic geometry illustrates the power of these computer programs.

2.15 Next Steps

This completes our high-level tour of Descarta2D. Many of the concepts introduced informally
in this chapter will be studied in detail in subsequent chapters. The explorations provided at
the end of each chapter provide additional insight into the subject matter and will give you an
opportunity to learn the techniques for solving problems using Mathematica. Although many
of the chapters can be studied independently, the concepts introduced in earlier chapters are
the underlying tools used in subsequent chapters. Therefore, a sequential reading and study
of the book is recommended for best understanding and continuity.

Part Il

Elementary Geometry

Chapter 3

Coordinates and Points

The fundamental concept of analytic geometry is the one-to-one correspondence established
between points in a plane and (z,y) coordinates. This chapter introduces these concepts and
develops some simple functions involving points.

3.1 Numbers

Integers are the whole numbers used for counting, both negative and positive, as well as zero.
Ratios of integers such as 1/2, 5/7, 4/1 and 23/15 are called rational numbers. Numbers that
can be plotted as distances from a fixed point on a line are called real numbers. Examples are
-8, 0, 2.1387, /2, 5/3 and 7.

If a and b represent real numbers and i = \/—1, the expression a + bi is a complex number.
A complex number is the sum of a real number a and a pure imaginary number bi. The two
complex numbers a + bi and a — bi are called conjugate complex numbers.

In general, this book deals with real numbers, but since we are using algebraic techniques to
study geometry, complex numbers naturally arise in the formulations. Mathematica provides
a variety of ways to represent numbers as summarized in Table 3.1.

Table 3.1: Numbers in Mathematica.

TYPE EXAMPLES

Integer -4, 0, 1, 2, 3
Rational | 7/5, 3/4

Real 1.25, 3.0, -45.0
Complex |3 + 2 I, -2.45 - 3.57 1

27

28 Chapter 3 Coordinates and Points

Table 3.2: Some common constants in Mathematica.

‘ CONSTANT | Mathematica
T~ 3.14159 | Pi
e~ 2.71828 | E
/180 &~ 0.0174533 | Degree
i=+—-1]1

Any given number, integer, rational, real or complex, is a constant. Mathematica provides
symbols for some common numbers that are fixed value constants as shown in Table 3.2.
Sometimes we do not wish to specify what the particular constant is and indicate a general
constant by any one of the letters a, b, ¢, ..., A, B, C, ..., and such constants are referred to
as parameters.

3.2 Rectangular Coordinates

The basic idea in analytic geometry is to establish a one-to-one correspondence between the
points of a plane and number pairs (x,y). This correspondence may be established in many
ways, but the one most commonly used is as follows. Consider two perpendicular lines X’'X
and Y'Y intersecting in the point O. The horizontal line X’X is called the z-axis, and the
vertical line Y'Y the y-axis, and together they form a rectangular coordinate system.

These axes divide the plane into four quadrants labeled I, II, III and IV as shown in
Figure 3.1. The point O is called the origin. When numerical scales are established on
the axes, positive distances = are laid off to the right of the origin and are called abscissas;
negative abscissas are laid off to the left. Positive distances y are drawn upwards and are
called ordinates; negative ordinates are drawn downward. Thus OX and OY have positive
sense (or direction) while OX’ and OY’ have negative sense. The unit scales on the x-axis
and the y-axis need not be the same, but problems in analytic geometry often assume the
units are equal on both axes.

Clearly such a system of coordinates can be used to describe the positions of points in the
plane. For example, by going out +3 units on the z-axis and +2 units on the y-axis a point
labeled A is located as shown in Figure 3.2. The point A is said to have the pair of numbers
3 and 2 as its coordinates, and it is customary to write A(3,2) or simply (3,2). Similarly, B
has the coordinates (—2, —1) and lies in the third quadrant. It is evident that for the point Py
pictured in the second quadrant, the z-coordinate is negative and the y-coordinate is positive.
We will write Py (21, 1) as the general representation of a point P; in the plane at coordinates
r=ux1 and y = y1.

The fundamental principle of analytic geometric is that there exists a one-to-one correspon-
dence between number pairs and points in the plane: to each pair of numbers there corresponds

3.2 Rectangular Coordinates 29

Y

Figure 3.1: Coordinate axes and quadrants.

P1(X1, y1) .

Figure 3.2: Coordinates specifying positions in the plane.

30 Chapter 3 Coordinates and Points

one and only one point and, conversely, to each point in the plane there corresponds one and
only one pair of numbers.

Example. Plot the points with the following coordinates: (—2,3), (4,2) and
(—4,-1).

Solution. Descarta2D represents a point (x,y) as Point2D [{z, y}]. The function
Sketch2D [objList] plots a list of objects.

In[1]: Sket ch2D[{Poi nt 2D[{-2, 3}1,
Poi nt 2D[{4, 2}1,
Poi nt 2D[{-4, -1}1}1;

R O B N W

The curly brackets surrounding the point’s coordinates are optional and may be
omitted. Descarta2D will automatically add the curly brackets when the point’s
abscissa and ordinate are given as two arguments, Point2D [z, y], as shown below.
A symbolic name may be assigned to a point, and this name can be used later to
refer to the point.

In[2]: pl = Poi nt2D[-2, 3]

out[2] Point2D[{-2, 3}]

In[3]: pl

out[3] Point2D[{-2, 3}]

3.3 Line Segments and Distance

Given two points A and B on the z-axis, or on a line parallel to the z-axis, the line segment
AB from point A to point B extends over a certain number of units of length used as the scale
on the z-axis. If the direction from A to B points to the right, we say that AB is a positive

3.3 Line Segments and Distance 31

yA

Figure 3.3: Distance between points.

segment. On the other hand, if the direction from A to B points to the left, we say that AB
is a negative segment. Then we can assign to the segment AB a positive or negative number
indicating the direction and number of units of the segment. This signed number is indicated
by AB. The absolute value of AB, indicated by |E‘, is a positive number called the length
of the line segment. When the context is clear the symbol AB may be used to represent the
line containing the points A and B, the line segment AB, or the length of the segment, |AB].

To calculate the number (positive or negative) of z-units in the segment AB, let 2 be the
abscissa of B and let x1 be the abscissa of A. Then, if B is to the right of A, the number of
z-units in the segment AB is equal to x5 — x1. We define BA to be the negative of segment
AB. Thus

AB =29 — 71 and BA =11 — 9.

In the same fashion we can define a directed segment C'D on, or parallel to, the y-axis, to
be positive or negative depending on whether the arrow from C to D points up (positive
direction) or down (negative direction). Thus

CD =ys —y; and DC = y; — yo.

Let Pi(x1,y1) and P(z2,y2) be two points lying in the first quadrant and draw line
segments P;@Q and P»(Q parallel to the coordinate axes as shown in Figure 3.3. By subtracting
the abscissas, P1@Q = xo — x1; similarly subtracting ordinates, PoQ) = y» — y1. Making use of
the Pythagorean Theorem on the right triangle P;QP,, we have

(PLPy)? = (w2 —21)* + (y2 — 11)°
and the positive distance P P», d, is given by
d=/(za —21)2 + (y2 — y1)%.

The same formula holds true regardless of the quadrants in which the points lie and regardless
of the order in which the points are taken.

32 Chapter 3 Coordinates and Points
Example. Find the distance between the two points (3, —1) and (—4, —2).
Solution. Taking the points in the given order, we have

d=+/(-4-3)2+ (-2 —(-1))2 =560 =5V2.
Or, taking the points in the opposite order,
d=+/(3—(—4))2 + (-1 —(=2))2 = V50 = 5V2.

The Descarta2D function Distance2D [coord, coord] computes the distance be-
tween two locations given as coordinates. The function Distance2D [point, point]
computes the distance between two points.
In[4]: {Di stance2D[{3, -1}, {-4, -2}],

Di st ance2D[Poi nt 2D[{3, -1}], Point2D[{-4, -2}11}
out(4] {52, 52}
The coordinates of the points may be symbolic and the points themselves may be
named points.
In[5]: Cear [x1, y1, x2, y2];

pl = Poi nt 2D[{x1, y1}]; p2 = Poi nt 2D[{x2, y2}];

Di st ance2D[p1l, p2]
out [5] \/ (x1-x2)2+ (yl-y2)2
|
Mathematica Hint. The Mathematica function Clear is used in the previous
example and throughout other examples in this book to insure that variable
names used in the examples are not set to some unintended value from a previous
computation.

/jk\] DescartazD Hint. There are several Descarta2D functions that are handy for

M working with points and coordinates. Coordinates2D [point] returns the (z,y)
coordinates of a point as the list {z, y}. The functions XCoordinate2D [point]
and XCoordinate2D [coord] give the x-coordinate, and YCoordinate2D [point]
and YCoordinate2D [coord] give the y-coordinate.

3.4 Midpoint between Two Points 33

)

Figure 3.4: Midpoint between two points.

3.4 Midpoint between Two Points

The midpoint between two points is the point bisecting the line segment connecting the two
points. If the coordinates of the two points are P; (z1,y1) and P» (22, y2) as shown in Figure 3.4,
then the midpoint, P;2, has coordinates

r1+ T2 Y1+ Y2
2 72 '

Example. Find the midpoint between the points (—2,1) and (3, —2).

Solution. The function Point2D [point, point] returns the midpoint of the two
points. Alternatively, the function Point2D [inseg] returns the midpoint of a line
segment.

In(6]: pl =Point2D[{-2, 1}];
p2 = Poi nt 2D[{3, -2}];
pl2 = Poi nt 2D[p1, p2]

out [6] Poi ntZDH%, -%}]

3.5 Point of Division of Two Points

Given a directed line segment such as P} P>, we wish to find the coordinates of the point
P which divides P, P, into a given ratio r1/rs as illustrated in Figure 3.5. Let P have the

34 Chapter 3 Coordinates and Points

Pa(x2, y2)

Figure 3.5: Point of division.

coordinates (z,y) which are to be determined. Sense is important here and P must be located
so that PyP/PPs =11 /72.
Since APy PQ and APSP; are similar, it follows that (z — z1)/r1 = (z2 — x)/r2. Solving
this equation for z yields
_ Tir2 + Tarn (3.1)
1+ 72

Similarly, N
YiT2 T Y21
y=——"7T_"

T+ 7o
To find the midpoint of the segment Py P, the ratio 71 /r2 must be unity; hence r1 = ro
and Equations (3.1) and (3.2) specialize to

(3.2)

1+ 22 Y1+ Y2
r=——— and y="——.

2 2
Equations (3.1), (3.2) and (3.3) also have useful physical interpretations. In (3.1) and (3.2),
let x and y be the coordinates of the center of gravity of masses 1 and ry placed at P; and
P5, respectively. If the masses are equal, the center of gravity lies halfway between them as
indicated by (3.3).

It is of further interest to note the positions of P for various values of the ratio 1 /re. If
this ratio is zero, then P coincides with P;, and if this ratio is a positive number, P is an
internal point of division. As r1/rs — 400, P — P;. For —oo < 11/r3 < —1, P is an external
point of division (in the direction of P P;). For —1 < ry/ry < 0, P is an external point in the
opposite direction with P; P negative and P, P positive.

(3.3)

Example. Find the point that divides the line segment between the points
Py(—2,5) and P»(4,—1) into the ratio 1 /1y = —2.

3.5 Point of Division of Two Points 35

A

Pa(x2, y2)

al

Figure 3.6: Point offset a distance towards a point.

Solution. The Descarta2D function Point2D [point, point, r1, ro] returns the
point that divides the line segment between the points into the ratio 1 /ro.

1n[7]: Poi nt 2D[Poi nt 2D[{-2, 5}], Point2D[{4, -1}], -2, 1]

out[7] Point2D[{10, -7}]
| |

Notice that it is invalid for r; + r2 to equal zero in Equations (3.1) and (3.2) as this would
tend to generate a point at infinity.

Point Offset a Distance

Given two points P (z1,y1) and Pa(22,y2) we wish to find the point offset a distance, d, from
P; in the direction of P,. We can use the point of division formula from the previous section
to determine the coordinates of the offset point. As shown in Figure 3.6 the desired point is
a point of division between Pj(x1,y1) and Ps(z2,y2) where 1 /re = d/(D12 — d) and D1s is
the distance between P; and P,. Using the point of division function from Descarta2bD yields

n[8]: O ear [x1, y1, x2, y2, d, D12];
Poi nt 2D[Poi nt 2D[{x1, y1}], Poi nt2D[{x2, y2}], d, D12 -d]

(-d +D12) x1 +d x2 (7d+D12)y1+dy2H

out (8] Poi nt 2D[{ 512 : 55

Rearranging and using standard mathematical notation produces

d d
P 2 (g — & (s — 4
(361 + Do (X2 — 1), y1 + Do (2 yl)) (3.4)

where d is the (possibly negative) offset distance and D;s is the distance between the two
points.

36 Chapter 3 Coordinates and Points

Example. Find the point offset a distance 2 from the point (3,1) towards the
point (—2,4).

Solution. The Descarta2D function Point2D [point, point, d] returns the point
offset a distance d from the first point to the second point.

In[9]: Poi nt 2D[Poi nt 2D[{3, 1}], Poi nt2D[{-2, 4}1, 2]

out [9] Point2D[{375JT27—, 1+3 ,TZTH

3.6 Collinear Points

Three distinct points Py (z1,y1), Pa(x2,y2) and Ps(x3,ys) are said to be collinear if they lie
on the same straight line. We can construct any point, Ps, on the line P, P, by selecting
an appropriate value for d and applying Equation (3.4). All such points P, P, and P5 are
obviously collinear by construction. Now consider the value of the determinant

1 oy 1
T2 Y2 1
x3 ys 1

Mathematica provides the Det command for expanding the value of such a determinant.

In(10]: Cear [x1, y1, x2, y2, x3, y3, d, D12];
Det [{{x1, y1, 1}, {x2, y2, 1}, {x3, y3, 1}}] /.
{X3->x1+ (x2-x1) »d/D12, y3 ->yl+ (y2-yl) «d/D12} // Sinplify

out[10] O

We see from Mathematica that for any value of d, the determinant given is zero. Therefore,
the necessary and sufficient condition that three points lie on the same line is given by the
determinant equation

1 y1 1
X9 Y2 1 = 0,
z3 ys 1

where the coordinates of the points are Py(z1,y1), P2(2z2,y2) and Ps(z3,ys).

3.7 Explorations 37
Example. Show that the three points (1,2), (7,6) and (4,4) are collinear.
Solution. The Mathematica function Det [elemList] returns the determinant of
the nested list of elements.
tn[11]: Det [{{1, 2, 1}, {7, 6, 1}, {4, 4, 1}}]
out[11] O
Descarta2D provides a specific function for determining whether three points are
collinear: IsCollinear2D [point, point, point] returns True if the points are col-
linear; otherwise, it returns False.

In[12]: 1sCol | i near 2D[Poi nt 2D[{1, 2}], Poi nt2D[{7, 6}], Poi nt 2D[{4, 4}1]
out[12] True

%‘ S\ DescartazbD Hint. Using IsCollinear2D is preferable to using the Mathematica

M X function Det for determining collinearity because IsCollinear2D accommodates
slight round-off errors that may occur in the floating point arithmetic in the
computer.

In[13]: Sketch2D[{Poi nt 2D[{1, 2}], Poi nt2D[{7, 6}1,
Poi nt 2D[{4, 4}1}, Pl otRange -> {{-1, 8}, {-1, 8}}1;
8
6 °
4 °
2 °
0
0 2 4 6 8
|
3.7 Explorations
COLLINEAR POINTS. ... e ptscol.nb

Show that the three points (3a,0), (0,3b) and (a, 2b) are collinear.

38 Chapter 3 Coordinates and Points

DISTANCE USING POLAR COORDINATES. . ..t tetttttetat et polardis.nb

The location of a point in the plane may be specified using polar coordinates, (r,8), where
r is the distance from the origin to the point, and 6 is the angle the ray to the point from the
origin makes with the +z-axis. Show that the distance, d, between two points (r1,61) and
(r2,02), given in polar coordinates, is

d=\Jr 473~ 2rirscos(6r — 02).

NON-UNIQUENESS OF POLAR COORDINATESt tttieeiieiieeiaeennn. polarunqg.nb
Show that the polar coordinates of a point (r,6) are not unique as all points of the form

(r,0 + 2km) and (—r,0 + (2k+ 1)7)

represent the same position in the plane for integer values of k.

STEWART’S THEOREM. . . ¢ttt et ettt et e e et e e e e e e stewart.nb

m D n
AB=c

Show that for any AABC' as shown in the figure above the relationship between the lengths
of the labeled line segments is given by

a*m 4 b*n = c(d® + mn).

COLLINEAR POLAR COORDINATES ..« .t vttt ittt ettt e polarcol.nb
Show that the points Py (r1,01), Pa(re,02) and Ps(rs,03) in polar coordinates are collinear
if and only if

—rirasin(f; — 02) 4+ rirgsin(f; — 63) — rorgsin(f2 — 63) = 0.

HYPOTENUSE MIDPOINT DISTANCE. . ..ottt tridist.nb
Prove that the midpoint of the hypotenuse of a right triangle is equidistant from the vertices.

Chapter 4

Equations and Graphs

Using algebraic techniques to solve geometry problems is the difference in approach between
analytic geometry and planar geometry. Use of such techniques links the algebraic concept of
an equation to the graphical representation of geometry shown in a graph or plot. This chapter
introduces some of the simple algebraic techniques for solving equations that are heavily used
in analytic geometry.

4.1 Variables and Functions

A wariable is a quantity to which arbitrary values may be assigned. Let z be a symbol
representing such a variable and let the quantity represented by the symbol y depend on x.
We call y a function of z and say that z is the independent variable, and y the dependent
variable. Using standard mathematical notation, these statements are written as y = f(x)
and is read “y is a function of z.” The value of the function at = a is written f(a). These
definitions may be expanded so that a variable z depends on two independent quantities x
and y (as in solid analytic geometry), and relationships of this type are written z = f(x,y).

A function y = f(z) is real-valued if y is real when z is real. If there is but one value of
y for a given value of x, y is said to be a single-valued function. If, for a given value of x,
y has more than one value, y is said to be multiple-valued. The function f(x) is periodic if
f(x + P) = f(z) for some period, P. Usually it is assumed that P is the least number for
which this identity is true.

4.2 Polynomials

A mathematical expression consisting of a sum of various positive integer powers of a variable
is called a polynomial. The largest exponent that appears in a polynomial is called the degree
of the polynomial. Polynomials of low-degree have special names as shown in Table 4.1.
Polynomials can involve more than one variable. For example the polynomial = + 2y + 3 is
a linear polynomial in two unknowns and 22 + 3zy + 2y? — 22 + 4 is a quadratic polynomial in

39

40

Chapter 4 Equations and Graphs

Table 4.1: Low-degree polynomials.

DEGREE ‘ NAME ‘ EXAMPLE
0 Constant 3
1 Linear x+1
2 Quadratic | az? + bz +c
3 Cubic x> =22 +7
4 Quartic | 3t* —2t2 +17
5 Quintic s®—1

two unknowns. Descarta2D provides special objects, called equation objects, for representing
linear and quadratic polynomials in two unknowns (see Table 4.2).

Example. Convert the polynomials 42 — 2y + 1 and 22 — 3zy + 3z — 2y + 4 into
equivalent Line2D and Quadratic2D objects. Perform the inverse conversions.

Solution. Line2D[poly, {z, y}]1 and Quadratic2D[poly, {z, y}] convert linear
and quadratic polynomials into equivalent Line2D and Quadratic2D objects. The
functions Polynomial2D [line, {z, y}] and Polynomial2D [quad, {z, y}] convert
Line2D and Quadratic2D objects, respectively, into polynomials.

n[1]: Cear [X, Y];

{I1=Line2D[4xx -2y +1, {X, Y},
gl = Quadrati c2D[X"2 -3 *X*y +3*X-2%xy +4, {X, y}1}

out (1] {Line2D[4, -2, 1], Quadratic2D[1, -3, 0, 3, -2, 4]}

n[2]: {Polynom al 2D[l 1, {x, y}], Pol ynom al 2D[ql, {x, y}1}

out[2] {1+4x-2y, 4+3x+x2-2y-3xy}

Table 4.2: Descarta2D equation objects.

POLYNOMIAL

Descarta2D OBJECT

Ax+ By+C

Line2D[A, B, C]

Az? + Bry +Cy?> + Dz + Ey+ F

Quadratic2D[A4, B, C, D, E, F]

4.3 Equations 41

OBJECTS

Line2D[a, b, c]
Quadratic2Dl[a, b, ¢, d, e,

/ ﬂ\\@

axr + by +c ar+by+c==0
ar® +bry +cy? +dr+ey+ f ar® +bry +cy? +dr+ey+ f ==

PoLYNOMIALS EQUATIONS

Figure 4.1: Descarta2D objects, polynomials and equations.

4.3 Equations

If a function of a single variable, f(x), is set equal to zero, the relation f(x) = 0 is called an
equation. This equation imposes a condition on the variable x which then can assume only
certain values. For example, if Az 4+ B =0, then x can take on only one value, z = —B/A. If
the equation is sinz = 0, x can assume an unlimited number of values of the form k7, where k
is any integer. The process of finding the values of x that satisfy the equation is called solving
the equation. The values of 2 which satisfy f(z) = 0 are called the solutions or roots of the
equation. All of the real solutions of f(x) = 0 may be represented by points on a line such as
the xz-axis. These points constitute the graph of the equation in one dimension.

If a function of two variables, f(z,y), is set equal to zero the relation f(x,y) = 0 is also
an equation. But this equation permits one of the variables to be independent, while the
other is dependent and a function of the first. For example, f(z,y) = 0 might be solved for
y in terms of z, yielding y = g1(z), indicating that x is the independent variable and y the
dependent variable. Or f(z,y) = 0 might be solved for z yielding = g2(y) interchanging the
independent and dependent variables.

In addition to representing polynomials, the Line2D and Quadratic2D objects may also
be used to represent equations (the implicit assumption is that they represent polynomials
set equal to zero). Figure 4.1 shows the relationships between polynomials, equations and
Descarta2D equation objects. Table 4.3 summarizes the Descarta2D functions that accomplish
the conversions labeled 1 to 4 in Figure 4.1.

Example. Convert the Descarta2D linear equation object Line2D[2, 3, -1] into
an equivalent Mathematica equation. Similarly, convert the Descarta2D quadratric
object Quadratic2D[1, -2, 2, 3, -3, 7] into a Mathematica equation.

Solution. The Descarta2D function Equation2D [line, {z, y}] converts a Line2D
object into a Mathematica equation. The function Equation2D[quad, {z, y}]
converts a Quadratic2D object into a Mathematica equation.

42 Chapter 4 Equations and Graphs

Table 4.3: Descarta2D conversion functions.

‘ ‘ Descarta2D FUNCTION = RESULT

1 | Line2D[az + by + ¢, {z, y}] = Line2D[a, b,]

Quadratic2D[az? + bry + cy? +dx +ey + f, {z, y}] =
Quadratic2D[a, b, ¢, d, e, f]

2 | Polynomial2D[Line2D[a, b, cl, {z, y}] = ax +by+¢

Polynomial2D[Quadratic2Dla, b, ¢, d, e, f1, {z, y}] =
ax? +bxy + cy® +dr +ey + f

3 | Equation2D[Line2D[a, b,], {z, y}] = ax +by+c==0

Equation2D[Quadratic2D[a, b, ¢, d, e, f1, {z, y}] =
ax? +bxy +cy? +dr+ey+ f==0

4 | Line2D[ax + by + ¢ == 0, {z, y}] = Line2Dl[a, b, c]

Quadratic2D[az? + bry + cy? +dx + ey + f == 0, {z, y}]1 =
Quadratic2D[a, b, ¢, d, e, f]

In[3]: Clear [X, Y];
{Equati on2D[Li ne2D[2, 3, -1], {X, y}I,
Equati on2D[Quadratic2D[1, -2, 2, 3, -3, 7], {X, Yy}1}

out[3] {-1+2x+3y==0, 7+3x+x?2-3y-2xy+2y?==0}

4.4 Solving Equations

In our study of analytic geometry we will often need to solve linear and quadratic equations.
We will also need to solve systems of two or more equations. Mathematica provides functions
for solving individual equations and systems of equations, either exactly (the Solve function)
or numerically (the NSolve function). The following subsections illustrate the use of these
Mathematica functions.

One Linear, One Unknown

The equation axz 4+ b = 0 is a linear equation in one unknown. By simple algebra, the solution
to this equation is # = —b/a. The equation is invalid (or trivial) and has no solution if a = 0.

4.4 Solving Equations 43

Example. Solve the equation 3z + 12 = 0.

Solution. The Mathematica function Solve [egn, variable] returns a list of solu-
tions for an equation in one unknown. The solution(s) are returned in the form of
Mathematica rules.

In[4]: O ear [X];
Solve[3x +12 ==0, x]

out[4] {{X - -4}}

One Quadratic, One Unknown

The quadratic equation az? + bz + ¢ = 0 has two solutions

. —b+ Vb2 — 4dac

2a

The expression under the radical, D = b — 4ac, is called the discriminant of the equation and
determines the type of solutions admitted by the equation. Assuming the coefficients are real
numbers, D > 0 indicates that the equation has two real and distinct solutions; if D = 0 the
equation has two real solutions that are equal; and if D < 0 the equation has two complex
solutions that are conjugates of each other.

Example. Find the solutions of the equation 322 — 4z — 5 = 0.

Solution. The Mathematica function Solve [egn, variable] returns a list of solu-
tions for an equation in one unknown. The solution(s) are returned in the form of
Mathematica rules.

In[5]: O ear [X];
Solve[3x"2-4x-5==0, x]

outrs) ({x» 5 (2-V19)}, (x5 (24+/19)})

44 Chapter 4 Equations and Graphs

Two Linears, Two Unknowns

A list of two or more equations that are to be solved simultaneously is called a system of
equations. Consider the system of two linear equations

a1z +b1y+c1 =0 and agx + boy + c2 = 0.
Simple algebra yields the formulas for and y that solve the two equations:

bico — bacy a2C1 — aic2

a1ba — azb; arby —aghy

If the denominator, a1bs — asby, is equal to zero the equations have no solution and are called
inconsistent.

Example. Find the solution of the two linear equations z — 3y +4 = 0 and
22 4+5y—3=0.

Solution. The Mathematica function Solve [eqnlList, varList] returns a list of
solutions for a system of equations in several variables. The solution(s) are returned
in the form of Mathematica rules.

mn/[6]: Clear[X, Y];
Solve[{x-3y+4==0, 2x+5y-3==0}, {X, y}]

out[6] {{X->-1, y->1}}

One Linear, One Quadratic, Two Unknowns

Consider the linear and quadratic equations

a1+ b1y +cp =0 and
asx® + bozy + 62y2 +doz + ey + fo = 0.

In the general case the system of these two equations can be solved by first solving the
linear equation for one of the variables, say x, in terms of the other, y. The expression for
x is then substituted into the quadratic equation, yielding a somewhat more complicated
quadratic equation in y alone. The quadratic equation in one variable is then solved yielding
two values for y which may then be substituted back into the linear equation to determine
the corresponding values of x. While this solution technique is straightforward, it produces
somewhat complicated expressions for x and y, and special cases must be handled individually
(for example, if the linear equation has no y term, then the procedure must be altered to solve
for = instead).

4.4 Solving Equations 45

Example. Solve the system of equations
3c4+4y—1=0 and 222 4+9*>+ 62 —4y+1=0

using the Mathematica Solve command.

Solution. The Mathematica function Solve[eqnList, varList] returns a list of
solutions for a system of equations in several variables. The solution(s) are returned
in the form of Mathematica rules.

n[7]: Cear[X, Y];
ans =Solve[{3x+4y-1==0, 2x"2+y"2+6x-4y+1==0}, {X, y}]

out 7] {{x > gy (-69-4295), y > ;- (62+3+/295)},
{xﬁ%(-sngﬁ), ye% (62-3+/295)}}

These somewhat complicated solutions can be approximated by decimal numbers
using the Mathematica N function.

In[8]: N[ans]

out[8] {{X > -3.35859, y >2.76894}, {X - -0.00726205, y 0. 255447} }

| |

Two Quadratics, Two Unknowns
The system of two quadratic equations in two unknowns

az? +bixy +ey? +dix+ey+ f1=0 and
asx? + bowy + coy® + dox + €2y + fo =0

can be solved algebraically using a technique involving a pencil of the two quadratic equations.
This technique will be discussed in more detail in later chapters. Even though the technique
can yield a symbolic formula for the solutions, such a formula is of no practical value, and is
riddled with special cases. In spite of these complications, Mathematica can solve such systems
of equations with numerical coefficients, both in exact form and approximated numerically.
These solutions are very useful in the study of conic curves introduced in later chapters.

Example. Find approximate numerical solutions for the system of equations
322 + 22y —4y? — 22— 3y —4=0
22 —dry+ > +3x+4y+1=0

using the Mathematica NSolve command.

46 Chapter 4 Equations and Graphs

Solution. The Mathematica function NSolve [egnList, varList] returns a list of
numerical solutions for a system of equations in several variables. The solution(s)
are returned in the form of Mathematica rules. The results shown here were
computed using Mathematica Version 3.0.1. Version 4.0 computes the same roots,
but returns them in a different order.

In[9]: Cear[X, Y];
NSol ve[{3X"2+2X %y -4y"2-2x-3y-4==0,
X2 -4X*xy +y"2+3X+4y+1==0}, {X, Y}]
out[9] {{x - -0.955121, y - 0. 120031},
{x - 0.476004 - 0. 2985431, y > -0. 268381 + 0. 9622351 },
{x - 0.476004 + 0. 2985431, y » -0. 268381 - 0. 9622351 },
{x - 3.81264, y - 3.46435}}

Notice that in this example two of the solution pairs involve only real numbers,
and two involve complex numbers. The complex solutions are a conjugate pair.

RN DescartazD Hint. Descarta2D provides the function Solve2D to supplement
the capabilities of the Mathematica Solve function. It provides specialized capa-
bilities that are useful in the implementation of the Descarta2D packages. Refer
to the Descarta2D references for a detailed description of the Solve2D function.

4.5 Graphs

Consider that F'(x,y) = 0 has been solved for y so that y = f(x). We wish to give a geometric
interpretation to the equation y = f(z). Now if a value, say x1, is assigned to z, then, if f(z)
is single-valued, there will be determined a single value y, say y1. Another value of x, say xa,
will produce a value yo. If f(x) is multiple-valued, there will be several values of y for a given
x. In any event the real number pairs (z1,y1) which satisfy y = f(z) may be plotted in two
dimensions as points in the plane. The aggregate of these points constitutes the graph or plot
of the equation y = f(z) or of the function f(x).

This is one of the central problems in plane analytic geometry: given a function y = f(z),
to plot its graph or to represent it geometrically. We sometimes say that the graph of f(z) is
the locus of f(x). The word locus, in general, carries with it the idea of motion. Thus, the
curve traced by a moving point is called the locus of the point. Such a locus is also referred
to as a curve in the plane.

Through the study of equations much can be learned about the geometric properties of
graphs. Such analysis is one of the roles of analytic geometry. In the study of an equation
y = f(z) there are many analyses that can be made in order to intuitively understand the
behavior of the graph. Mathematica and Descarta2D can be used to aid in this understanding.
Four properties of significant interest in analytic geometry are

4.6 Parametric Equations 47

Intercepts The points at which the curve crosses the z- and y-axes.

Extent The regions of the plane to which the curve is confined and regions where it tends to
infinity.

Symmetry The lines in which the reflection of the curve is a mirror image of the curve itself.
Cases of interest include symmetry about the z- or y-axes, symmetry about the origin,
and symmetry about the lines y = z or y = —x.

Asymptotes The behavior of an unbounded curve in the neighborhood of infinity, where
either x, y, or both become infinite. In particular, it may happen that the distance
from a point P on the curve to some fixed line tends to zero. Such a line is called an
asymptote of the curve.

The set of all points which satisfy a given condition is called the locus of that condition.
An equation is called the equation of the locus if it is satisfied by the coordinates of every
point on the locus and by no other points. There are three common representations of the
locus by means of equations:

Rectangular equations which involve the rectangular coordinates (z,y)
Polar equations which involve the polar coordinates (r, 6)

Parametric equations which express x and y (or r and 6) in terms of a third independent
variable called a parameter.

This book focuses on rectangular and parametric equations, with polar equations covered in
the explorations.

4.6 Parametric Equations

It is often advantageous to use two equations to represent a curve instead of one. The z-
coordinate of a point on the curve will be given by one equation expressing x as some function
of a parameter, say 6 or t, and the y-coordinate will be given by another equation express-
ing y as a function of the same parameter. Such equations are called parametric equations.
Upon eliminating the parameter between the two equations the implicit equation, in the form
f(x,y) =0, of the curve may be found. Some loci problems are treated most readily by means
of parametric equations. Parametric equations are also the most natural means for generating
a sequence of points on a curve, such as those needed to plot the curve. Since a parameter
may be chosen in many ways, the parametric equations of a given curve are not unique, and
in some cases they will only represent a portion of a curve.

Example. Find parametric equations of the locus of a point as it “orbits” about
the origin at a distance of 2 units.

48 Chapter 4 Equations and Graphs

Solution. Let the parameter 6 be the angle measured counter-clockwise from the
+z-axis that a line segment of length 2 sweeps when anchored at the origin (0, 0).
Using trigonometry the z- and y-coordinates of the end point of the line segment
are given by the parametric equations

x=2sinf and y = 2cosb.

The locus of these parametric equations is a circle. In Mathematica a parametric
curve may be plotted using ParametricPlot [{z(t), y(t)}, {t, t1, t2}] where x(t)
and y(t) are the parametric equations of the curve, t is the parameter, and #; and
to are the start and end values of the parameter.

In[10]: Clear [t];
ParanetricPlot [{2Sin[t], 2Cos[t]}, {t, O, 2Pi },
Aspect Rati o -> Autonaticl;

|
In our study of curves in the plane we will examine both implicit and parametric equations
for the curves.
4.7 Explorations

DETERMIN AN TS . oottt ettt e et et e e e e e e e e e e e deter.nb

Determinants often provide a concise notation for expressing relationships in analytic geom-
etry. Show that the expanded algebraic form for the 2 x 2 determinant

ar b

az by
is given by —asb; + a1b2. Show that the expanded algebraic form for the 3 x 3 determinant

ar b1 ¢
as b2 C2

a3 bz c3

4.7 Explorations 49

is given by —asbaci + asbsci 4+ asbico — a1bsca — asbics + apbacs.

CRAMER’S RULE (TWO EQUATIONS). ..t tttttiee et cramer2.nb
Show that the solution to the system of two linear equations in two unknowns

amr+biy+cs = 0
a2 +by+cy = 0
is given by the determinants
—C1 b1 ap —C
—C2 b q ag —Cg
T =) and y o))
where
a; b
p—|® 0
ag b2
CRAMER’S RULE (THREE EQUATIONS). ..ottt cramer3.nb

Show that the solution to the system of three linear equations in three unknowns

axr+by+ciz+di = 0
a2x +boy +coz+de = 0
asx+bsy+c3z+ds = 0
is given by the determinants
—d1 b1 c a —di ap b1 —dy
—dg bg C2 as —dg C2 a9 bg —dg
—d3 b3 C3 as —d3 C3 as b3 —d3
T = P 5 , and z = D
where
al b1 C1
D= a9 bg C2
as b3 C3
POLAR EQUATIONS. ... e polareqgn.nb

A curve in polar coordinates may have more than one equation. A given point may have
either of two general coordinate representations

(r,0 + 2km),
(_T7 0+ (Zk + 1)7T)a

50 Chapter 4 Equations and Graphs

for any integer k. Hence a given curve r = f(#) may have either of the two equation forms

r = f(0+ 2km),
—r = [0+ (2k+1)m).

The first equation reduces to r = f(f) when k& = 0, but may lead to an entirely different
equation of the same curve for another value of k. Similarly, the second equation may yield
other equations of the curve. Show that in spite of the potential for multiple equations in
polar coordinates, a linear equation Az + By + C = 0 has only one representation in polar
coordinates given by

r(Acosf + Bsind) +C = 0.

Chapter 5

Lines and Line Segments

The curve with the simplest equation is a straight line. There are many forms the equation
can exhibit, depending on how we wish to construct the line. This chapter develops in detail
the analytic geometry of a line and its close relation, the line segment.

5.1 General Equation
Every linear equation in two unknowns can be written in the form
Az + By +C =0.

The graph of such a linear equation is a straight line. In Descarta2D the line Az + By+C =0
is represented as Line2D[A, B, C]. Points (z,y) whose coordinates satisfy the equation
Az 4+ By + C' = 0 are said to be on the line.

A line segment is the set of points on a line between two points on the line, Py(xg,yo) and
Py(x1,y1). In DescartazD a line segment is represented as Segment2D [coords, coords] where
the coords are lists of the (z,y) coordinates of the start and end points of the line segment.

Example. Plot the lines 2z —3y+1 =0 and z+2y+2 = 0. Plot the line segment
between the points (—1,2) and (3, —1).

Solution. The Descarta2D function Sketch2D[objList] plots a sketch of the ob-
jects in the object list.

In[1]: Sket ch2D[{Li ne2D[2, -3, 1], Line2D[1, 2, 2],
Segment 2D[{-1, 2}, {3, -1}1}1;

51

52

Chapter 5 Lines and Line Segments

NPFPOFPDN®W

-3

-4 -2

Example. Determine which of the points (—1,1), (2,3), (3,1) and (-3, —32) are

on the line 2z — 3y +1 = 0.

Solution. The Descarta2D function Is0n2D [point, line] returns True if the point

is on the line.

n[2]: |1 =Line2D[2, -3, 1];

In[3]: {IsOn2D[pl = Poi nt 2D[{-1, 1}], I1],
| sOn2D[p2 = Poi nt 2D[{2, 5/3}], |11,
I sOn2D[p3 = Poi nt 2D[{3, 1}1, I1],
| sOn2D[p4 = Poi nt 2D[{-3, -5/3}1, 111}

out (3] {Fal se, True, Fal se, True}

In[4]: Sketch2D[{l 1, pl, p3}1;
Sket ch2D[{l 1, p2, p4}1;

NFP,OFPDNOW

NFP,OFPDNOW

5.1 General Equation 53

Figure 5.1: Inclination and slope of a line.

Inclination and Slope

The angle, 6, measured counter-clockwise from the +z-axis to a line, is called the inclination
of the line. The tangent of this angle, tan 6, (generally designated by the letter m) is called
the slope of the line. It is evident from Figure 5.1 that the slope of line P, P; is given by

Y2 — Y1

m = tanf = .
T2 —T1

The formula is independent of the position and order of the two points involved.
Let L = Az + By + C = 0 be the general equation of a line. It is clear that the points
(=C/A,0) and (0, —C/B) are on the line since they satisfy the equation of the line. Therefore,

the slope of L is given by
_ 0-(=C/B) A

"Tc/A -0 B
and the angle of inclination, § = tan=! (—A/B).
The slope of the line containing a line segment from point (xg,yo) to point (z1,y1) can be
determined directly from the formula given for lines as

Y1 — Yo
m=-—".
1 — o

Example. Find the angle of inclination (in degrees) and the slope of the line
2 — 1y +4 = 0. Find the slope of the line segment between the points (—2,1) and
(3,2).

Solution. The Descarta2D function Angle2D[line] returns the inclination of
a line (in radians); the function Slope2D [line] returns the slope of a line. The
function Slope2D[Inseg] returns the slope of the line containing the line segment.

54 Chapter 5 Lines and Line Segments

n[5]: | 1=Line2D[1, -1, 41;
{Angl e2D[l 1] / Degree // N, Sl ope2DJ[l 1],
Sl ope2D[Segnent 2D[{1, -2}, {3, 2}11}

out[s5] (45., 1, 2}

Mathematica Hint. The Mathematica symbol Degree equals the constant
7/180. In the previous example dividing by Degree converts the angle from
radians to degrees. The Mathematica function N[expr] produces a numerical
approximation of an expression. The syntax expr //N is equivalent to N[ezpr].

5.2 Parallel and Perpendicular Lines

If two lines have the same slope they are called parallel lines. If two lines share all their points
they are said to be coincident; coincident lines are also considered to be parallel. Two lines
are perpendicular if the angle between them is a right angle. Let m; = tan6; and msy = tan 6y
be the slopes of two perpendicular lines. Since

T
92 == 61 i 5
tanfy = tan (91 + g)
me = —cotf
B 1
- tan 6,
B 1
= —

Therefore, the slopes of two perpendicular lines are negative reciprocals of each other related
by the equation, mi = —1/ms. Descarta2D provides functions for querying whether pairs of
lines are parallel or perpendicular.

Example. Determine which of the following pairs of lines are parallel:
(a) 2c —3y+4=0and -4z + 6y —3 =0,
(b)z+2y—3=0and —22+y—1=0, and
(¢)3z—4y+2=0and 2z +4y—1=0.

Additionally, determine which pairs are perpendicular.

5.3 Angle between Lines 55

Solution. The function IsParallel2D[line, line] will return True if the two
lines are parallel; otherwise, it returns False. IsPerpendicular2D [line, line]
returns True if the two lines are perpendicular; otherwise, it returns False.

In[6]: |1 =Line2D[2, -3, 4]; |2 =Line2D[-4, 6, -3];
| 3 =Line2D[1, 2, -3]; |4 =Line2D[-2, 1, -17;
|5 =Line2D[3, -4, 2]; |6 =Line2D[2, 4, -1];

n[7]: {{lsParallel2D[l 1, |2], |sPerpendicul ar2D[l 1, |2]},
{I sParal |l el 2D[I 3, 1 4], |sPerpendi cul ar2D[l 3, | 4]},
{I sParall el 2D[I 5, 1 6], | sPerpendi cul ar2D[I 5, 16]}}

out[7] {{True, Fal se}, {False, True}, {Fal se, False}}

Therefore, the lines in pair (a) are parallel, the lines in pair (b) are perpendicular,
and the lines in pair (c¢) are neither parallel or perpendicular.

In[8]: Sketch2D[{l 1, |2}]1;
Sket ch2D[{I 3, | 4}1;
Sket ch2D[{l 5, 16}];

NFRPORFRNW

NFORFRNW

ADNODND

-4 -2 0 2 4 -4-20 2 4 -4 -2 0 2 4

5.3 Angle between Lines

The angle between two non-intersecting (parallel or coincident) lines is zero (radians or de-
grees). In the case of two intersecting lines, Ly and Lo, let 612 be the angle between the lines
measured counter-clockwise from L1 to Lo. Since 015 = 65 — 04, it follows that

tanfy — tan @
tan 1o = tan (02 — 61) = 1T tand. tan 6y ta2n 7 tan 912

which, in terms of slopes of the lines, yields

™Mo — My
tanfig = ——.
1+ mimsg

56 Chapter 5 Lines and Line Segments

Example. Determine the angle (in radians) between the lines « + 3y — 4 = 0 and
—2x+2y+1=0.

Solution. The Descarta2D function Angle2D [line, line] returns the angle between
the two lines (measured in radians from the first line to the second line).

In[9]: Angl e2D[l 1 =Li ne2D[1, 3, -4]1, |2 =Line2D[-2, 2, 1]] //N

out[9] 1.10715

The result, 1.10715 radians, is approximately 63.4349°.

n[10]: Sketch2D[{l 1, |2}7;

\

WNFRPORFRPNW

-4 -2 0 2 4

n[11]: Angle2D[l 2, 11] //N
out[11] 2.03444
The angle between the lines taken in the opposite order is 2.0344 radians (approx-

imately 116.565°) which is the supplement of the first angle (63.435° 4+ 116.565° =
180°).

5.4 Two-Point Form

A line is determined by two distinct points on it, Pi(x1,y1) and Py(z2,y2). Let P(z,y) be
any other point on the line as illustrated in Figure 5.2. Then by similar triangles

Y=y _ Y-
r — I To — X1

which is called the two—point form of a line. The two—point form may also be written as

(—z1)(y —y2) = (z — 22)(y — v1)-

5.4 Two—Point Form

57

Figure 5.2: Two—point form of a line.

In general form the line is given by

— (e —y1)z+ (x2 — 1)y + z1Y2 — 2291 = 0.

In determinant form the equation is given by

r1 Y1 1 |=0.

x2 Y2 1

Example. Determine the line through the points (—2,—1) and (3, 2).

Solution. The Descarta2D function Line2D [point, point] constructs the line
through the two points. Alternately, the function Line2D [Inseg] constructs a line
defined by the start and end points of a line segment.

In[12]: pl =Point2D[{-2, -1}1;
p2 = Poi nt 2D[{3, 2}1;
{l 1 = Li ne2D[p1, p2], | 2 = Li ne2D[Segnent 2D[p1, p2]]1}

out[12] {Line2D[-3, 5, -1], Line2D[-3, 5, -1]}

In[13]: Sketch2D[{l 1, p1, p2}1;

58 Chapter 5 Lines and Line Segments

-4 -2 0 2 4

The Descarta2D function Line2D[{z1, y1}, {x2, y2}] is also provided to allow
construction of a line by specifying two point coordinates.

In(14]: Line2D[{-2, -1}, {3, 2}]

out[14] Line2D[-3, 5, -1]

Collinear Points

In a previous chapter it was demonstrated that the three points Pi(z1,y1), Pa(22,y2) and
Ps(x3,ys3) are collinear if their coordinates satisfy the determinant equation

1 y1 1
T2 Y2 1 =0.
z3 Y3 1

This condition may be stated in a more intuitive form using the two—point form of a line.
The line defined by P; and P» must be satisfied by P; yielding the condition

—(y2 —y1) x3 + (v2 — 1) Y3 + T1y2 — 2291 =0

which can be put into the more symmetrical form

yi(xe — x3) + yo(r3 — 1) + y3(x1 —x2) = 0.

5.5 Point-Slope Form

Y2 — Y1
T2 —T1

Since m =

, the two—point form of a line can be reduced to the point—slope form

y—yi=m(x—11)
as shown in Figure 5.3. In general form the equation of the line is

mz —y + (y1 — may) = 0.

5.5 Point-Slope Form 59

P1(X1, Y1)

A |

Figure 5.3: Point—slope form of a line.

A vertical line cannot be represented in point—slope form. In determinant form the point—slope
form is given by

r1 Y1 1 = 0.
1 m O

Example. Determine the line through the point (1,2) with a slope of 1/2.

Solution. The Descarta2D function Line2D [point, m] constructs a line through
the point with a given slope, m.
In[15]: | 1 =Line2D[pl = Poi nt 2D[{1, 2}1, 1/2]

1 3

out[15] Line2D[5, -1, -]

In[16]: Sketch2D[{pl, | 1}1;

R O F N W

60 Chapter 5 Lines and Line Segments

Line Through a Point Parallel to a Line
A line through a given point P (x1,y1) parallel to a given line
Asx + Boy+Co =0

would have a slope m = —As/Bs, and using ma — y + (y1 — ma1) = 0 yields

Asx + Boy — (Aaxy + Bayy) = 0.
The equation can also be written

Ba(z —21) = A2(y — y1).
In determinant form the equation is
T Y 1

T Y1 1 = 0.
By —A; 0

Line Through a Point Perpendicular to a Line
A line through a given point Pj(x1,y1) perpendicular to a given line
Asx + Boy+Co =0
would have a slope m = —1/mg = Ba/As, and using mz — y + (y1 — ma1) = 0 yields
Box — Aoy + (Asyr — Box) = 0,

or, in a simpler form,
As(y — 1) = Ba(z — z1).
In determinant form the equation is
z y 1

T1 Y1 1 =0.
Ay By 0

Example. Find the lines through the point (2, 1) which are parallel and perpen-
dicular to the line 3x — 2y + 1 = 0.

Solution. Line2D [point, line, Parallel2D] constructs a line through the point
and parallel to the line and Line2D [point, line, Perpendicular2D] constructs a
line through the point and perpendicular to the line.

5.5 Point-Slope Form 61

In[17]: pl =Point2D[{2, 1}1;
I'1=Line2D[3, -2, 1];

In[18]: {l 2 =Line2D[pl, |1, Parall el 2D],
| 3 = Li ne2D[pl, |1, Perpendicul ar2D] }

out[18] {Line2D[-3, 2, 4], Line2D[-2, -3, 7]}

n[19]: Sketch2D[{pl, |1, 12, |3}];

-2 0 2 4

N DescartazD Hint. The function Line2D [point, line] returns the same results
\ay as Line2D [point, line, Perpendicular2D]; the keyword Perpendicular2D is op-
tional and may be omitted.

In[20]: Line2D[pl, 11]

out[20] Line2D[-2, -3, 7]

Horizontal and Vertical Lines Through a Point

Given a point P;(z1,y1), a horizontal line whose slope is 0 will have the equation y — y; = 0.
In determinant form the equation is

z y 1
r1 Y1 1 |=0.
1 0 O

Similarly, a vertical line (whose slope is infinite) has the equation z—z; = 0 and its determinant
equation is

r1 Y1 1 |=0.
0 1 0

62 Chapter 5 Lines and Line Segments

Example. Find the horizontal and vertical lines through the point (3,2).

Solution. The function Line2D [point, 0] constructs a horizontal line through the
point. The function Line2D [point, Infinity] constructs a vertical line through
the point.

n[21]: pl =Point2D[{3, 2}1;
{I 1 =Line2D[pl, 0], 12 =Line2D[pl, Infinity]}

out[21] {Line2D[0, -1, 2], Line2D[1, 0, -3]}

1n[22]: Sketch2D[{pl, |1, |2}];

“4-20 2 4

5.6 Slope-Intercept Form

Specializing the point Pj(z1,y1) in the point-slope form of a line to the y-intercept point (0, b)
as shown in Figure 5.4 gives the slope—intercept form of a line y = mx +b. In general form the
equation of the line is mz — y + b = 0. The slope—intercept form cannot be used to represent
vertical lines. In determinant form the point—slope form is given by

Y
0 b =0.
1 m

S = =

Example. Find the line with a y-intercept of 1 and a slope of 2.

Solution. The Descarta2D function Line2D [point, m] constructs a line through
the point with the given slope.

5.6 Slope-Intercept Form 63

y

—~1p,0, b)

“Y

Figure 5.4: Slope—-intercept form of a line.

In[23]: |1 =Line2D[pl = Poi nt 2D[{0, 1}]1, 2]

out[23] Line2D[2, -1, 1]

In[24]: Sketch2D[{pl, | 1}, Pl otRange -> {{-3, 3}, {-3, 3}}1;

3

2/

1

0 /

-1

-2

-3 -2-101 2 3

~N DescartazD Hint. The Sketch2D command option
\a 9

PlOtRange_>{{xmin: xmaw}: {ymzn s ymaw}}

used in the example above explicitly sets the minimum and maximum coordi-
nate range along the z-axis and y-axis, overriding the default setting which is
PlotRange->Automatic. The PlotRange option is useful for focusing on a spe-
cific portion of the plot.

64 Chapter 5 Lines and Line Segments

P2(0, b)

Pi(a, 0)

o2

Figure 5.5: Intercept form of a line.

x

5.7 Intercept Form

Specializing the two points in the two—point form to the intercepts (a,0) and (0,b) as shown
in Figure 5.5 gives (y — b)/x = —b/a, or, rearranging, the intercept form
r oy
a + b

In general form the equation of the line is bx 4+ ay — ab = 0; or, dividing Az + By + C = 0 by
C (C #£0) gives

=1.

x n Y

(=C/4) (=C/B)

Thus, in the general equation, the intercepts are given by + = —C/A and y = —C//B. Notice
that a line in intercept form cannot pass through the origin, nor can it be horizontal or vertical.

In determinant form the intercept form is given by

=1

=0.

S 2 8
—_ = =

Y
0
b

Example. Find the line whose z-intercept is 2 and y-intercept is 1.

Solution. The function Line2D [point, point] constructs a line through the two
points.

1n[25]: pl =Point2D[{2, 0}1;
p2 = Poi nt 2D[{0, 1}];
112 = Li ne2D[pl, p2]

out [25] Line2D[-1, -2, 2]

5.8 Normal Form 65

In[26]: Sketch2D[{pl, p2, |12}];

5.8 Normal Form

Consider a directed line segment OA of length p starting at the origin O and making an angle
0 with the +z-axis as shown in Figure 5.6. The line L which is perpendicular to OA and
passes through A is completely determined by the parameters p and . We wish to determine
the general equation of the line L. The coordinates of A are (pcosd, psin @) and the slope of L
is — cot 0 since L is perpendicular to OA which has slope tan§. Hence, using the point—slope
form we obtain, as the normal form of the equation of line L,

y — psind = —cotf(xz — pcos)
which reduces to
xcosf+ysinf —p=0.

This form of the equation of a straight line is called the normal form (sometimes the per-
pendicular form) because its coefficients involve the parameters p and 6 associated with the
normal or perpendicular segment OA to the line.

To determine the coefficients of the normal form from the general form

Ax+ By+ C =0,

we divide by ++v/A2 + B? yielding
A L+ B L+ C 0
€T =
+VA? + B? +VA? + 5z’ +VA? + B?
The sign of v/ A2 + B2 is chosen to be opposite to that of C to make the constant term, p,

positive. If C' is zero, the line passes through the origin. The process of dividing a linear
equation by v/ A2 + B2 is called normalizing the line.

Example. Normalize the lines 3x —4y —5=0and 22z +y — 3 = 0.

66 Chapter 5 Lines and Line Segments

vy

Al

Figure 5.6: Normal form of a line.

Solution. The Descarta2D function Line2D [line] constructs a line with normal-
ized coefficients.

1n[27]: {Li ne2D[Li ne2D[3, -4, -5]]1, Li ne2D[Li ne2D[2, 1, -3]11}

%, 7%, -1], Line2D|

2 13y
V5B B

out [27] {Line2D|

Example. Find the line 4 units from the origin whose normal makes an angle of
30° with the positive z-axis.

Solution. We apply directly the normal form of a line to determine the coefficients
of the line in general form.

1n[28]: Li ne2D[Cos [30 Degree], Sin[30Degree], -4] // N

out [28] Line2D[0.866025, 0.5, -4.]

Mathematica Hint. The Mathematica symbol Degree is the constant 7/180.
Multiplying an angle in degrees by Degree (as illustrated in the previous exam-
ple) converts the angle to radians; radians are the angular units required in all
Descarta2D functions.

5.8 Normal Form 67

Point Offset a Distance Along a Line

Given a point Pi(x1,y1) we wish to offset the point a distance d in the direction of a given
line Ly = Asx 4+ Boy + Co = 0. We note that the coefficients of the normalized form of Lo
immediately give us the unit directions to offset P;, so the desired coordinates of the offset
point are

n dAs "+ dBs

x , .

VTS TN T

If the point P, is on line Ls, then the offset point will also be on Ls; otherwise, the offset

point will be on a line parallel to Lo. The distance d may be positive or negative allowing
offsets in either direction parallel to the line.

Example. Offset the points (—1,1), (1,—1) and (0,0) a distance 2 in both direc-
tions along the line 3z — 4y + 1 = 0.

Solution. The Descarta2D function Point2D [point, line, d] offsets a point along
a line a given distance, d. The distance may be positive or negative.

In[29]: pl=Point2D[{-1, 1}];
p2 = Poi nt 2D[{1, -1}1;
p3 = Poi nt 2D[{0, 0}];
I1=Line2D[3, -4, 1];

In[30]: pts = {{Poi nt2D[pl, |1, 2], Point2D[pl, |1, -271},
{Poi nt 2D[p2, |1, 2], Point2D[p2, 11, -21},
{Poi nt 2D[p3, |1, 2], Point2D[p3, 11, -2]1}}

out (307 {{Poi nt2D[{~§~, %H, Poi ﬂt2D[{*E5iv *‘é‘}”*
{Poi ntzo[{%, %}}, Poi nKZD[{f%’ 715*1}}}
(Point20[{ &, &), Point20[(- &, - £}]])

In[31]: Sketch2D[{pl, p2, p3, |1, pts}];

3
2 [)

1 . b

0 ® o
-1 4 °

) o
-4 -2 0 2 4

68 Chapter 5 Lines and Line Segments

Line Offset a Distance from a Line

If a line L; is parallel to a second line Lo, the two lines will be separated by a constant
distance, d. The process of constructing a line such as Lo which is parallel to L, at a given
distance, d, is called offsetting the line. There are two lines offset a distance d from a line
Ax + By + C = 0. The general equations of these two lines are easily determined from the

normal form as
A B C

+ +
VIR VLB VLB

+d=0.

Example. Find and plot the two lines offset a distance of two units from the line
z—3y+1=0.

Solution. The Descarta2D function Line2D[line, d] constructs a line offset a
given distance, d, from a line. The distance may be positive or negative yielding
one of the two possible offset lines.

1n[32]: 11 =Line2D[1, -3, 11;
{l 2 =Line2D[l 1, 2], | 3 =Line2D[l 1, -2]}

out(32] {Line2D[1, -3, 1-2+/10], Line2D[1, -3, 1+2+/10]}

1n[33]: Sketch2D[{l 1, 12, |13}1;

WNPFRPORFRPNW

Distance from a Point to a Line

The normal form of a line provides a convenient method for determining the distance from a
point to a line. Consider a normalized line L = px + qy — r = 0, where p? + ¢2 = 1. A line
M offset a distance d from L clearly has the equation M = px + qy — r +=d = 0. Any point
Py (z1,y1) on M satisfies the equation of M, therefore, px1 + qy1 —r £ d = 0. Solving for d
and squaring to remove the ambiguous sign yields

d* = (pz1 + qu —7)°.

5.9 Intersection Point of Two Lines 69

Thus, the distance d from a point P;(z1,y1) to a line Az + By + C = 0 in general form is

iAJUl + By, +C
VAZ+B?

where the sign is selected to produce the positive result.

d:

Example. Find the distance from the point (3, —2) to the line 3z — 4y + 2 = 0.

Solution. The Descarta2D function Distance2D [point, line] returns the distance
from the point to the line.

In[34]: Di stance2D[Poi nt 2D[{3, -2}], Line2D[3, -4, 2]]
Out [34] 1—9—

5

5.9 Intersection Point of Two Lines

Two lines L1 = A1jx+ B1y+C1 =0 and Ly = Asx+ Boy+ Cy = 0 may be parallel, coincident,
or intersect in a single point. In the case they where intersect in a single point, the coordinates
of the point may be determined by solving the system of equations

Alx—i-Bly—f—Cl:O
A2$+B2y+0220

for the intersection point P(z,y). The resulting formula for the coordinates of point P is

<3102 — ByCy A0y — A Ch

A1By; — AsB)
AlBQ_AQBl,AlBQ—AQBl>7 102 2 1;&0

In the case where the denominators are zero, the lines are either parallel or coincident. If the
lines are coincident the ratio of their corresponding coefficients will be a constant

B G
Ay By Oy’
and the conditions
A, B — —
1 1 ’ Cl Bl _ O and Al Cl _ O
Az Bo —Cy By Ay —Ch

are sufficient to insure the lines are coincident.

70 Chapter 5 Lines and Line Segments

Example. Find the intersection point of the two lines whose equations are
2 —3y+7=0and 3z + Ty —2=0.

Solution. The Descarta2D function Point2D [line, line] constructs the intersec-
tion point of the two lines.

In[35]: pl2 = Poi nt 2D[l 1 = Li ne2D[2, -3, 7], |2 =Line2D[3, 7, -2]]

out [35] Poi ntZD[{fg, g%}]

n[36]: Sketch2D[{l 1, |12, p12}7];

<

-4 -2 0 2 4

P OFRPNWDN

5.10 Point Projected Onto a Line

A point P is said to be projected onto a point P, on a line Lo, if the line Py P, is perpendicular
to Ly. To determine the coordinates of a point projected onto a line, we can build upon con-
cepts and formulas already established. We construct a line through the point, perpendicular
to the given line. This line is then intersected with the given line which yields the desired
projected point. Using Descarta2D, the sequence of commands to project point P;(z1,y1) onto
the line Ly = Asx + Boy + Co = 0 is as follows:

n[37]: Cear [x1, yl1, A2, B2, C2];
pl = Poi nt 2D[{x1, y1}1;
|2 =Line2D[A2, B2, C21;
11 =Line2D[pl, |2, Perpendi cul ar2D];
p2 =Point2D[l 1, 12] 7/ Sinplify

B22x1-A2 (C2+B2yl) -B2 (C2+A2x1) +A2%2y1 1]

out [37] Poi nt 2D[{ 07, 52) 207 . Bo?
+ +

5.10 Point Projected Onto a Line 71

In standard mathematical notation the coordinates of the projected point P, are

B3x1 — As(Co + Bayr) A3y — Ba(Ca + Agan)
A2 + B3 ’ A% + B3 '

The coordinates of the projected point can also be written in a somewhat more intuitive form
given by
(z1 —ad,y1 — bd)

where
A b B dd Azxi + By + C
0= ——, b= ———— an =
VA? + B2 VA2 + B2 VA2 + B2

Simple algebra confirms that the two forms are equivalent. If the point Pi(z1,y1) is on the
line, then it is clear from the second form that the projected point P» has coordinates (x1,y1)
since d, which is the signed distance from the point to the line, is equal to zero when P is
on Ly. As shown in the next example, Descarta2D provides a specific function that projects a
point onto a line.

Example. Project the point (—3,2) onto the line 5z — 3y +4 = 0.

Solution. The Descarta2D function Point2D [point, line] projects a point onto a
line and returns the projected point.

In[38]: p2 = Poi nt 2D[pl = Poi nt 2D[{-3, 2}], | 2 = Li ne2D[5, -3, 4]]

out [38] Poi ntZD[{fé, %}]

In[39]: Sketch2D[{pl, p2, |2}, PlotRange -> {{-4, 1}, {-1, 4}}1;

P O FP N W b
[]

-3-2-10 1

72 Chapter 5 Lines and Line Segments

5.11 Line Perpendicular to Line Segment

Given a line segment bounded by the points Py(xo,yo) and Py (x1,y1), we wish to find the line
that is the perpendicular bisector of the line segment. Using Descarta2D we merely construct
the line perpendicular to the line segment through its midpoint.
In[40]: O ear [x0, yO, x1, y1];
| s = Segnent 2D[{x0, y0}, {x1, y1}1;
Li ne2D[Poi nt 2D[l s], Li ne2D[l s], Perpendi cular2D] // Sinplify

out[40] Line2D[-x0 +x1, -y0 +y1l, % (x0% - x12 + y0? - y1?) |
In standard mathematical notation the equation of the line is
2(x1 — o)z + 2(y1 — yo)y + x5 — T + 5 —yi =0.

In determinant form the equation is given by

T Y 1
To + 21 Yo+ 2 | =0.
yo—y1 —(xo—x1) 0O

Example. Find the line that is the perpendicular bisector of the line segment
bounded by the points (=3, —1) and (5, 3).

Solution. The function Line2D [Inseg, Perpendicular2D] constructs the per-
pendicular bisector of the line segment.

In[41]: | sl = Segment 2D[{-3, -1}, {5, 3}1;
11 =Line2D[l s1, Perpendi cul ar 2D]

out[41] Line2D[16, 8, -24]

1n[42]: Sketch2D[{l s1, |1, Point2D[{-3, -1}1, Poi nt2D[{5, 3}1}1;

]

-20 2 4

A NODN D

5.12 Angle Bisector Lines 73

~N DescartazD Hint. In the previous example, the resulting line 16x+ 8y —24 = 0,
%& can be expressed in a simpler form by dividing the coefficients by 8, resulting in
the equation 2z 4y —3 = 0. The Mathematica function Simplify [expr] (or expr
//Simplify) can be used to simplify the result of any Descarta2D computation.
Be aware, however, that the computation may take a significant amount of time
to complete and, sometimes, no simpler expression is found. The Descarta2D
Line2D object has a special Simplify function that removes common factors
from the coefficients of a line.

In[43]: Line2D[16, 8, -24] // Sinplify

out [43] Line2D[2, 1, -3]

5.12 Angle Bisector Lines

The angle bisectors of two lines Ajxz + Biy + C7 = 0 and Asx 4+ Boy + Cy = 0 are defined
by the locus of points equidistant from the two lines. If P(x,y) is an arbitrary point on the
angle bisectors, then using the distance formula for both lines yields

A B A B
de 1+ 12+ Biy+Cy and d— 4+ 2T + 2y+Cz.

Equating the two yields the equation of the angle bisectors given by

Az + Biy+ Cy . iAQl‘—l—Bgy—ﬁ-CQ

Example. Find and plot the angle bisector lines of the lines z — 3y +2 = 0 and
r+4y —2=0.

Solution. The Descarta2D function MedialLoci2D [{line, line}] returns a list of
two lines that are the angle bisectors of the two given lines.

Tn[44]: 112 = Medi al Loci 2D[{I 1 = Li ne2D[1, -3, 2], |2 = Li ne2D[1, 4, -21}]

out[44] {Line2D[V/10 -~/17, 4+/10 +3~/17, -2+/10 -2+/17 |,
Li ne2D[/10 ++/17, 4+/10 -3 /17, -2+/10 +2/17]}

In[45]: Sketch2D[{l 1, 12, 112}7;

74 Chapter 5 Lines and Line Segments

“4-20 2 4

5.13 Concurrent Lines

Three lines that intersect in a single, common point are called concurrent lines. Using Math-
ematica we will prove that three lines

Az +Biy+Ci1 =0

A2$+BQZJ+C2 =0

Agl‘—l—Bgy—l-Cg =0

will be concurrent when the determinant of their coefficients is zero. The determinant equation
is given by

A1 Bl C1
A2 BQ CQ =0.
Ag Bg Cg

We create four points, Py, Py, P3 and Py, where Py will be the common point of the three
lines ll ZPQP1, ZQZPOPQ and l3 :P()Pg.

In[46]: Cear [x0, yO, x1, y1, x2, y2, x3, y31;
p0 = Poi nt 2D[{x0, y0}1;
pl = Poi nt 2D[{x1, y1}7;
p2 = Poi nt 2D[{x2, y2}];
p3 = Poi nt 2D[{x3, y3}1;
{11, 12, 13} =Map[Li ne2D[p0, #]1& {pl, p2, p3}]

out[46] {Line2D[y0-yl1, -x0+x1, -x1y0+x0y1l], Line2D[y0-y2, -x0+x2, -x2y0 +x0y2],
Li ne2D[y0 - y3, -x0+x3, -x3y0+x0y3]}

We now extract the coefficients of the lines and apply the postulated determinant.

In[47]: {Al, Bl, Cl} =List eel 1;
{A2, B2, C2} =List eel 2;
{A3, B3, C3} =List eel 3;
Det [{{Al, Bl1, C1},
{A2, B2, C2},
{A3, B3, C3}}1 //Sinplify

out[47] O

5.14 Pencils of Lines 75

The condition defined by the determinant is therefore necessary; it is also sufficient provided
the slopes of the lines are distinct.

Mathematica Hint. The Mathematica function Apply [f, expr] (or f@@ expr)
replaces the head of expr by f. In the Mathematica statements above, the Apply
function is used to convert a Line2D object into a list of coefficients.

Example. Verify that the three lines given by x —y+6 =0, 2z +y — 5 =0 and
—x — 2y + 11 = 0 are concurrent.

Solution. The function IsConcurrent2D[line, line, line] returns True if the
three lines are concurrent; otherwise, it returns False.

In[48]: I sConcurrent 2D[l 1 = Li ne2D[1, -1, 6],
12 =Line2D[2, 1, -5],
13 = Line2D[-1, -2, 11]]

out [48] True

In[49]: Sketch2D[{l 1, |2, 13}, CurveLength2D-> 127;

A NODNMO

-6-4-20 2 4 6

5.14 Pencils of Lines

Pencil of Intersecting Lines

Let L1 = Ajx+ Biy+ C1 =0 and Ly = Asx + Boy + Co = 0 be the equations of two lines in
the plane. Consider the equation L = (1 — k)Lq + kL2 = 0, where k is an arbitrary constant.
L is clearly an equation of the first-degree as it can be written

(1 —k)A1 + kAs)z + (1 — k)B1 + kB2)y + ((1 — k)Cy + kC2) = 0.

76

Assume that L; and Lo intersect in some point P(x,y); then, by definition, L (z,y) = 0 and
Lo(z,y) = 0, since P is on both lines. Furthermore, L now represents a family, or system,
of lines passing through P. Such a family of lines is called a pencil of lines. The variable
k can be set to a value in a manner that produces a line in the pencil that will satisfy one
additional condition. This is a useful technique for solving certain types of geometric problems

as demonstrated in the next example.

Example. Find the family (pencil) of lines that pass through the intersection
point of x — 2y +4 = 0 and 2z + 3y —2 = 0. Find the value of £ and the associated
member of the family that passes through the point (4, 2).

Solution. Line2D [line, line, k, Pencil2D] constructs a line representing the pen-
cil of lines (1 — k)L; + kLs. Equation2D[line, coords] returns a Mathematica
equation that establishes the condition of the point being on the line.

In[50] :

out [50]

In[51]:

out [51]

In[52]:

out [52]

In[53]:

Cl ear [k];
L3 = Li ne2D[L1 = Li ne2D[1, -2, 4],
L2 = Li ne2D[2, 3, -2], k, Pencil 2D]

Line2D[1+k, -2 (1-k) +3k, 4 (1-k) -2k]
pt = Poi nt 2D[{4, 2}];
eqgn = Equati on2D[L3, Coordi nat es2D[pt]]

4 (1-k)-2k+4 (1+k)+2 (-2 (1-k)+3k)==0

ans = Sol ve[eqn]

1

{{k--51}

Sket ch2D[{L1, L2, (L3 /. ans[[111), pt}];

Chapter 5 Lines and Line Segments

NPFPORFRPDNW

-4 -2 0 2

5.14 Pencils of Lines 77

v

Pix, Yo_~ 4 |

“Y

Figure 5.7: Pencil of lines through a point.

Pencil of Lines Through a Point

Consider the equation of a line L passing through points Pj(x1,y1) and P(z,y) as shown in
Figure 5.7. L is parameterized by the angle € and the coordinates of P are given by

r=x1+cosf and y =1y +sinf.
The equation of the line as determined by the two—point form is given by
L=—xsinf+ycosf + x1sinf — y; cosf = 0.

Clearly, the point P;(z1,y1) is on L as the coordinates of P; satisfy the equation of L. Also,
since the slope m of L is given by

we can create a line with any given slope. A vertical line, whose slope is infinite, can be
represented using § = w/2. A complete pencil of lines, therefore, can be created for values
0<o<m.

Example. Find the parametric equation of a pencil of lines passing through the
point (2, 3).

Solution. The function Line2D [point, 6, Pencil2D] constructs a line parame-
terized by angle # and passing through the given point.

78 Chapter 5 Lines and Line Segments

In[54]: Cear[t];
11 = Li ne2D[Poi nt 2D[{2, 3}], t, Pencil 2D]

out [54] Line2D[-Sin[t], Cos[t], -3Cos[t] +2Sin[t]]

The following commands plot several members of this pencil of lines.

In(55]: Sketch2D[Map[(I1 /. t ->#)& Pi »Range[0, 10] /101];

-4-20 2 4 6

A simpler parameterization involves applying the point-slope form of a line and using the
slope, m, as the parameter of the pencil. This approach yields the parameterized pencil of
lines

mx —y+y —mzx; =0.

This parameterization, however, cannot represent vertical lines.

5.15 Parametric Equations

We wish to formulate parametric equations for the line L; = Ajx+ By + C; = 0. Since there
are an infinite number of valid parameterizations, we will specify that we desire a particular
parameterization with the properties that the point nearest the origin will be at parameter
value t = 0, and the other points on the line will be parameterized by distance along the line.
For example, the parameters ¢ = £2 will generate the pair of points at a distance two from
the point on the line nearest the origin.

Using Descarta2D we can determine the point Py on L; nearest the origin by projecting
the origin onto L;.

n[56]: Cear [Al, Bl, Cl];
p0 = Poi nt 2D[Poi nt 2D[{0, 0}], Line2D[Al, Bl, Cl]]

Al C1 Bl Cl H

out [56] Poi nt 2D[{- 7T A7 Bi?

Now consider a right triangle with sides at and bt as shown in Figure 5.8. In this triangle

a=A1/\/A? + B and b = B;/+/A? + B?). The hypotenuse of this triangle is obviously of
length ¢ since

2 2
Alt Blt
at’+)= | ——— | + | ——] =+
(at)”+ (b) («/A%LB%) <\/A§+Bf>

5.15 Parametric Equations 79

@)

Figure 5.8: Parametric equation of a line.

Also the slope is given by

_ (yo — at) — yo a Ay

($0+bt)—$0 b_ Bl

which is the slope of the desired line, L. Therefore, the parametric equations of the line are

y o~ MG Bt
A+ B /A2 1 B?
BiC, At

y = - - :
Ai+BY \JA21B?

Example. Find the coordinates of the points on the line x — 2y + 3 = 0 for
parameter values t = —2, —1,0, 1, 2. Plot the lines and the points.

Solution. The Descarta2D function Line2D[A, B, C1 [{] returns the coordinates
of the point at parameter value ¢ on the line.

n[57]: | 1 =Line2D[1, -2, 3];
coords = Map[l 1[#]& {-2, -1, O, 1, 2}] //N

out [57] {{1.18885, 2.09443}, ({0.294427, 1.64721}, {-0.6, 1.2}, {-1.49443, 0.752786},
{-2.38885, 0.305573)}

In[58]: Sketch2D[{l 1, Map[Poi nt 2D[#]&, coords]}];

80 Chapter 5 Lines and Line Segments

P O F N W

Mathematica Hint. The Mathematica function Mapl[f, expr] (or f /@ expr)
applies to f to each element on the first level in expr. In the previous example
Map is used to evaluate a line using a list of parameter values.

Line Segment

We wish to define the parametric equations for a line segment such that the parameter value
t = 0 produces the coordinates of the start point Py, ¢t = 1 produces the coordinates of the
end point P;, and values 0 < ¢t < 1 produce coordinates of points proportionally spaced in
between Py and P;. Let d be the distance from Py to a general point P(x,y) on the directed
line PyP,. We use Descarta2D to produce the formulas for the coordinates of P:

n[59]: O ear [x1, y1, x2, y2, d];
pt = Poi nt 2D[Poi nt 2D[{x1, y1}], Poi nt2D[{x2, y2}], d]

d (-x1+x2) d (-yl+y2)
2 2’ yl+ 2 2 H
(-X1+X2)°+ (-yl+y2) (-X1 +%x2)°+ (-yl+y2)

out [59] Poi nt 2D[{x1 +

Let t = d/D where D = \/(xg —x1)% 4 (y2 — y1)? is the distance from Py to P;. Solving
for d = tD and substituting d into the Mathematica output above yields the parametric

equations
r = I —l—t(.l?g —J)l)

= y1+ty2 —y1)

Example. Find the coordinates of the points at parameter values 0, 1/2 and 1
on the line segment whose start and end points are (—2, 1) and (1, 0), respectively.
To what point does the parameter value ¢t = —1 correspond? Plot the objects.

Solution. The function Segment2D[{xy, yo}, {71, y1}]1[¢] returns the coordi-
nates of the point on a line segment at parameter value ¢.

5.16 Explorations 81

In[60]: | 1 =Segment 2D[{-2, 1}, {1, 0}];
coords = Map[l 1[#]1& {-1, 0, 1/2, 1}]
1 1
}

outf60] {{-5, 2}, {-2, 1}, {-5. 5}

70 2} (L0

In[61]: Sketch2D[{l 1, Map[Poi nt2D, coords]}];

2f®
1.5¢
1
0.5 \\]
0 -5 -4 -3 -2 -1 0\1t
The point at parameter value ¢t = —1 is on the line connecting points Py and P,

at the same distance from Py as Pp, but in the opposite direction.

5.16 Explorations

DISTANCE BETWEEN PARALLEL LINES. ...ttt Insdst.nb

Demonstrate that the distance, d, between two parallel lines
Az + By+Cy =0 and Az + By+Cy=0

is given by

g G2~ C1)?
A2+ B2
INTERSECTION OF LINES IN INTERCEPT FORM.o intrsct.nb

Show that the point of intersection of the lines

+%:1 and =

((acfb)’ (acfb)) '

ISERS
<

a

S

is

82 Chapter 5 Lines and Line Segments

EQUATIONS OF PERPENDICULAR LINES.ot lnsperp.nb

Show that the pair of lines ax + by + ¢ = 0 and bx — ay + ¢’ = 0 are perpendicular. Show

that the pair

Y

ar +by+c=0 and E—5—|—c’:0
a

is also perpendicular.

VERTICAL/HORIZONTAL DISTANCE TO A LINE. ..., Indist.nb
Show that the wvertical distance, d,, from a point (x1,y1) to a line whose equation is
Ax + By + C =0 is given by

dy, =

(Az1 4+ By1 + C)
B

and the horizontal distance, dy, is given by

‘(Axl —|—By1 +C)‘
dp, = 2 .

LINE GENERAL EQUATION DETERMINANT. . .o\ttt t ettt et et e i 1ndet.nb
Show that the general equation of a line Ax + By + C' = 0 is coincident with the line

T Y 1
—AC —BC A2+ B2 |=0.
B —A 0
given in determinant form.
LINE SEGMENT CUT BY TWO LINES. ...ttt i Inlndist.nb

Let Ly and Ly be two intersecting lines and Py a point. Describe a procedure for finding
the lines through Py such that L; and Lo cut off a line segment of length S > 0. Implement
the solution as a numerical Mathematica function.

INTERSECTION POINT OF TWO LINE SEGMENTS.tutititiiiiieienennennn. Insegpt.nb

Show that the intersection point of the lines underlying two line segments P, P, and P3P,
in terms of the coordinates of the four points is given by

1Yz — xzyl)

(x2 — x1)(z3ys — xay3) — (x4 — x3)(
(z2 — 21)(y3 — ya)

! (x4 — 23)(y1 — y2) —
y = (y3 — ya)(x1y2 — 22y1) — (Y1 — Y2)(T3Ys — T4Yy3)
(x4 —23)(y1 — y2) — (x2 —21)(y3 —ya)

5.16 Explorations 83

INTERSECTION PARAMETERS OF TWO LINE SEGMENTS.ccvvviiinennnn.. Insegint.nb

Show that the parameter values, t; and t5, of the intersection point of two line segments
in terms of the end point coordinates is given by

z1(ys — ya) — 23(y1 — ya) + za(y1 — y2)

t1 = D
t, = —21(y2 — y3) + @2(y1 — y3) — z3(y1 — y2)
- D

where
D= (arl —22)(y3 — ya) — (v3 — JU4)(?J1 - ?J2)-

What is the significance of the values of t; and to with respect to the standard parameter
range for a line segment?

Chapter 6

Circles

The circle is the first curve we will study whose equation is of the second degree. Circles have
been studied since antiquity and there exists an enormous number of interesting properties,
theorems and relationships involving circles. This chapter provides the underlying analytic
geometry of a circle and provides a glimpse at some of the catalog of knowledge about circles.

6.1 Definitions and Standard Equation

A circle is the locus of all points P(x,y) of the plane that have a constant distance r from a
fixed point C'(h,k); C is called the center and r the radius of the circle. Using the formula
for the distance between two points, we find the equation of a circle in standard form to be

(2= B2+ (y— k)2 =1
Two particular cases of this equation occur frequently and deserve special mention. If the

center is at the origin the equation reduces to

2?4y =12,
If the z-axis contains a diameter of the circle, and the y-axis touches the circle at its extremity,
then the equation becomes

2 + 9% = 2rz.

Example. Write the equation of a circle with center at (—1,1) and radius 2. Plot
the circle.

Solution. The equation of the circle is (z + 1)? + (y — 1)? = 4. The Descarta2D
representation of a circle is Circle2D[{h, k}, r1, where {h, k} represents the co-
ordinates of the center point, and r is the radius of the circle.

85

86 Chapter 6 Circles

“Y

Figure 6.1: Circle with center at (h, k) and radius 7.

In[1]: Sketch2D[{Circl e2D[{-1, 1}, 2]},
Pl ot Range -> {{-5, 5}, {-5, 5}}1;

4
2 (\

0

-2

-4

“4-20 2 4

Example. Determine which of the following points are on the circle centered at
(—2,1) with radius 3: (a) (3,4), (b) (1,1), (c) (—2,4).

Solution. Points whose coordinates satisfy the equation
(x+272*+(x—-1)%*=9

are on the circle. The Descarta2D function Is0n2D [point, circle] will return True
if the point is on the circle; otherwise, it returns False.

6.1 Definitions and Standard Equation 87

In[2]: cl=Circle2D[{-2, 1}, 3];
pl = Poi nt 2D[{3, 4}];
p2 = Poi nt 2D[{1, 1}];
p3 = Poi nt 2D[{-2, 4}];
{I sOn2D[p1, cl], IsOn2D[p2, cl], IsOn2D[p3, cl]}

out[2] {Fal se, True, True}

Therefore, points (b) and (c¢) are on the circle, and point (a) is not.

In[3]: Sketch2D[{cl1, pl, p2, p3}1;

NFPOFRPNWD

-4 -2 0 2

Two circles are said to be concentric if their center points are coincident. Two circles are
coincident if their center points are coincident and their radii are equal.

Example. Show that the two circles whose equations are (z — 1)? + (y — 2)? = 4
and (x — 1)2 + (y — 2)? = 9 are concentric, but not coincident.

Solution. The result is obvious by inspection of the equations. The Descarta2D
function IsConcentric2D [circle, circle]l returns True if the two circles are con-
centric; otherwise, it returns False. IsCoincident2D [circle, circle] returns True
if the two circles are coincident; otherwise, it returns False.

In[4]: cl=Circle2D[{1, 2}, 2]; c2=Crcle2D[{1, 2}, 3];
{I sConcentric2D[cl, c2], |sCoincident2D[cl, c2]}

out [4] {True, Fal se}

88 Chapter 6 Circles

6.2 General Equation of a Circle

By expanding the standard equation of a circle with center point C(h, k) and radius r the
equation may be written as

2% +y? — 2hx — 2ky + (B2 + k* — 1) =0
which is a special case of the general second-degree equation
Ax? + Bxy+Cy* + Da+Ey+F =0

where the coefficients of #2 and 2 are equal and there is no xy term. Therefore, a necessary
and sufficient condition that Az? + Bay + Cy? + Dz + Ey + F = 0 represent a circle is that
A = C and B = 0. It is not necessary that A = C = 1 since the coefficients of 22 and y?
being equal can be divided out, reducing them to one. The equation

2?4+ +ar+by+c=0

is the general equation of a circle. It can be reduced to standard form by completing the
squares on the z2- and z-terms, then on the y2- and y-terms yielding

2 2 a2 b2

2 a 2 b
b
2 4+ar+—+y +by+—+c 0

or

(+a)2+ +b 2_a2+b2—40
Ty yTy) = 1 '

This is the equation of a circle whose center is at (—a/2,—b/2) and whose radius is given by
r = £va? + b? — 4c. The equation will be a real circle only if a®+b? —4c > 0; if a®+b? —4c = 0
the equation represents a single point (a circle of zero radius); and if a? + b* — 4c < 0 there
are no real points in the locus.

Example. Find the center and radius of the circle 222 + 2y% — 5z + 4y — 7= 0.

Solution. Descarta2D represents the quadratic equation
A2x? + Bxy+Cy* + Da+Ey+F =0
as

Quadratic2D[A, B, C, D, E, F].

The function Loci2D[quad] will convert a quadratic (second-degree) equation to
a list of objects represented by the equation. The function Circle2D [quad] will
return a circle directly if the quadratic is indeed a circle.

6.3 Circle from Diameter 89

n[5]: {cl=Loci2D[gl = Quadratic2D[2, O, 2, -5, 4, -7]],
Circle2D[ql]}

C -1}, Y971 Girere2n]

: - BT

Ao
Ao

out (5] {{Crcle2D[{

The center of the circle is (5/4,—1) and the radius is v/97/4. The Descarta2D
function Quadratic2D [circle] converts a circle to a quadratic equation.

In(6]: Quadratic2D[cl[[1]]] //Sinplify

. 5 7
out (6] Quadratic2D[1, 0, 1, o 2, —7}

N DescartazD Hint. The Descarta2D function Simplify[quad] simplifies the
%& coeflicients of a quadratic by multiplying to remove denominators and factoring
to remove common factors. The form quad //Simplify is an equivalent form of
the function.

Mathematica Hint. In Mathematica the elements of a list are indicated by
double square brackets surrounding the index of the element in the list. In the
previous example, c1[[1]] indicates the first element in the list of objects c1.

6.3 Circle from Diameter

Consider two points P;(z1,y1) and Pa(z2,y2) defining the end points of a diameter P, P, of a
circle, C. Clearly the center of the circle, (h, k), must be the midpoint of P; P, and is given
by

r1 + X2

:y1+y2

and k 5

h:

and the radius of the circle, r, must be one-half the distance between P; and Ps:

r= %\/(xl —x2)? + (Y1 — y2)%

One equation of the circle C' has a particularly simple form given by
(x —z1)(z —22) + (y —y1)(y —92) =0

as can be verified by simplifying the equation of C' in standard form.

90 Chapter 6 Circles

6.4 Circle Through Three Points

Since the equation of a circle has three effective parameters (h, k, r or a, b, ¢), in general
three conditions can be imposed upon the parameters to determine one (or more) circles. In
this section we look at the case of a circle passing through three points. In a later chapter we
will explore a large number of conditions for constructing circles satisfying three conditions.

We can find the equation of a circle passing through three points P;(z1,y1), Pa(z2,y2)
and Ps(z3,ys), by substituting the coordinates of the points into the standard equation for a
circle yielding the three equations

(z1 —h)* + (y1 — k)* r’
(w2 —h)*+ (y2 —k)> = 1°
(w3 —h)?*+ (ys —k)> = 1°

This system of equations reduces to three linear equations in three unknowns, h, k and r.
Simultaneous solution of the three linear equations gives

hz—%,kz%, and r:%,
where
1 1 1 1 1 1 1 1 1
H=|wy v y3|, K=|21 22 w3 |, D=|21 20 73 |,
S1 S22 83 S1 S22 83 Y1 Y2 Y3
and

dij = \[(zi =) + (i —) and s; = 22 + 32,

If D = 0 the points are collinear and no circle passes through the three points.

Example. Find the circle passing through the three points (1,2), (—=3,1) and
(07 _2)'

Solution. The Descarta2D function Circle2D [point, point, point] returns a circle
passing through the three points.

In(7]: ¢l =Crcle2D[pl = Poi nt 2D[{1, 2}],
p2 = Poi nt 2D[{-3, 1}1,
p3 = Poi nt 2D[{0, -2}1]

7 3 17
]

out(7] Gircle2D[{- 5. 15 53

In(8]: Sketch2D[{pl, p2, p3, cl}];

6.5 Intersection of a Line and a Circle 91

The quadratic equation of a circle passing through three points Pi(x1,y1), Pa(z2,y2) and
Ps(x3,ys3) is given by the determinant equation

22 + y2 x Y
4y o
T5HYs T2 Yo

3+Y; w3 s

— =
Il
(an)

Example. Find the quadratic equation of the circle passing through the three
points (1,2), (=3,1) and (0, —2) given in the previous example.

Solution. The Descarta2D function Quadratic2D [point, point, point] returns a
quadratic representing the circle passing through the three points.

In[9]: Quadratic2D[pl, p2, p3]

out (9] Quadratic2D[15, 0, 15, 21, -9, -78]

6.5 Intersection of a Line and a Circle

Consider the line Az + By + C = 0 and the circle (z — h)? + (y — k)> = r2. The points
of intersection of the line and circle can be determined by solving the system of these two
equations in two unknowns. The coordinates of the points of intersection, P; and P, are

given by
Pra (h—ad+bV/r2 =@,k — bd 5 a\/r? — &)
where N . R
a= b= and d = L

VErE VR i B NoeEw:=

92 Chapter 6 Circles

If r2 — d? > 0 (the radius is greater than the distance from the center point to the line), then
there are two distinct intersection points; if 72 — d? = 0, then the two intersection points are
coincident (the line is tangent to the circle); and if 2 — d? < 0, then the line and the circle
do not intersect.

Example. Find the two points of intersection between the line and the circle
whose equations are 2z —y +3 =0 and (z — 1) + (y — 2)2 = 9.

Solution. The Descarta2D function Points2D [line, circle] returns a list of the
intersection points of the line and the circle.

In[10]: pts = Points2D[l 1 = Li ne2D[2, -1, 3], cl=Circle2D[{1, 2}, 3]]
. . 7 1

out[10] {Point2D[{1, 5}], Poi ntZDH—g, -5-}}}

n[11]: Sketch2D[{l 1, c1, pts},

Pl ot Range -> {{-3, 5}, {-2, 6}},
Curvelengt h2D-> 157;

NFPORPNWAOIO

-21012345

6.6 Intersection of Two Circles

Consider two circles (z —h1)? + (y — k1) = r? and (z — h2)? + (y — k2)? = r3. The coordinates
of the two intersection points, P; and P, of these circles can be determined by solving two
equations in two unknowns. Alternately, the following geometric approach can be applied.
Place the center of a circle with radius 1 at the origin and place the center of a second circle
of radius ry at (D,0) as shown in Figure 6.2. The equations of the two circles in standard
form are clearly given by 2% + y? = r? and (x — D)? + y? = 732, respectively. Solving the first
equation for y? yields y? = r? — 2%, Substituting this value of y? into the second equation and
solving for x yields

_ D? 47 —13

DY >

6.6 Intersection of Two Circles 93

a—— D

Figure 6.2: Two circles in a special position.

Substituting this value for o back into the first equation and solving for y? yields

s ADME = (D? 413 —13)
4D?

Y .
Let R = D? +r? —r2 and let (z0,y0) designate the coordinates of the intersection points in
this special position. Then

/4D2r2 — R2
o = —= and yozi#.

2D 2D

If the expression under the radical in the expression for yq is positive, then there are two
distinct intersection points; if it is zero, the two intersection points are coincident (the circles
are tangent at this point); and if it is negative, the two circles do not intersect. It is easy to
show algebraically that

4D?*r? — R? = (D* — (r1 +72)%)((r1 — r2)* — D?)

which confirms the intuitive insight that the circles do not intersect if either the sum of the
radii is greater than the distance between the centers, or the difference of the radii is less than
the distance between the centers.

Now consider two circles in arbitrary positions with centers Ci(hy, k1) and Ca(hg, k2) as
shown in Figure 6.3. The x- and y-coordinates of the intersection points can be written in
terms of the distances zy and yy determined from the special position shown in Figure 6.2 and
are given by

r=hy+x1 Ltz and y=4ki +y1 Fyo

where
x1 = xgcosl, xo =1ygsinh, y; = zpsind, yo = ygcosb

94 Chapter 6 Circles

C

Figure 6.3: Two circles in arbitrary positions.

and ha —h ko — k
COSHZ% and sinf = 21_) L

Therefore, the coordinates (z,y) of the intersection points of two circles without reference to
trigonometric functions are

(ha — h1) (k2 — k1)
D TW D
(kg — k1) (ha —)
D + Yo D

r = hy+xo

y = ki+xo

Example. Find the points of intersection between the two circles
(x -2+ (y—1)2?=9 and (z+2)*+(y+3)>=16

evaluated numerically.

Solution. The Descarta2D function Points?2D [circle, circle] returns a list of the
intersection points of the two circles.

In[12]: pts = Points2D[cl =Circle2D[{2, 1}, 3],
c2=Crcle2D[{-2, -3}, 411 //N

out[12] {Point2D[(1.87228, -1.99728}], Poi nt2D[{-0. 99728, 0.87228}])

6.7 Distance from a Point to a Circle 95

n[13]: Sketch2D[{cl, c2, pts}];

4
2 ([)
0

-2

-4

-6
-6-4-20 2 4

6.7 Distance from a Point to a Circle

The distance, D, from a point P(xg,%o) to the circle (z — h)? + (y — k)2 = r? is given by

D =/(r = w0 — 7 + (w0 — F).

The inner radical represents the distance from point P the center of the circle. The validity
of the formula is easily verified by considering separately whether the point is inside, outside
or on the circle.

Example. Find the distance from (2,3) to the circle (z +2)* + (y + 1)? = 1.

Solution. The function Distance2D [point, circle] computes the distance between
a point and a circle.

In[14]: Di stance2D[Poi nt 2D[{2, 3}],
Circle2D[{-2, -1}, 1]]

out[14] -1+4 \/_é

96 Chapter 6 Circles

6.8 Coaxial Circles

Let Pi(x1,y1) and Py(xe,ys2) be the two points of intersection of the two circles

C, = (:c—hl)Q—i—(y—kl)Q:rf and
Cy = (x—hg)Q—l—(y—kg)Q:rg.

Consider the equation C = (1 — k)C7 + kCy = 0. This equation represents a circle since
it is of the second degree, the coefficients of 2 and y? are the same, and there is no xy
term. Moreover, points P; and P» are on the circle since both points satisfy the equation C.
Therefore, C represents a family (or pencil) of circles through the points of intersection of the
two given circles. A particular member of this family may be determined by specifying that
it satisfy one other condition. Inspection of the equation reveals that C' has a center (H, K)
and radius R, where

H = (1—k)hy+khy

K = (1—I€)I€1+/€/€2

R = hi+ki-r}

Ry = hi4+ki-r2

R = H2+K?2—((1-r)R1+KRy).

Example. The two circles
01 = (2-22%+(@y—-1>%*=9 and
Cy = (z+2)>%+(y+3)>=16
determine a family of circles (1 — k)C; + kC2 = 0 passing through the points of

intersection of C; and C3. Plot members of the family of circles for values of
k={0,£1,4£2, 434+ 4 45}.

Solution. The function Circle2D [circle, circle, k, Pencil2D] returns a circle
parameterized by the variable k representing the pencil of circles passing through
the intersection points of two circles.

n[15]: O ear [k];
cl=Circle2D[{2, 1}, 31];
c2=Circle2D[{-2, -3}, 4];
cl2 =Circle2D[cl, c2, k, Pencil2D] //Sinplify

out(15] Circle2D[{2-4k, 1-4k}, v/9-25k +32k?]

6.9

Radical Axis 97

6.9

In[16]: famly =Map[(cl2 /. k ->#)& Range[-5, 5]]

out(16] {Circle2D[{22, 21}, /934], Grcle2D[{18, 17}, 3+/69],

Circle2D[{14, 13}, 2+/93], Circle2D[{10, 9}, v/187], Circle2D[(6, 5}, /66 |,
Grcle2D[{2, 1}, 3], Gircle2D[{-2, -3}, 4], Circle2D[{-6, -7}, /87],
[
[

Crcle2D[{-18, -19}, 6+/19 |}

n[17]: Sketch2D[{cl, c2, famly}];

40
22 La
- 20 @

- 40
-40-20 0 20 40

Radical Axis

Let C7 and C5 be the equations of two distinct circles as presented in the previous section.
Consider the equation L = C; — Cs. Upon simplification this equation reduces to the linear
equation

This

L=2ho—h))x+2(ky —ki)y+ (h2 +k? —r3) — (h2 + k2 —r2) = 0.

line is called the radical axis of the circles C; and Cs. The radical axis possesses the

following properties which we state without proof.

It is the line of the common chord if the two circles intersect in distinct real points.

It is the common tangent line if the circles intersect in coincident points (are tangent
internally or externally).

It is a real straight line even if the circles do not intersect in real points.

It is the locus of points from which tangents of equal length can be drawn to the two
circles.

It is perpendicular to the line of centers of the two circles.

Chapter 6 Circles

o It does not exist (tends to infinity) as the defining circles tend to concentricity.

e The radical axes of three circles, taken in pairs, intersect in a point called the radical
center.

Example. Find the radical axis of the circles (z — 4)? + (y — 1)2 = 16 and
(z — h)? + (y — 1)? = 4 for values of h = {5,6,10,11}.

Solution. The Descarta2D function Line2D [circle, circle] returns the radical axis
of the two circles.

1n[18]: ¢l =Crcle2D[{4, 1}, 4];

n[19]: h={5, 6, 10, 11};
Map[(c2[#] =Circl e2D[{h[[#]], 1}, 2]1)& Range[l, 4]1]

out[19] {Circle2D[{5, 1}, 2], Circle2D[{6, 1}, 2], Crcle2D[{10, 1}, 2],
Gircle2D[{11, 1}, 2]}

In[20]: Map[(radaxi s[#] = Line2D[cl, c2[#]])& Range[l, 4]]
out [20] {Line2D[2, O, -21], Line2D[4, 0, -32], Line2D[12, O, -96], Line2D[14, 0, -117]}

In(21]: Map[Sketch2D[{cl, c2[#], radaxi s[#]},
Pl ot Range -> {{-1, 12}, {-4, 6}}]1&

Range[l, 411;
6 6
4 4
2 m 2
0 0
-2 -2
-4 -4
0246 81012 0246 81012
6 6
4 /\ 4
2 N 2 (\
0 0
-2 -2
-4 -4
0246 81012 0246 81012

Mathematica Hint. The Mathematica function Range[1,4] returns the list
{1, 2,3, 4}.

6.10 Parametric Equations 99

6.10 Parametric Equations

A circle may be parameterized in terms of the angle, 8, that a ray from the center to the point
at the parameter value makes with the +a-axis. The resulting equations are

r=h+rcosf and y=k+rsinf

where (h, k) is the center of the circle and r is the radius of the circle. Values in the range
0 < 0 < 27 generate a complete locus of points on the circle.

Example. Generate 12 equally spaced points on the circle 2 + y? = 4 using the
parametric equations.

Solution. The Descarta2D function Circle2D[{h, k}, r] [t] returns the coordi-
nates of a point at parameter ¢ on the circle.

In[22]: cl =Circle2D[{0, 0}, 27;
pts = Map[Poi nt 2D[c1[#]]& 2=*Pi »Range[0, 12]/12];
Sket ch2D[{c1, pts}];

Alternately, consider the triangle T shown in Figure 6.4. Triangle T is obviously a right
triangle since

(1—t2)% 4+ (2t)% = (1 + t*)2.

Therefore, the rational forms of the trigonometric functions for angle 8 are

1—¢2
sinf = —— and
14 ¢2
2t
0 = —.
cos e

Substituting these expressions into the parameterization of a circle previously given yields

1—¢2 2t
xzh—l—rm and y:k—l—rm.

100 Chapter 6 Circles

t2+1

2t

Figure 6.4: Rational sinf and cos#.

These equations are called the rational parameterization of the circle and have the advantage
that they can be evaluated without using trigonometric functions. Parameter values in the
range 0 < t < 1 produce coordinates of points on the circle in the first quadrant, 1 < ¢ < oo the
second quadrant, —oo < t < —1 the third quadrant, and —1 < ¢ < 0 in the fourth quadrant.
The point at # = 7 radians cannot be generated using these equations, so they are generally
applied only to coordinates in the first quadrant. Also, notice that the points generated by
these parametric equations do not produce equally spaced points measured by distance along
the circle for equally spaced parameter values.

Example. Plot nine points at equal parameter values on the circle 22 + y? = 25
in the first quadrant using the rational parametric equations of the circle.

Solution. The points can be generated directly from the equations using para-
5
]

meter values 0, %, %, %, %, %, g and 1.

1n[23]: ¢l =Crcle2D[{0, 0}, 57;
pts = Map[Poi nt 2D[5 {1 -#"2, 2#}/ (#"2+1)]& Range[0, 8] /8];
Sket ch2D[{c1, pts}, PlotRange -> {{-1, 6}, {-1, 6}}1;

6

P O L N W b 01

01 2 3 456

6.11 Explorations 101

6.11 Explorations

POLAR EQUATION OF A CIRCLE. ..\ttt ittt ettt e e polarcir.nb
Show that the polar equation of a circle centered at P(r1,6;) with radius R is given by

r? 4+ 12 — 2rry cos(6 — 0;) = R?.

ANGLE INSCRIBED IN A SEMICIRCLE. .. t\tntttttttnttt ettt rtangcir.nb
Show that an angle inscribed in a semicircle is a right angle.

CHORD LENGTH OF INTERSECTING CIRCLES. . .\ttt oo oo eeeeieees chdlen.nb

NV AN
A

- D

Show that the distance, d, between the intersection points of two circles is given by

\/—(D —7ry — TQ)(D +ri — TQ)(D —r1+ TQ)(D +r + 7“2)
D

where D is the distance between the centers of the circles, and r1 and ro are the radii of the
two circles.

d:

JOHNSON’S CONGRUENT CIRCLE THEOREM. . ..o\ttt johnson.nb
Take any three circles C7, Co and C5 which pass through the origin, have equal radii, r,
and intersect in pairs in two distinct points (one of the points is, by construction, the origin).
Prove that the circle passing through the other three points of intersection between the circles
taken in pairs is congruent to the original three circles (that is, this circle has a radius of r).

RADICAL CENTER. . .« ettt ettt e e e e e e e e radcntr.nb

Prove that the radical axes of three circles taken in pairs intersect in a common point. This
point is called the radical center of the three circles.

102 Chapter 6 Circles

RADICAL AXIS OF TWO CIRCLES. & .ttt e radaxis.nb

Show that the two circles 22 + 42 + ax + by + ¢ = 0 and 22 + y? 4 bx 4 ay + ¢ = 0 have the
radical axis x —y = 0.

CIRCLE-POINT MIDPOINT THEOREM.ttt cirptmid.nb

yh

Po

o
X

Ct

Show that the locus of midpoints from a fixed point Py to a circle Cy of radius r1, is a circle
of radius %7“1. Furthermore, show that the center point of the locus is the midpoint of the
segment between Py and the center of Cf.

CIRCLE THROUGH THREE POINTS. cir3pts.nb

Show that the equation of the circle through the three points (0,0), (a,0) and (0,d) is
22 +y? —azx — by = 0.

CONSTRUCTION OF TWO RELATED CIRCLES. ... tttttttitiit it tnlncir.nb
Prove that if OP and OQ are the tangent lines from (0,0) to the circle

2?24+ y% + 29+ 2fy+c=0,
then the equation of circle OPQ is

2> +y* +gr+ fy=0.

CIRCLE OF APOLLONIUS. ...ttt et e et e et et et apollon.nb

Show that the locus of a point P(z,y) that moves so that the ratio of its distance from two
fixed points Py (z1,y1) and Pa(z2,y2) is a circle with radius

dk
(=17

%
|

6.11 Explorations 103

and center

—z1+ k22 —y1 + k2yo
K2-1 7 k2-1
where d = |P; P,|. The locus is called the Circle of Apollonius for the points P; and P, and
the ratio k.

CARLYLE CIRCLE. ettt ttt ittt ettt e e et e e e e e carlyle.nb

Given a circle, C1, passing through the three points (0,1), (0, —p) and (s, —p), show that
the z-coordinates of the intersection points Pj(x1,0) and Ps(z2,0) of Cy with the z-axis are
the roots of the quadratic equation 22 — sz — p = 0.

CASTILLON’S PROBLEM. . . .\ttt castill.nb

Let P;, P> and P; be three points inside the circle C; = 22 4+ y? = 1. Describe a method
for inscribing a triangle inside C; such that the sides of the triangle pass through the three
given points.

RADICAL AXIS RATIO. . ..ot e raratio.nb
Show that the point of intersection of the radical axis and the line of centers of two circles

of radii 1 and ry divides the segment between the two centers into the ratio
d? + r% — 7"5
d2—r}+r3’

where d is the distance between the centers.

Chapter 7

Arcs

We continue our study of circles by focusing on bounded portions of a circle’s circumference
commonly called arcs. Many of the interesting properties of arcs arise when considering how
their end points and slopes meet with other curves. For example, many mechanical artifacts
use arcs to construct transitions between the primary faces of the object giving a smoother
and more durable design.

In addition to the topics presented in this chapter, a subsequent chapter will discuss
another interesting use of arcs, the so-called biarc configuration of two arcs used to blend
curves together smoothly.

7.1 Definitions

Consider the parametric equations of a circle
r=h+rcosf and y=k+ rsinf

where the point C(h, k) is the center of the circle and r is the radius of the circle. A circle
is defined to be the set of points P(z,y) for all values of 6 such that 0 < 6 < 27 (radians).
Using the same parametric equations, a circular arc may be defined to be the set of points
P(z,y) for all values of 6 such that 6y < 6 < 6y, where 0 < 6y < 27 and 6y < 61 < (6y + 27).
The point Py(zg, yo) where 0 = 6 is called the start point of the arc, and the point P (z1,y1)
where 6 = 60 is called the end point of the arc. The angle the directed line C' Py makes with
the +z-axis is called the start angle of the arc; the angle the directed line C'P; makes with
the +x-axis is called the end angle of the arc. The center point C(h,k) of the circle is also
the center point of the arc, and the radius, r, of the circle is the radius of the arc.

Let CPy and CP; be the lines determined by the center point C' and the start and end
point of the arc, respectively. The angle between lines CPy and CP; is called the angular
span of the arc. An arc with an angular span of 7 radians (180°) is called a semicircle. The
area bounded by line segments C Py and C'P; and the arc itself is called a sector. The area

105

106 Chapter 7 Arcs

Po
N Phe
\ 9?
C(h, k)
—
X

Figure 7.1: Definition of an arc.

bounded by the arc and PyP; is called a segment and the line segment Py P itself is called
the chord of the arc.

Example. Plot the arc centered at the point (—2,1) with a radius 6 and start

angle of 7/6 radians and end angle of 7/2 radians. Include the center point of the
arc in the plot.

Solution. Circle2D[{h, k}, r]1[{61, 02}] represents an arc of a circle between
parameters #; and 6> when plotting.

In(1]: pl="Point2D[{-2, 1}1;
al=Circle2D[{-2, 1}, 6]1[{Pi /6, Pi /2}1;
Sket ch2D[{p1, al}];

T

RPN WA OO N

7.2 Bulge Factor Arc 107

—
X
Figure 7.2: Bulge factor arc definition.

7.2 Bulge Factor Arc

We now consider an arc representation involving the arc’s start and end points, the so-called
bulge factor arc as illustrated in Figure 7.2. A bulge factor arc is specified by its start and
end points plus an additional number specifying the “bulge” (or fatness) of the desired arc.
More precisely, if Py and P, are the start and end points of the arc, and P, is the midpoint
of the arc, then the bulge factor, B, is defined to be the (non-zero, positive) ratio

o

B
D

where D is the distance between Py and P; and H is the distance from P,, to the chordal
line defined by Py and P;. Thus, an arc with B = 1 will be a semicircle. Closer examination
of the definition of the bulge factor arc reveals that for a given value of B there are two arcs
satisfying the definition. These arcs are mirror images of each other (the line passing through
Py and P; is the reflection line). To distinguish between these two arcs we make the arbitrary
definition that the arc will be traversed counter-clockwise from Py to P;. The mirrored arc is
represented by interchanging the roles of Py and P;.

Radius and Center

In order to determine defining parameters of the circle underlying the bulge factor arc, we need
to determine the radius, r, and the center point, C(h, k), in terms of the points, Py(zo, o)
and Pj(x1,y1), and the bulge factor, B. Consider the right triangle C Py Py; where Py is the
midpoint of the chord PyP;. By the Pythagorean Theorem

|CPu[? + | PoPul® = |CR|*

108 Chapter 7 Arcs

or

Solving for r and substituting H = BD/2 yields

D 1
= — B —
" 4< +B>
where r > 0, since B > 0 and D > 0.
To find the coordinates C'(h, k) of the center point of the arc we note that the center is
offset from point Py a distance (r — H). The direction of the offset is rotated —90 degrees
from the vector Py — P;. Therefore, the equations for C'(h, k) are

Ty + T
2

Yo + Y1

h = 5

+ k(yo —y1) and k= — k(xo — 21)

1/1
=-(=-B).
=i(5-2)

It is clear from the expressions for r and C' that if we replace B with 1/B we get an arc
with the same radius and center, whose locus is counter-clockwise from P; to Py. This arc
is the complement of the original arc. The reflection of the original arc in the chord may be
obtained by reversing the roles of Py and P; and using the same value, B, as the bulge factor.

where

Example. Plot the arc with end points (1,0) and (0,1) with a bulge factor of
1/2. Find the mirror image of the arc reflected in the chord.

Solution. The standard representation of an arc in Descarta2D is
Arc2D [coordsy, coordsy, Bl

where the start and end point coordinates are given as the first two arguments,
respectively, and the bulge factor is the third argument. The arc reflected in the
chord is constructed by reversing the roles of the start and end points.

1n[2]: al = Arc2D[{1, 0}, {0, 1}, 1/2];
a2 = Arc2D[{0, 1}, {1, 0}, 1/2];

1n[3]: Sketch2D[{al, a2, Point2D[{1, 0}], Point2D[{0, 1}1}1;

7.2 Bulge Factor Arc 109

© o o ©
o N AN O o B

0.20.40.60.8 1

) N DescartazD Hint. The Descarta2D function Arc2D[arc, Complement2D] con-
\ay structs the complement of an arc.

Angles

Let 6 be the angular span of a bulge factor arc defined by points Py and P; and bulge factor
B. Once again examining the right triangle C' Py Py; reveals that

=) -

Using the trigonometric identity
2tan A
tan(24) = —————
an(24) (1 —tan? A)
we find that g
B =tan-.

4
From this equation it is clear that if B < 1, the arc is a minor arc whose angular span is in
the range 0 < 0 < m; if B > 1 the arc is a major arc with 7 < 6 < 27.

Let a denote the angle between the initial tangent vector, V, and the chord vector,
P, — Py, considered positive when V is clockwise from the chord vector, and negative when
V) is counter-clockwise from the chord. Note that —7 < o < 7 and |&| = /2. Therefore,
B = tan(a/2).

From Equation (7.1) we can derive an expression for B in terms of sina and cosa as

follows
sina ksina s 2B

t = = = - .
A= osa kcosa ¢ (1- B2?)

110 Chapter 7 Arcs

Solving this quadratic for B in terms of s and c¢ yields

B = (7.2)

S
c+Vs2+ 2
(The positive root of the quadratic is selected in order to insure that B has the same sign as
s. If B turns out to be negative, then the arc’s start and end points are interchanged and the
absolute value of B is the positive bulge factor.) The constants s and ¢ are some multiple of
sin « and cos a and immediately provide several useful techniques for constructing arcs. These
techniques are illustrated in the “Explorations” section at the end of this chapter.

7.3 Three—Point Arc

Let Py and P; be the start and end points of an arc and let point P be any other point on
the arc. One method for constructing the arc through the three points is to first construct
the underlying circle through the three points and then compute the limiting angles of the
arc from the end points and the center. Alternately, the bulge factor arc form provides an
appealing method for computing the arc. Note that Py and P; are the chord end points
required in the bulge factor arc formulation and in order to fully define the arc, we need to
determine its bulge factor, B. As the third point P traverses the arc the angle subtended at
P by the chord PyP; remains constant at the value (m — «). Thus, using the simpler vector
form,

s = |(P—Py)x (P, ~P)
¢c = (P-Py) (P, —P).

From s and ¢ we compute B using Equation (7.2).

Example. Find and plot the arc passing through the points (4,2), (—2,4), and
(07 _6)

Solution. The function Arc2D [point, point, point] returns an arc through three
points. The first and third points are assumed to be the end points of the arc
chord.

In[4]: pl = Point2D[{4, 2}];
p2 = Poi nt 2D[{-2, 4}1;
p3 = Poi nt 2D[{0, 6}];
al = Arc2D[pl, p2, p3] // N

out[4] Arc2D[(0, 6.}, {4., 2.}, 1.61803]

In(5]: Sketch2D[{pl, p2, p3, al}];

7.4 Parametric Equations 111

OFRL NWMOULO

/

-2-1012 3 4

7.4 Parametric Equations

One possible set of parametric equations for an arc is very similar to those of a circle since
they both have the same underlying curve. The parameter, ¢, can be scaled in a different
manner so that parameter value t = 0 produces the start point of the arc, and parameter
value t = 1 produces the end point. The resulting parametric equations are

x = h+4rcos(fp+t(01 — b))
= k+rsin(fo+ (01 — o))
where (h, k) is the center of the arc, r is the radius, and 6y and 6; are the start and end angles,

respectively, of the arc.
Alternatively, since the standard form of an arc used in Descarta2D is

Arc2D [{xo, yo}, {$1 s y1}, B,

we seek parametric equations involving only the start and end point coordinates and the bulge
factor. The equations are given by

x = h+ (xg— h)cos(Bt) — (yo — k) sin(5t)
= k+ (20— h)sin(Bt) + (yo — k) cos(St)

where 3 = 4tan~!(B) is the span of the arc and C(h,k) is the center point of the arc.
Parameter values in the range 0 < ¢ < 1 generate coordinates covering the span of the arc.

Example. Plot eight equally spaced points on the arc between the points (—3,2)
and (2,1) with a bulge factor of 3/2

Solution. The Descarta2D function Arc2D[{xo, yo}, {z0, Yo}, Bl [{] returns the
coordinates at parameter value ¢t on the arc.

112 Chapter 7 Arcs

In(6]: al = Arc2D[{-3, 2}, {2, 1}, 3/2];
pts = Map[Poi nt 2D[al[#]]& Range[O0, 7] /77;
Sket ch2D[{al, pts}];

-3-2-10 1 2

7.5 Points and Angles at Parameters

Using the parametric equations of an arc defined in the previous section we can find the
coordinates of any point on the arc corresponding to an angle 6 in the range 61 < 8 < 0. The
parametric equations for an arc as defined in Descarta2D are normalized so that the parameter
value 0 generates the start point of the arc and the parameter value 1 generates the end point
of the arc. Parametric values ¢, 0 < t < 1, will generate points on the arc between the start
and end points.

Example. For the arc between the points Py(—2,1) and P;(2,2) with a bulge
factor of 3/2, use the parametric definition of an arc to find and plot the start
point, end point and midpoint of the arc.

Solution. The function Arc2D[{zo, yo}, {1, y1}, Bl [t] returns a list of coor-
dinates representing the point on the arc at a given parameter value.

In[7]: al = Arc2D[{-2, 1}, {2, 2}, 3/2]1;
coords = {al1[0], al[l1/2], al[1]} //N

outf7] {{-2., 1.3, {0.75, -1.5}, {2., 2.}}

In(8]: Sketch2D[{al, Map[Poi nt2D, coords]}];

7.6 Arcs from Ray Points 113

=

1
© ©
L, O R GIOUIR AN
—

1
=

Whereas the Descarta2D function arc[t] generates the coordinates of the point on
the arc at parameter ¢, the function Angle2D [arc, t] returns the angle (in radians)
on the arc at parameter ¢ with respect to a horizontal line such as the z-axis.

n[9]: Angle2D[al, 1/2] //N

out[9] -1.32582

7.6 Arcs from Ray Points

Sometimes it is more convenient to specify the start and end points of an arc, rather than the
start and end angles. One obvious construction method is to specify the center and radius
along with the start and end points. Let Py(xo,yo) and P;(x1,y1) be the desired start and
end points of an arc centered at C(h, k) with radius r. Using simple trigonometry, the start
and end angles of the arc are given by

6y = tan~* (a:o — h) and #; = tan~! (xl — h) .
Yo — k y1 — k

The arc tangent function used to implement these equations must be sophisticated enough
to assign the proper angle based on which quadrant the points are located in. Mathematica
provides such an arc tangent function that takes the numerator and denominator as separate
arguments and computes the angle in the proper quadrant.

Example. Plot the arc centered at the point (2,1) with radius 1, and with start
and end points of (7,1) and (2, 6).

Solution. The function Arc2D [point, r, {point, point}] returns a bulge factor arc
given the center point, radius, and start and end points.

114 Chapter 7 Arcs

In(10]: al = Arc2D[pO = Poi nt 2D[{2, 1}], 5,
{pl = Poi nt2D[{7, 1}], p2 = Poi nt2D[{2, 6}]1}]

out[10] Arc2D[{7, 1}, {2, 6}, % (7%+ ;i]}

n[11]: Sketch2D[{al, pO, pl, p2},
Pl ot Range -> {{0, 8}, {0, 8}}1;

PNWAOIOON

1234567

/_‘k\] DescartazD Hint. The Arc2D function introduced in the previous example
MM allows more flexible input of the arc start and end points than is obvious from
the example. These points may be located at any position on the ray extending
from the center point of the arc to the desired arc start and end points. The
arc will be bounded by the points of intersection between the circle underlying
the arc and the rays defined from the center point to the specified start and end
points.

7.7 Explorations

ARC FROM BOUNDING POINTS AND ENTRY DIRECTION...............ooun.... arcentry.nb

Let Py and P; be the start and end points, respectively, of an arc and P be a third point
on the vector tangent to the arc at Py. Show that

s = |(P—=Py) x (P —Py)
¢ = (P=Po)-(P1—Po)

represent values of s and ¢ useful for computing the bulge factor of the arc.

ARC FROM BOUNDING POINTS AND EXIT DIRECTION.o, arcexit.nb

Let Py and P; be the start and end points of an arc, respectively, and P be a third point
on the vector tangent to the arc at P;. Show that

s = |(P1—Po) x(P—Py)|
c = (P1—Pg) (P-Py)

7.7 Explorations 115

represent values of s and ¢ useful for computing the bulge factor of the arc.

MIDPOINT OF ARC. ...ttt it e et arcmidpt.nb

Po

Show that the midpoint, P of a bulge factor arc between points Py and P; whose bulge factor
is B has coordinates

p ((3?0 + 1) ;B(yo - y1), (Yo + v1) +QB($0 — 3?1)) .

CENTROID OF SEMICIRCULAR ARC. ...ttt arccent.nb
Show that the centroid of the area bounded by a semicircular arc of radius and its chord
is on the axis of symmetry at a distance

_47“

" 37

H

from the chord of the arc.

Chapter 8

Triangles

Even though a triangle is not easily represented by a single, simple equation, there exist so
many interesting properties of triangles that it is worth devoting a special chapter to them.
Even today, new relationships involving triangles continue to be discovered. Descarta2D imple-
ments the triangle as a named object to enable easy study of the mathematical relationships
arising from the geometry of a triangle.

8.1 Definitions

A triangle is a composite object consisting of the three line segments connecting three non-
collinear points. The line segments are called the sides of the triangle, and the points are
called the wertices of the triangle. The two line segments adjacent to each vertex form an
angle inside the triangle called a vertex angle.

A triangle is isosceles if two sides are equal in length, and the third side is called the base.
In an equilateral triangle all three sides are equal length. A triangle is called acute if all the
interior angles measure less than 90°. A right triangle has one interior angle of 90°, and the
side opposite the right angle is called the hypotenuse. A triangle with an interior angle greater
than 90° is called an obtuse triangle. A triangle with three unequal sides is a scalene triangle.
It is clear from Figure 8.1 that the sum of the interior angles of a triangle is 180 degrees (m
radians).

Example. Plot the triangle connecting the points (—1,—1), (2,0) and (—2,1).
Use Descarta2D functions to retrieve the vertex points and vertex angles of the
triangle (in degrees).

Solution. In Descarta2D a triangle is represented as

Triangle2D [coordsy, coordss, coordss]

117

118 Chapter 8 Triangles

Figure 8.1: Sum of triangle interior angles.

where coords;, coordss and coordss are the coordinates of the first, second and
third vertex points, respectively. The Descarta2D function Point2D [triangle, n]
returns a point located at vertex n of the triangle. Angle2D [triangle, n] returns
the vertex angle at vertex n of the triangle.

In[1]: t1 =Triangl e2D[{-1, -1}, {2, 0}, {-2, 1}1;
{Map[Poi nt 2D[t 1, #1& {1, 2, 3}],
Map[Angl e2D[t 1, #]1& {1, 2, 3}] /Degree // N}

out[1] {{Point2D[{-1, -1}], Point2D[{2, 0}], Point2D[{-2, 1}]},
(98.1301, 32.4712, 49.3987}}

In[2]: Sketch2D[{t1}];

Example. Given thelines2x —3y+4 =0, -4z +2y+2=0and4zx+5y—2=0
construct the triangle whose sides lie on the lines.

8.1 Definitions 119

Solution. The Descarta2D function Triangle2D [line, line, line] returns a trian-
gle defined by three lines.

n[3]: | 1 =Line2D[2, -3, 4];
| 2 = Li ne2D[-4, 2, 2];
| 3 = Line2D[4, 5, -21;
tl="Triangle2D[l 1, 12, |3]

out(3) Triangl e2D[{ £, 3} {-4p 1o} {5 0]
In[4]: pr = PlotRange -> {{-2, 3}, {-1, 3}};
Sketch2D[{l 1, 12, 13}, prl;
Sket ch2D[{t 1}, pr];
3 3
2.5 2.5
2 2
.5 .5
1 1
.5 .5
0 0
-0.5 -0.5
1T o123 Y1012

Example. Find the line segment and the line associated with the side connecting
vertices 2 and 3 of Triangle2D[{2, 3}, {-1, 2}, {-3, 2}1.

Solution. The Descarta2D function Segment2D [triangle, ny, ne] returns the line
segment connecting two vertices of a triangle. Line2D [triangle, ny, no] returns
the line containing the side of a triangle through two vertices.

In[5]: t1="Triangle2D[{2, 3}, {-1, 2}, {-3, 2}1;
{Segnent 2D[t 1, 2, 3], Line2D[t1, 2, 3]}

out [5] {Segment2D[{-1, 2}, {-3, 2}], Line2D[0, -2, 4]}

120 Chapter 8 Triangles

v P(a, b)
|
o, ‘Q{
—
Ad 0 x
le— X2 — X] ———

Figure 8.2: Centroid of a triangle.

8.2 Centroid of a Triangle

The “balance point” of a planar area defined by bounding curves is called the center of gravity
of the area. When the material covering the area has a constant density throughout, and the
formulas for the center of gravity depend purely on the size and shape of the area, the center
of gravity is called the centroid of the area. For symmetric geometric figures such as a square,
circle or ellipse, the centroid is obviously the center point of the figure.

Referring to Figure 8.2 it is intuitively obvious that the triangle will “balance” on some
horizontal line at ordinate . The position of this line can be determined by summing the
moments, AM = D(xze — x1)Ay, of infinitesimal rectangles on either side of the line. The
value of 7 is the ordinate at which the sum of the moments is equal on both sides of the line.
The usual method for determining 7 is to use integral calculus and the actual derivation is
included as the exploration tricent.nb. The derivation shows that the line is one-third of
the distance from the base of the triangle to the apex, and the coordinates of the centroid, P,
of the triangle are given by

P<$1+$2+$3 y1+y2+y3)
3 ’ 3

where (21,y1), (2,y2) and (z3,ys) are the coordinates of the triangle’s vertex points. The
centroid point coordinates can be determined by intersecting a pair of lines offset from the
sides of the triangle one-third of the distance from the side towards the opposite vertex.

The medians of a triangle are the lines connecting the vertices to the midpoints of the
opposite sides. The medians taken in pairs intersect in coincident points, and the point is the
centroid of the triangle as is shown by the following Descarta2D commands:

8.2 Centroid of a Triangle 121

In[6]: O ear [x1, y1, x2, y2, x3, y3];
pl = Poi nt 2D[{x1, y1}1;
p2 = Poi nt 2D[{x2, y2}];
p3 = Poi nt 2D[{x3, y3}1;
pt 1 = Poi nt 2D[Li ne2D[p1, Poi nt2D[p2, p3]11],
Li ne2D[p2, Poi nt2D[pl, p311]1 // Sinplify

out [6] Poi ntzD[{l (X1 +x2 +x3), % <y1+y2+y3>}}

3

Example. Find the centroid of the triangle whose vertices are (—2,—1), (3,1),
and (0,2). Show by plotting that the medians intersect at the centroid.

Solution. The Descarta2D function Point2D [{riangle, Centroid2D] returns the
centroid point of a triangle.

In[7]: t1="Triangl e2D[{-2, -1}, {3, 1}, {0, 2}1;
pt = Poi nt 2D[t 1, Centroi d2D]

7 3

out [7] Point 2D[{

In[8]: {cl1, c2, c3} = {{-2, -1}, {3, 1}, {0, 2}};
s12 = Segnent 2D[c1, c2];
s13 = Segment 2D[c1, c3];
s23 = Segnent 2D[c2, c3];
ml = Segrent 2D[Poi nt 2D[c1], Poi nt 2D[s23]1;
nm2 = Segnent 2D[Poi nt 2D[c2], Poi nt 2D[s13]];
B8 = Segnent 2D[Poi nt 2D[c3], Poi nt 2D[s12]];

n[9]: Sketch2D[{t1, pt, nl, n2, nB}];

e
R OUIOUIR 0N

e

1
N
f
=
o
=
N
w

122 Chapter 8 Triangles

8.3 Circumscribed Circle

A circle passing through the three vertex points of a triangle is said to be circumscribed
about the triangle. We have already provided in a previous chapter the equation of a circle
passing through three points. Since the sides of the triangle are chords of the circle, and the
perpendicular bisectors of the chords of a circle intersect at the center point, the center of the
circumscribed circle is the intersection point of the perpendicular bisectors of the triangle’s
sides taken in pairs.

Example. Find the circle circumscribing the triangle whose vertices are (1,2),

(—2,4) and (—3,1). Show by plotting that the perpendicular bisectors of the sides
of the triangle intersect at the center point of the circumscribed circle.

Solution. The function Circle2D [triangle, Circumscribed2D] returns the cir-
cle that circumscribes the triangle.

n[10]: pl =Point2D[{1, 2}1;
p2 = Poi nt 2D[{-2, 4}];
p3 = Poi nt 2D[{-3, 1}1;
t1l="Triangl e2D[pl, p2, p3];
cl=Circle2D[t1, Circunscribed2D] // N

out[10] Circle2D[{-1.13636, 2.04545}, 2.13685]

In[11]: Sketch2D[{pl, p2, p3, t1, cl, Point2D[cl],
Li ne2D[pl, p2, Perpendi cul ar2D],
Li ne2D[pl, p3, Perpendi cul ar2D],
Li ne2D[p2, p3, Perpendi cul ar2D]}];

P O P N W b~ O

8.4 Inscribed Circle 123

\

%S\ DescartazD Hint. Point2D [triangle, Circumscribed2D] directly returns the
MM center point of the circumscribed circle of a triangle.

The radius, R, of the circle circumscribing a triangle whose sides are of length s1, s and
s3 is given by
515253

VPS

where S = s1 + s2 + s3 and P = (—s1 + s2 + s3)(s1 — s2 + s3)(s1 + $2 — s3). This formula is
derived in the exploration trirad.nb.

R:

8.4 Inscribed Circle

A circle inside a triangle that is tangent to all three of the triangle’s sides is said to be
inscribed in the triangle. The center of the inscribed circle must lie on the angle bisectors
of the triangle’s sides because the center must be equidistant from the sides. Therefore, the
point of intersection of a pair of angle bisectors of a triangle is the center of the inscribed
circle. The radius of the inscribed circle is the distance from the center point to any one of
the triangle’s sides. The center (h, k) and radius r of the inscribed circle derived from this
construction yields

h = (s121 + s2x9 + s3x3)/2s
k= (siy1+ s2y2 + s3y3)/2s

ro= Vs -6 -)/s

where
s1 = V(r2—23)2+ (y2 — y3)?
s2 = (x1—23)% + (Y1 — y3)?
s3 = V(r1—22)2+ (y1 — y2)2
s = (s1+s2+s3)/2.

Example. Find the circle inscribed in the triangle whose vertices are (—3,3),
(3,3) and (1,—3). Show by plotting that the angle bisectors of the sides of the
triangle intersect at the center of the inscribed circle.

Solution. The function Circle2D [t{riangle, Inscribed2D] returns the circle
inscribed in the triangle.

124 Chapter 8 Triangles

In[12]: pl =Point2D[{-3, 3}];
p2 = Poi nt 2D[{3, 3}];
p3 = Poi nt 2D[{1, -3}1;
t1=Triangl e2D[pl, p2, p3];
cl=Circle2D[t1, Inscribed2D] // N

out[12] G rcle2D[(0. 443274, 1.15722}, 1.84278]

1n[13]: Sketch2D[{pl, p2, p3, t1, cl, Point2D[cl],
Medi al Equat i ons2D[{Li ne2D[p1, p2], Line2D[pl, p31}1[I[2]1],
Medi al Equat i ons2D[{Li ne2D[p2, p3], Li ne2D[p2, pl]1}]1[[2]1],
Medi al Equat i ons2D[{Li ne2D[p3, pl], Line2D[p3, p2]1}1[[2]1]1}1;

4 -2 0

()
N

/jk\] Descartazp Hint. The function Point2D [triangle, Inscribed2D] directly re-
MM turns the center point of the inscribed circle of a triangle.

The radius, r, of a circle inscribed in a triangle whose sides are of length s1, so and s3 is
given by

where S = s1 + 53 + s3 and P = (—s1 + s2 + s3)(s1 — S2 + $3)(s1 + S2 — s3). This formula is
derived in the exploration trirad.nb.

8.5 Solving Triangles

Clearly, the shape of a triangle, independent of its position and orientation, is determined by its
side lengths and vertex angle magnitudes. Labeling the sides and angles as shown in Figure 8.3
relative to the vertices, we pose the problem of determining all of the configuration parameters
(sn and ay,) given a subset of them. The configuration parameters are always assumed to be

8.5 Solving Triangles 125

ag

2 St

aq a

V]_ S3 V2

Figure 8.3: Standard labeling of a triangle’s sides and angles.

positive and the angles less than 7 radians. Generally, a unique triangle is determined by
specifying three of the six configuration parameters, although in two cases (AAA and SSA),
as outlined below, the configuration is ambiguous. The configurations requiring consideration
are enumerated as

A AA Angle-Angle-Angle: Specifying three angles of a triangle determines the shape of a
family of similar triangles, but is ambiguous as to the lengths of the sides.

AAS Angle-Angle-Side: The AAS configuration is specified by two angles and a side not
between them. For example, the configuration parameters ay, as and s1 specify an AAS
configuration. In a valid configuration the sum of the two given angles must be less than
m radians, and such configurations admit a unique solution.

ASA Angle-Side-Angle: The ASA configuration is specified by two angles and the side be-
tween the angles. The configuration parameters a1, s3 and asg, for example, illustrate an
ASA configuration. The ASA configuration allows a unique solution if the sum of the
two angles is less than 7 radians.

SAS Side-Angle-Side: The SAS configuration involves two sides and the angle between them.
The configuration given by s1, as and ss is an example of an SAS configuration. The SAS
configuration specifies a unique solution for all values of the configuration parameters.

SSA Side-Side-Angle: SSA configurations (s1, s2 and a1, for example) are referred to as the
ambiguous case, because two valid solutions may exist. That is, two different sets of
configuration parameters representing two different triangles may satisfy the configura-
tion. In some cases (right triangles) only one solution may exist, and in other cases the
configuration may be inconsistent allowing no solutions.

SSS Side-Side-Side: Specifying three sides of a triangle determines a unique triangle, or may
be inconsistent if the length of one side is greater than or equal to the sum of the lengths
of the other two sides.

126 Chapter 8 Triangles

The process of determining the full set of configuration parameters given one of the cases
above is called solving the triangle. Solving triangles involves the application of three funda-
mental principles. In terms of the configuration parameters these three principles lead to the
following equations:

e Sum of the angles of a triangle is 7 radians: a1 + as + a3 = 7.
e The Law of Sines (three equations):

S1 52 53

sin(a;) sin(az) sin(ag)’

e The Law of Cosines (three equations):

s = 2452 —2s953c08(a1),
s2 = 574 52— 2s153c08(az),
s2 = 574 55— 2s153co8(az).

When applying the Law of Sines or the Law of Cosines, care must be taken to properly
handle the ambiguous cases noting that sin(a) = sin(r — a), for example, when applying the
Law of Sines. The Descarta2D package D2DTriangle2D provides details illustrating how to
solve all the triangle configuration cases using these principles.

Example. Find all the configuration parameters for a triangle with s; = 1, so = 2
and a3 = m/6 radians. Construct a triangle satisfying this SAS configuration.

Solution. SolveTriangle2D[{{s1, $2, s3}, {a1, a2, az}}] returns a complete
specification a triangle configuration, in the form {{s1, s2, s3}, {a1, a2, as}},
given three of the six configuration parameters. The three parameters to be
found must be omitted (i.e. entered as Null in the configuration). The func-
tion Triangle2D[config]l returns the triangle satisfying the configuration. The
first vertex of the triangle will be the origin and the second vertex will be on the
+z-axis.

In[14]: sa = Sol veTriangl e2D[{{1, 2, Null},
{Nul'l, Null, Pi /6}}] //Sinplify

out (141 ({1, 2, \/5-23 }, {Nc@s[%}, Ncms[%}, =1}

In[15]: Triangl e2D[sa] // Sinplify

out[15] Triangl e2D[{0, 0}, {\/5—2? o}, {\/47\[\3_/A , J = H
5-2+/3 5-2+/3

8.5 Solving Triangles

127

N

Descartazp Hint. Triangle2D[{si, s2, s3}] constructs a triangle given the
lengths of the sides only.

Example. Find all configuration parameters for a triangle with s; =1, s = 1.5
and a1 = m/6 radians (an SSA case).

Solution. The function SolveTriangle2D [config] returns a complete triangle
configuration given a partial configuration. Since this is an SSA case, there is
a possibility of two solutions. SolveTriangle2D [config, True] will return the
alternate triangle configuration, if one exists.

In[16]: Sol veTriangl e2D[{{1, 1.5, Null},
{Pi /6., Null, Null}}]

out[16] {{1, 1.5, 1.96048), {0.523599, 0.848062, 1.76993})

In[17]: Sol veTriangl e2D[{{1, 1.5, Null},
{(Pi /6., Null, Null}}, True]

out(17] {{1, 1.5, 0.6376}, {0.523599, 2.29353, 0.324463}}

In[18]: {Sketch2D[{Tri angl e2D[{{1, 1.5, Null},
{Pi /6., Null, Nul'l}}1}1,
Sket ch2D[{Tri angl e2D[{{1, 1.5, Null},
{Pi /6., Null, Null}}, Truel}l};

COOoo000o
ORrNWAUT O

COOoo0000o
oORrNWhU O

0 0.20.40.60.8 1 1.2

128 Chapter 8 Triangles

8.6 Cevian Lengths

A cevian of a triangle is a line segment connecting a vertex to a point on the line containing
the side of the triangle opposite the vertex. Therefore a cevian may be inside the triangle
(if the point is on the opposite side) or it may be outside the triangle (if the point is on the
extension of the line which contains the opposite side). Common cevians include the altitude
of a triangle which is the cevian perpendicular to the opposite side, the median which connects
the vertex to the midpoint of the opposite side and the angle bisector which bisects the angle
at the vertex.

If a triangle has sides whose lengths are s1, s and s3 opposite vertices V1, Vo and V3, then
the length of the altitude, hq, from V; is given by

VPS

h =
! 281

where S = 51+ 82+ s3 and P = (—s1 + s2 + $3)(81 — S2 + 83)(s1 + $2 — 83). The length of the
median, my, from vertex V; is given by

1
my = 5\/—5% +2(s3 + 53).

The length of the angle bisector, by, from V; is given by

b — V/Ss283(—81 + 82 + 53)
b So + 83 .

The formulas for the lengths of the cevians from vertices V5 and V3 can be found by cyclic
permutation of the subscripts given in the formulas above. The derivations of these formulas
are provided in the exploration tricev.nb.

8.7 Explorations

CIRCLE INSCRIBED IN A RIGHT TRIANGLE.otttttite et i rttricir.nb

Show that if r is the radius of a circle inscribed in a right triangle with sides a and b and
hypotenuse ¢, then r = %(a +b—oc).

EULER'S TRIANGLE FORMULA. ... i trieuler.nb

If T is a triangle, and P and r are the center and radius of the circle inscribed in T', and
@ and R are the center and radius of the circle circumscribing 7', show that

d> = R?>-92rR

where d is the distance from P to Q.

8.7 Explorations 129

GERGONNE POINT OF A TRIANGLE. . ..ottt gergonne.nb
Let Q12, @13 and Q23 be the points of contact of the inscribed circle of triangle P, P, P3 with
sides L1o, L13 and Lag, respectively. Show that lines Py Q23, P2Q13 and P3()12 are concurrent.
The point of concurrency is called the Gergonne Point of the triangle after J.D. Gergonne
(1771-1859), founder-editor of the mathematics journal Annales de Mathematiques.

CENTROID OF A TRIANGLE. ..\ttt ettt e e e e e e tricent.nb
vA P(a, b)
5
T N
Qd, 0) x
la— X2 — X] ———

Show that the centroid of a triangle, as illustrated in the figure, is on a line at a distance
7 = b/3 from the base of the triangle.

ALTITUDE OF A TRIANGLE. « .ttt ettt ettt ettt e et e e et e ee e trialt.nb

The altitude from vertex A of AABC is a line segment from A perpendicular to the side
BC (or its extension). Show that the equation of the line containing the altitude from A is

(3 — m2)x + (y3 — y2)y — v1(z3 — 22) —y1(y3s —y2) =0

where the coordinates of the vertices are A(z1,y1), B(x2,y2) and C(z3,ys).

TRIANGLE ALTITUDE LENGTH. ..\ttt ittt ettt e et e i eeeiaeen triallen.nb
Show that the length, L, of a triangle’s altitude (from vertex V3 to side s1) is given by

V(14 82 — 83)(s1 — 52+ 83)(—s1 + 82 + 83) (51 + 52 + 53)
283

L =

where s1, so and s3 are the lengths of the triangle’s sides.

CONCURRENT TRIANGLE ALTITUDES. . .ttt vttt triconn.nb

Show that the three altitudes of any AABC' are concurrent in a single point (x,y) whose
coordinates are given by

130 Chapter 8 Triangles

where
g = —(y —y) (@2 +y3) + (Y1 — ys) (2123 + 43) — (Y2 — y3)(zaz3 + Y1)
v = (1 —x2)(yrye +23) — (21 — x3)(y1ys + 23) + (22 — 3) (y2ys + 23)
and
1 y1 1

D = T2 Y2 1
x3 ys 1

and the coordinates of the vertices are A(x1,y1), B(z2,y2) and C(x3,ys3). This point is called
the orthocenter of the triangle.

TRIANGLE SIDE LENGTHS FROM ALTITUDES. ..\ttt trisides.nb

Prove that the lengths of a triangle’s sides whose altitudes are of lengths hy, he and hg are
given by
_ 2h1H1

H)
where Hy; = hohs, Ho = h1hs and Hs = hiho, and

- 2h2H2 N 2h3H3

H

S1 So and s3

H = \/(H, + Hy — H3)(H, — Hy + H3)(—H, + Hy + H3)(H, + Ho + H3).

TRIANGLE RADIL ..ot e trirad.nb

Prove that the radius, r, of a circle inscribed in a triangle is given by

where S = s1 + s2 + s3, P = (—s1 + s2 + s3)(s1 — s2 + s3)(s1 + s2 — s3) and s1, s2 and s3
are the lengths of the triangle’s sides. Furthermore, prove that the radius, R, of the circle
circumscribing the triangle is given by

TRIANGLE CEVIAN LENGTHS. .\t tttttit ettt et e e et e ie e i tricev.nb

Prove that the length of the altitude, hy, from vertex V; of a triangle to the opposite side
of the triangle (whose length is s1) is given by

VPS

281

hy =

8.7 Explorations 131

where S = 51 4+ 52 + s3 and P = (—s1 + s2 + s3)(81 — 2 + $3)(81 + $2 — s3). Prove that the
length of the median, my, from vertex V; is given by

1
mp = 5\/—8% +2(s3 + 53).

Prove that the length of the angle bisector, b1, from V; is given by

_ \/Ssas3(—s1 4 52+ s3)

b
! S2 + S3

Also show that the formulas for the lengths of the cevians from vertices Vo and V3 can be
found by cyclic permutation of the subscripts given in the formulas above.

Part 111

Conics

Chapter 9

Parabolas

In the branch of mathematics known as celestial mechanics it is shown that an object, such as
a comet, that falls toward the sun “from infinity” would, if not deflected by the gravitational
attraction of other bodies, travel in a path whose shape is a parabola with the sun at its focus.
Projectiles in a vacuum on the surface of the earth travel in paths which are nearly parabolic,
and projectiles in the air approximate this path with greater or less precision according to
their speed, shape and weight. Humans also take advantage of the focusing properties of a
parabolic shape in the design of such artifacts as headlights, searchlights and various listening
and broadcasting devices. This chapter develops the underlying mathematics of a parabola.

0.1 Definitions

A parabola is the locus of a point that moves so that the ratio of its distance from a fixed
point and from a fixed line is one. The fixed point, F, is called the focus and the fixed line,
D, the directriz. By definition, the distance from any point P on the parabola to the focus
is equal to its distance to the directrix. The ratio PF/PD is called the eccentricity e and
e = 1. The line F'D through the focus perpendicular to the directrix is called the azis of the
parabola. The midpoint V' of the segment F' D, obviously a point on the locus, is called the
vertex of the parabola. The focal chord perpendicular to the axis is called the latus rectum.

9.2 General Equation of a Parabola

We choose any point F(z1,y1) as the focus and any line D = Ayz + By + C; = 0, where
A2+ B? = 1, as the directrix. The normalized form of the line is used to simplify the derivation.
With reference to these defining elements the equation of the parabola becomes

V(@ —21)2+ (y —)? = £(Aiz + Biy + C1)

135

136 Chapter 9 Parabolas

Figure 9.1: Definition of a parabola.

which can be written as

—B22% + 2A1 By — A3y?+
2(x1 + A1Cy)x 4+ 2(y1 + B1C1)y + (C1 — 22 — y?) = 0.

This equation is of the form Ax? + Bxy + Cy? + Dz + Ey + F = 0, an equation of the second
degree. One characteristic of the equation is that the second-degree terms in x and y form a
perfect square, so the equation may also be written

—(Biz — A1y)® + 2(z1 + A1C1)x + 2(y1 + B1C)y + (C1 — 27 — y7) = 0.

Moreover, it can be verified that B? — 4AC = 0. Therefore a necessary condition that the
equation Az? + Bxy + Cy? + Dz + Ey + F = 0 represent a parabola is that B2 — 4AC = 0.
The general equation of a parabola reveals that if the directrix line is parallel to one of the
coordinate axes then B = 0 since either A; or B; will be zero. The equation of a parabola in
this position will have no xy term.

0.3 Standard Forms of a Parabola

The definition of a parabola makes the shape of the curve depend only upon the distance from
the focus to the directrix and not essentially upon the coordinate system. The general equation
is complicated because of the choice of a general point and a general line. By an appropriate
choice of axes this equation can be simplified; but it will then represent only parabolas in
special positions. For example, if axes are chosen so that the focus has coordinates (f,0) and

9.3 Standard Forms of a Parabola 137

the directrix the equation z = — f, then the locus definition yields

v+ = V@ IPEP

which reduces to y2 = 4fz. This is one of the standard forms of the equation of a parabola.
It has a vertex V(0,0). If f is positive the parabola opens to the right; if f is negative it
opens to the left. The distance f is called the focal length of the parabola and is the distance
between the focus and the vertex of the parabola.

Generalizing the location of the vertex point to V'(h, k) gives a parabola whose equation is

(y—k)? = 4f(x — h).

This equation is the standard form used in Descarta2D as illustrated in the following example.

Example. Plot the parabola whose vertex is (2,1), focal length is 1/2, and opens
to the right.

Solution. Parabola2D[{h, k}, f, 6] is the standard representation of a parabola
in Descarta2D where the coordinates of the vertex are (h, k), the focal length is f
and the rotation angle (in radians) about the vertex is 6.

In[1]: Sketch2D[{Par abol a2D[{2, 1}, 1/2, 0]}1;

NFPORPNWD

2345678

|
The axis of the parabola may also be parallel to the y-axis in which case the equation is
(= h)2 = 4f(y — k).

Descarta2D does not directly use this form of the parabola, but instead simply rotates the 3?2
form by the appropriate angle.

Example. Plot the parabola whose vertex is (1,—1), focal length is 1/3, and
opens upward.

138 Chapter 9 Parabolas

Solution. Use the same command as in the previous example with a rotation
angle of 7/2 radians.

1n[2]: Sketch2D[{Parabol a2D[{1, -1}, 1/3, Pi /2]}];

T PO RPDNWSMOOIO

2-101 234

Example. Plot the four parabolas whose vertices are (1,1), (—=1,1), (—1,—1) and
(1,-1), focal length 1/3, and axes aligned with the lines z —y = 0 and z+y = 0.

Solution. The Descarta2D command Parabola2D[{h, k}, f, 6] returns the de-
sired parabolas using the Angle2D [line] command to find the required values for

6.

In[3]: axi sl =Line2D[1l, -1, 0]; axis2=Line2D[1, 1, 0];
theta = {Angl e2D[axi s1], Angl e2D[axi s2],
Angl e2D[axi s1] + Pi, Angl e2D[axi s2] +Pi };
pts = {{1, 1}, {-1, 1}, {-1, -1}, {1, -1}};
Sket ch2D[{axi s1, axi s2,
Map [Par abol a2D[pts[[#]1]1, 1/3, theta[[#]]]1&
Range[1, 4]1}];

A NONDIMO®

6 420246

9.4 Reduction to Standard Form 139

9.4 Reduction to Standard Form

The most general equation of a parabola with no zy term present (and hence one whose axis
is parallel to one of the coordinate axes) is one of the two forms

(1) Az?+ Dz + Ey+ F =0, axis parallel to the y-axis;
(2) Cy?*+ Dz + Ey+F =0, axis parallel to the z-axis.

In either case it is easy to reduce this general equation to the corresponding standard form
by the process of completing the square.

Example. Reduce x2? + 4z + 4y — 8 = 0 to the equation of a parabola in standard

form.
L |

Solution. The Descarta2D function Loci2D [quadratic] returns a list of geometric
objects represented by a quadratic equation.

In[4]: crvl = Loci 2D[Quadrati c2D[1, 0, O, 4, 4, -8]]

out (4] {Parabol a2D[{-2, 3}, 1, 32_”]}

The equation in standard form is (y — 3)% = 4(z + 2), rotated 270° (37/2 radians)
about the point (—2,3).

In[5]: Sketch2D[{crv1}];

NP ORFLDNW

The following example shows how Descarta2D may be used to find the various geometric
objects associated with a parabola.

Example. Find the focus, directrix, vertex, axis and eccentricity of the parabola
represented by the equation x? — 22 — 8y — 15 = 0. Plot the geometric objects.

140 Chapter 9 Parabolas

Solution. The function Foci2D [parabola] returns a list of one point which is the
focus of the parabola; Directrices2D [parabolal] returns a list of one line which
is the directrix of the parabola; Line2D [parabola] returns the axis line of the
parabola; and the function Eccentricity2D [parabola] returns the eccentricity of
a parabola (always 1).

In[6]: pl = First [Loci 2D[Quadratic2D[1, O, 0, -2, -8, -15]]]
out[6] Parabol a2D[{1, -2}, 2, %}
n[7]: {Eccentricity2D[pl],

geom= Map [(#[pl])&,
{Foci 2D, Directrices2D, Vertices2D, Line2D}]} //Flatten

out[7] {1, Point2D[{1, 0}], Line2D[0, 1, 4], Point2D[{1, -2}], Line2D[-1, 0, 1]}

In(8]: Sketch2D[{pl, geom}];

-2 —

-3

0.5 Parabola from Focus and Directrix

A parabola may be defined in terms of a focus point F(z1,y1) and a directrix line given
by L = Asx + Boy + Cy = 0. Given these two defining elements the parabola’s parameters
(vertex point V'(h, k), focal length f and angle of rotation #) can be determined. Let

_ Asz1 + Bayr + Co
NITET

be the signed distance from the focus F to the directrix L, D = |d|, and F’ be the projection
of F on L. From a previous chapter the coordinates of F’ are given by (z1 —ad, y; —bd), where
a = As/\/A3+ B and b = By/+\/A% + B3. The vertex point V is obviously the midpoint of
the line segment FF’ and has coordinates V' (h, k) = (x1 — ad/2,y1 — bd/2). The focal length
fis half of D, f = D/2. The rotation angle # is the angle of the line FF’.

d

9.6 Parametric Equations 141

Example. Determine the parabola in standard form defined by the focus point
F(1,1) and the directrix line z +y = 0.

Solution. The Descarta2D function Parabola2D [point, line] returns the parabola
defined by a focus point and a directrix line.

In[9]: pl = Parabol a2D[Poi nt 2D[{1, 1}], Line2D[1, 1, 0]]
1 1 1 7T
7} 7

out [9] Par abol aZD[{f, =3t

7

In[10]: {Foci 2D[pl], Directrices2D[pl]} // Sinplify

out[10] {{Point2D[{1, 1}]}, {Line2D[1, 1, 0]}}

9.6 Parametric Equations

The standard form of a parabola used in Descarta2D has the equation

(y—k)*> =4f(z—h)

where (h, k) is the vertex of the parabola and f is the focal length. The axis of this parabola
is parallel to the z-axis and the parabola opens to the right (when f > 0). Parabolas in other
orientations are obtained by applying a rotation, 6, to the standard parabola. Since only the
y term is quadratic, it is easy to find one set of parametric equations for a parabola. Let
y =k + 2ft be one of the equations; then, solving for ¢ yields

(y — k)
2f

Substituting this into the equation of the parabola and solving for x yields the two parametric
equations

t =

r = h+ ft?
= k+2ft

The parameter value ¢ = 0 produces the vertex point (h, k). Increasing values of ¢ produce
points above and to the right of the vertex. Negative values of ¢t produce points that correspond
to positive t values reflected in the axis of the parabola. Parameter values t = +1 produce
the end points of the focal chord of the parabola.

142 Chapter 9 Parabolas

Example. Generate seven points on the parabola (y + 1)2 = 2(z — 1) at equally
spaced parameter values. Plot the curve using a curve length of 20. Generate a
second plot of the points on the reflected branch of the parabola.

Solution. The Descarta2D command Parabola2D[{h, k}, f,] [¢] returns the
coordinates at parameter ¢ on the parabola. The option CurveLength2D->n sets
the approximate length of unbounded curves plotted by Descarta2p.

In[11]: pl = Parabol a2D[{1, -1}, 1/2, 0];
ptsl = Map[Poi nt 2D[pl1[#/2]]1& Range[0, 6]1;
pts2 = Map[Poi nt 2D[pl1[#/2]1& Range[-6, 01];
Sket ch2D[{p1, ptsl}, CurvelLength2D-> 207;
Sket ch2D[{p1, pts2}, CurvelLength2D-> 207;

Mathematica Hint. Using the CurveLength2D option as part of the Sketch2D
command sets the length of all unbounded curves being plotted. If this option is
not specified, then a default is used. The initial default set by Descarta2D is 10.
To change the default to a new value, n, use the Mathematica command

SetOptions [Sketch2D, CurveLength2D->n].

9.7 Explorations

LENGTH OF PARABOLA FOCAL CHORD.ooitititiiiiii i pbfocchd.nb
Prove that the length of the focal chord of a parabola is 4f, where f is the focal length.

9.7 Explorations

143

PARABOLA THROUGH THREE POINTS. ... i

pb3pts.nb

Show that the parabola passing through the points (0,0), (a,b) and (b,a) whose axis is

parallel to the z-axis has vertex (h, k) and focal length f given by

2 2\2 2 2
h:(a —|—ab+b),k:a +ab+b and f—— ab
4ab(a + b) 2(a+b)

Furthermore, show that the quadratic representing the parabola is

(a +b)y* + abx — (a® +ab+b*)y = 0.

PARABOLIC ARCH. ..ttt e

o
X

.~

4(a+b)

pbarch.nb

Find the equation of the parabolic arch of base b and height A as shown in the figure. Assume

that b and h are positive.

PARABOLA DETERMINANT . .« .ottt ittt et e ettt e e e et

Show that the determinant

Y2 Ty T2

Y3 T3 X3

y x> =z 1
2
9 x1 1
y1;1:O
1
1

..... pbdet.nb

represents a parabola Az? + Dz + Ey + F = 0 passing through the points (z1,1), (72,92)

and (z3,y3).

144 Chapter 9 Parabolas

PARABOLA INTERSECTION ANGLES. .\ttt ettt et e eeeaes pbang.nb
Show that the parabolas y? = ax and 2% = by will cut each other at an angle @ given by
1 a3 2b3

+ tan™!

1 1
3 a3

0 = —tan~

CIRCLE TANGENT TO A PARABOLA. « 1\ttt ittt pbtancir.nb

Any line through the point (—3a,0) cuts the parabola y?> = 4ax in the points P and Q.
Prove that the circle through P, @ and the focus is tangent to the parabola.

POLAR EQUATION OF A PARABOLA.ot polarpb.nb

Show that the polar equation of a parabola opening to the right with vertex at (0,0) is
given by

4f cosf
r=——
sin” 6
where f is the focal length of the parabola.

Chapter 10
Ellipses

The visible universe is filled with ellipses, or near ellipses, traced by celestial bodies revolving
around each other, such as planets and the sun. The fact that the angle formed by two focal
radii through a point on an ellipse is bisected by the normal to the curve may be used in a device
for re-concentrating sound waves, at illustrated in the acoustics of the Mormon Tabernacle
in Salt Lake City, Utah. Various types of rotating machinery use elliptical components to
generate special types of linear and rotational motions. This chapter develops the mathematics
of an ellipse.

10.1 Definitions

An ellipse is the locus of a point that moves so that the ratio of its distance from a fixed
point and from a fixed line is a positive constant less than one. As with the parabola, a focus,
directrix and eccentricity are associated with the curve as described in Table 10.1.

Consider the line through the focus perpendicular to the directrix. From the definition
PF/PD = ¢/1 there are obviously two points V and V' which divide the (undirected) segment

Table 10.1: Definition of an ellipse.

‘ ELEMENT DESCRIPTION

P(z,y) Point on locus

Fixed point F' Focus

Fixed line D Directrix

Fixed constant e | Eccentricity
e=PF/PD < 1 | Ellipse relationship

145

146 Chapter 10 Ellipses

vy

Figure 10.1: Ellipse definition.

F D, internally and externally respectively, into the ratio of /1. Therefore V and V' are points
(on the same side of D) on the ellipse; they are called the vertices. The segment V'V is called
the major axis. By symmetry there is another point F” and another line D’ such that F’ and
D' would serve as the definition of this curve. Thus an ellipse has two foci and two directrices
associated in pairs F', D and F', D’. The midpoint of F'F’, which is also the midpoint of V'V,
is called the center C. It is evident that the locus is contained between the vertices, that it
is bounded in all directions and that it is symmetric both with respect to the major axis and
to a line perpendicular to it through C.

The focal chord perpendicular to the major axis is called the latus rectum. The length of
the central chord perpendicular to the major axis is called the minor axis.

Example. Plot the ellipse with center at coordinates (2,1), major axis length of
6, minor axis length of 2, and rotated 30° (7/6 radians) about the center point.

Solution. E1lipse2D[{h, k}, a, b, 0] is the standard representation of an ellipse
in Descarta2D. The ellipse is centered at coordinates {h, k}, has semi-major axis
of a, semi-minor axis of b and is rotated about the center point by an angle 6 (the
semi-major axis is half the length of the major axis; the semi-minor axis is half
the length of the minor axis).

1n[1]: Sketch2D[{El | ipse2D[{2, 1}, 3, 1, Pi /6]1}1;

10.2 General Equation of an Ellipse 147

2.5
2
1.5
1
0.5
0
-0.5/

10.2 General Equation of an Ellipse

Take any point F(z1,y1) as focus and any line, D = Az + Byy + C1 = 0 as directrix, where
A? 4+ B? = 1. The normalized form of the line is used to simplify the derivation. By definition
the equation of the ellipse is

V(=212 + (y —y1)? = fe(Aww + Biy + C1)
which may be expanded to

(€2A2 — 1)2? + 2e2 A Byxy + (e2B? — 1)y +
2(z1 4 €2A1C1)x 4 2(y1 + €2 B1C)y + (2CF — af —yi) = 0.

This is of the form Ax? + Bxy + Cy? + Dx + Ey + F = 0, an equation of the second degree.
Moreover, it can be verified that B? —4AC = 4(e? — 1) < 0 (when e < 1).

Therefore, a necessary condition that Axz? + Bxy + Cy? + Dx + Ey + F = 0 represent an
ellipse is that B2 — 4AC < 0. The general equation reveals that if the defining directrix line
is parallel to one of the coordinate axes then B = 0, since either A; or By will be zero. The
equation of an ellipse in this position will have no xy term.

10.3 Standard Forms of an Ellipse

By an appropriate choice of coordinate axes the general equation of an ellipse can be reduced
to one of the following standard forms.

Major Axis Parallel to the z-Axis

The equation of an ellipse in standard position whose major axis is parallel to the z-axis and
whose center is at the origin is

148 Chapter 10 Ellipses

—
2’4

Figure 10.2: Ellipse in standard position (z-axis).

Figure 10.3: Ellipse in standard position (y-axis).

10.3 Standard Forms of an Ellipse 149

Table 10.2: Ellipse equations (a- and y-axis).

‘ T-axis ‘ y-axis ‘
Equation S Rt UL
Center C(h, k) C(h, k)
Semi-major axis a a
Semi-minor axis b b
Vertices V(h+ta,k) V(h,k+a)
Foci F(h £ ae,k) F(h,k £ ae)
Directrices x=h=xale y=k=xale
Focal chord length 202 /a 202 /a
Eccentricity e= # <1 e= # <1

where a and b are the lengths of the semi-major and semi-minor axes, respectively. If the
ellipse is centered at (h, k), then the equation is

(o= h? | (y=h? _

a? b2 1

as shown in Figure 10.2. When an ellipse is in this special position, the formulas for the
important points, lines and constants associated with the ellipse are simply determined and
are summarized in Table 10.2.

Major Axis Parallel to the y-axis

The equation of an ellipse in standard position whose major axis is parallel to the y-axis and
whose center is at the origin is

2?2

I S

b2 a2
where a and b are the lengths of the semi-major and semi-minor axes, respectively. If the
ellipse is centered at (h, k), then the equation is

1

(z—h)? (y—k)?
b2 + a2
as shown in Figure 10.3. When an ellipse is in this special position, the formulas for the

important points, lines and constants associated with the ellipse are simply determined and
are summarized in Table 10.2.

150 Chapter 10 Ellipses

10.4 Reduction to Standard Form

The most general equation of an ellipse with no zy term (and hence one whose axes are parallel
to the coordinate axes) is of the form

Az +Cy* + D+ Ey+F =0, AC > 0.

The condition B? —4AC < 0 reduces to AC' > 0 which implies that A and C are of like sign.
This equation can be reduced to one of the standard forms by completing the square.

Example. Reduce z? + 4y? + 4z = 0 to standard form and plot.

Solution. The Descarta2D function Loci2D [quad] reduces a quadratic equation
to a standard form.

In[2]: crvl = Loci 2D[Quadrati c2D[1, O, 4, 4, 0, 0]]

out[2] {Ellipse2D[{-2, 0}, 2, 1, 0]}

2 2 2
The equation in standard form is % + yT =1.
1n[3]: Sketch2D[{crv1}];
1
0.5
0
-0.5
-1
-4 -3 -2 -1 0

Example. Reduce 522 4+ 9y% — 10z — 54y + 41 = 0 to standard form. Find the
center, foci, vertices, directrices, the lengths of the semi-major and semi-minor
axes and the eccentricity. Plot the geometric objects.

10.5 Ellipse from Vertices and Eccentricity

151

Solution. The function Loci2D[quad] reduces a quadratic equation to a stan-
dard form. The function Point2D [ellipse] returns the center point of an ellipse;
the function Foci2D [ellipse] returns a list of the two foci of an ellipse; the function
Vertices2D [ellipse] returns a list of the two vertex points of an ellipse; the func-
tion Directrices2D [ellipse] returns a list of the two directrix lines of an ellipse;
SemiMajorAxis2D [ellipse] and SemiMinorAxis2D [ellipse] return the lengths of
the semi-major and semi-minor axes of an ellipse, respectively.

In[4]: crvl = Loci 2D[Quadrati c2D[5, 0, 9, -10, -54, 41]]

out[4] {Ellipse2D[{1, 3}, 3, /5, 0]}

-1 2 -3 2
The standard form of the equation is (@ 9) + y 5) =1.

In[5]: objs =Map[(#[crv1l[[1]1]1)&
{Poi nt 2D, Foci 2D, Vertices2D, Directrices2D,
Semi Maj or Axi s2D, Sem M nor Axi s2D,
Eccentricity2D}]
out [5] {Poi nt2D[{1, 3}], {Point2D[{3, 3}], Point2D[{-1, 3}]},
{Poi nt 2D[{4, 3}], Point2D[{-2, 3}]}, {Line2D[1, O, 7£}, Line2D[1, 0,

2
3.5, 5

N~
=

In[6]: Sketch2D[{crv1l, Drop[objs, -31},
Pl ot Range -> {{-5, 7}, {-1, 6}},
Curvelengt h2D -> 157;

PORPNWRAMIIO
[]
[]
[]

-4 -2 0 2 4 6

10.5 Ellipse from Vertices and Eccentricity

Suppose we are given the two vertices, Vi (z1,y1) and Va(x2,y2), and the eccentricity, e, of an
ellipse and we wish to find the standard equation of the ellipse. The center point (h, k) of the

ellipse is clearly the midpoint between the vertices and is given by

r1+ T2 Y1+ Y2
2 72 '

152 Chapter 10 Ellipses

The length of the semi-major axis, a, is one-half the distance between the vertices, yielding
a = |V1V,]/2. The eccentricity is given by

Ny

)
a

80, solving for b gives the length of the semi-minor axis as
b=av1—e2
The line through the two vertex points determines the rotation angle of the ellipse as

0 =tan"'(z2 — 21,92 — ¥1).

Example. Find the ellipse whose vertices are (4,2) and (—2, 1), and whose eccen-
tricity is 7/8.

Solution. The DescartazD function E11lipse2D [{point, point}, €] returns the
ellipse whose vertices are the given points with the specified eccentricity.

In[7]: pl = Poi nt2D[{4, 2}];
p2 = Poi nt 2D[{-2, 1}1;
el = Elli pse2D[{pl, p2}, 7/8] //N

out[7] Ellipse2D[{1., 1.5}, 3.04138, 1.4724, 0.165149]

1n[8]: Sketch2D[{pl, p2, el}];

=
O Uk UIN U1 W

10.6 Ellipse from Foci and Eccentricity 153

10.6 Ellipse from Foci and Eccentricity

It is evident from Table 10.2 that the distance between the foci of an ellipse is |F} Fa| = 2ae
and that the distance between the vertices is |V1Va| = 2a. Therefore, the eccentricity, e, given
by

_ 2ae |1 Fy|

20 ViV
is the ratio of the distance between the foci to the distance between the vertices. This re-
lationship allows us to construct an ellipse by specifying the two foci and the eccentricity.
The semi-major axis length, a, is given by a = |F; F3|/2e and the semi-minor axis length is
b = av/1 — e2. The center point of the ellipse is clearly the midpoint of the two foci and the
angle of rotation is

0= tan’l(xg —T1,Y2 — Y1),

where F(z1,y1) and Fa(xa,y2) are the coordinates of the foci.

Example. Find the ellipse whose foci are (—1,—1) and (1,1) and whose eccen-
tricity is 1/2.

Solution. The Descarta2D function E1lipse2D [point, point, €] constructs an
ellipse given the two foci points and the eccentricity.

In[9]: el = Ellipse2D[Poi nt 2D[{-1, -1}]1, Point2D[{1, 1}], 1/2]

out 9] Ellipse2D[{0, 0}, 2+/2, /6, %]

In[10]: {Foci2D[el], Eccentricity2D[el]}

[uny

out(10] {{Point2D[{1, 1}], Point2D[{-1, -1}]}, 7}

10.7 Ellipse from Focus and Directrix

Given the focus point F'(z1,y1), the directrix line L = px 4+ qy + r = 0, and the eccentricity,
0 < e < 1, of an ellipse we wish to determine the standard equation of the ellipse. The rotation
angle of the ellipse is the angle the line perpendicular to L makes with the +z-axis and is
given by § = tan~(p,q). The distance, d, from F to L is given by

d— \/(me +qy1 +1)?

P2+ q?

154 Chapter 10 Ellipses

It is clear from Table 10.2 that the distance from F to L is also given by d = a/e —ae. Solving
for a (the length of the semi-major axis) yields

(1—e?)

Table 10.2 shows that the eccentricity, e, is related to the lengths of the semi-major and
semi-minor axes, a and b, respectively, by

a=d

N

a

b=ayv1-— e
Table 10.2 reveals that the distance from the focus F' to the center C(h, k) is given by ae. If F’
is the projection of F' onto L, then we can find the center point C of the ellipse by offsetting F’
in the direction from F' to I’ a distance —ae. This computation is easily accomplished using
Descarta2D and is provided in the exploration ell1fd.nb. The resulting defining constants of
the ellipse are given by

e =

Solving this equation for b yields

qaeD
d Y

a:dil6 ,b=avy1—e?,
e

aeD
h:xl'i_p—a k:y1+

where

Je (px1 + qyr + 1)? and Do PBLtayitr
p2+q2 p2+q2 .

Example. Find the ellipse whose focus point is (3, 2), directrix line x —y+2=0
and eccentricity is 1/4.

Solution. The Descarta2D function E11ipse2D [point, line, €] constructs an el-
lipse for the focus, directrix and eccentricity.

n[11]: el =El|ipse2D[pl = Poi nt 2D[{3, 2}], |2 = Li ne2D[1, -1, 2], 1/4]
22 [3 31
5 10 4

out [11] EIIiPSEZDH%' %}’

1n[12]: {Foci2D[el],
Directrices2D[el],
Eccentricity2D[el]} //Sinplify
. . 16 9
out[12] {{Point2D[{3, 2}], Point2D[{z- &}]},

{Line2D[-1, 1, -2], Line2D[-5, 5, 22]}, %}

10.8 Parametric Equations 155

10.8 Parametric Equations

The parametric equations for a standard ellipse

=1

x —h)? — k)2
@1, W= h)
a b
are very similar to those of a circle, with the exception that the radius is replaced by either
the length of the semi-major axis, a, or the semi-minor axis, b. The appropriate equations are

r=h+acosf and y=~k+bsinf

where (h, k) is the center of the ellipse, a and b are the lengths of the semi-major and semi-
minor axes, respectively, and parameter values in the range 0 < ¢t < 27 generate a complete
curve. The validity of these equations can be verified by direct substitution.

Example. Plot 16 points on the ellipse

+L

>—l|&
ol v

2
4
at equally spaced parameter values.

Solution. The DescartazD function E1lipse2D[{h, k}, a, b, 61 [{] returns the
coordinates of a point at parameter value ¢ on the ellipse.

n[13]: el = El|ipse2D[{0, 0}, 4, 2, 0];
pts = Map[Poi nt 2D[el1[2 *Pi «#/16]]& Range[0, 15]1];
Sket ch2D[{el, pts}];

2
1

As with the circle, a pair of rational equations may be used as the parametric equations
for an ellipse. The ellipse

156 Chapter 10 Ellipses

has the parametric equations

Values of ¢ in the range 0 < ¢t < 1 generate coordinates on the ellipse in the first quadrant.
The point (—a,0), which is on the ellipse, cannot be generated using these equations.

Example. Plot the ellipse 22 /4 + y? = 1 using the rational parametric equations
in the parameter range —10 < ¢t < 10.

Solution. The Mathematica function ParametricPlot plots curves defined by
parametric equations.

In(14]: Clear [t];
ParanmetricPlot [{2% (1 -t"2) / (1 +t"2), 2%x1%t / (L+t"2)},
{t, -10, 10}, AspectRati o -> Autonatic];

0.5
- 1
[|
10.9 Explorations
LENGTH OF ELLIPSE FOCAL CHORD. .. .ovvtttti i elllen.nb

Prove that the length of the focal chord of an ellipse is 2b?/a, where a is the length of the
semi-major axis and b is the length of the semi-minor axis.

SUM OF FOCAL DISTANCES OF AN ELLIPSE.o.oviiiiiiiiiiiiniieen ellips2a.nb

Show that the sum of the distances from the two foci to any point on an ellipse is 2a, where
a is the length of the semi-major axis.

10.9 Explorations 157

ELLIPSE FROM FOCUS AND DIRECTRIX. .\ttt et ttie ettt it i e e ellfd.nb

Show that the ellipse with focus F'(x1,y1), directrix line L = pz+qy+r = 0 and eccentricity,
0 < e < 1, is defined by the constants

paeD qaeD
h = T+) k= Y1+ d)
e _
a:di(l—eQ)’ b=av1—e2, 6=tan"*(p,q),
where
2
de (pxm;qyljr) and D= PELE LT
P +q p*+q
Focus OF ELLIPSE IS POLE OF DIRECTRIX. ..ottt ittt iiiiaeeea elfocdir.nb

Show that the focus of an ellipse is the pole of the corresponding directrix.

ELLipSE Locus, DISTANCE FROM TWO LINES., elldist.nb

A point moves so that the sum of the squares of its distances from two intersecting straight
lines is a constant. Prove that its locus is an ellipse.

SIMILAR ELLIPSES. ..ttt ittt ettt et e et et et e e e e ellsim.nb

All ellipses of equal eccentricity are essentially similar in that by a proper choice of scales
(and axes) they can be made to coincide. Show this property is true for two ellipses of equal
eccentricity centered at the origin.

POLAR EQUATION OF AN ELLIPSE\ttt polarell.nb

Show that the polar equation of an ellipse with a horizontal major axis and centered at
(0,0) is given by
ab

B \/@2 sin® 6 + b2 cos? 0

where a and b are the lengths of the semi-major and semi-minor axes, respectively.

r

APOAPSIS AND PERIAPSIS OF AN ELLIPSE. ...\ttt ellrad.nb
Show that the greatest (apoapsis) and least (periapsis) radial distance of a point on an

ellipse as measured from a focus point is given by r = a(1 + ¢) and r = a(1 — e), respectively,
where e is the eccentricity and a is the length of the semi-major axis of the ellipse.

Chapter 11

Hyperbolas

The equations of a hyperbola are in many ways similar to those of an ellipse, the forms often
only differing by a + or — sign. The properties and characteristics of a hyperbola, however, are
somewhat less intuitive than an ellipse, possibly because the curve has two disjoint branches or
because it extends to infinity. This chapter describes the detailed mathematics of a hyperbola.

11.1 Definitions

A hyperbola is the locus of a point that moves so that the ratio of its distance from a fixed
point and from a fixed line is a constant greater than one. As with the parabola and ellipse,
a focus, directrix and eccentricity are associated with the curve as shown in Table 11.1.
Consider the line through the focus perpendicular to the directrix. From the definition
PF/PD = e/1 there are obviously two points V' and V' which divide the (undirected) segment
F D, internally and externally respectively, in the ratio of e/1. Therefore, V and V' are points
(on opposite sides of D) on the hyperbola; they are called the vertices. The segment V'V’ is
called the transverse axis. By symmetry, there is another point F’ and another line D’ such

Table 11.1: Hyperbola definition.

‘ ELEMENT DESCRIPTION

P(z,y) Point on locus

Fixed point F' Focus

Fixed line D Directrix

Fixed constant e | Eccentricity
e =PF/PD > 1 | Hyperbola relationship

159

160 Chapter 11 Hyperbolas

Figure 11.1: Hyperbola definition.

that F’ and D’ would serve in the definition of this curve. Thus, a hyperbola has two foci
and two directrices associated in pairs F', D and F’, D’. The midpoint of F'F’, which is also
the midpoint of V'V’ is called the center C. There are two tangent lines through C whose
points of contact are at an infinite distance from C. These are called the asymptotes of the
hyperbola. The focal chord perpendicular to the transverse axis is called the latus rectum.

A line through C' perpendicular to the transverse axis does not intersect the hyperbola
in real points. But the portion of it, bisected by C, which is equal in length to the parallel
segment through V' contained between the asymptotes is called the conjugate axis.

Example. Plot the hyperbola with center at coordinates (2,1), transverse axis
length of 1, conjugate axis length of 3/4 and rotated 30° (7/6 radians) about the
center point.

Solution. Hyperbola2D[{h, k}, a, b, 0] is the standard representation of a hy-
perbola in Descarta2D. The hyperbola is centered at coordinates (h, k), has semi-
transverse axis of a, semi-conjugate axis of b and is rotated about the center point
by an angle 6 (the semi-transverse axis is half the length of the transverse axis;
the semi-conjugate axis is half the length of the conjugate axis).

n[1]: Sketch2D[{Hyperbol a2D[{2, 1}, 1, 3/4, Pi /6]1}1;

11.2 General Equation of a Hyperbola 161

NFRPORFRPNWRA

~_/

N

-2 0 2 4 6 8

11.2 General Equation of a Hyperbola

Take any point F(z1,y1) as focus and any line, D = Az + Byy + C1 = 0 as directrix, where
A? 4+ B? = 1. The normalized form of the line is used to simplify the derivation. By definition
the equation of the hyperbola is

V(=212 + (y —y1)? = fe(Aww + Biy + C1)
which may be expanded to

(€2A2 — 1)2? + 2e2 A Byxy + (e2B? — 1)y +
2(z1 4 €2A1C1)x 4 2(y1 + €2 B1C)y + (2CF — af —yi) = 0.

This is of the form Ax? + Bxy + Cy? + Dx + Ey + F = 0, an equation of the second degree.
Moreover, it can be verified that B? —4AC = 4(e? — 1) > 0 (when e > 1).

Therefore, a necessary condition that Az? + Bxy + Cy? + Dx + Ey + F = 0 represent a
hyperbola is that B2 — 4AC > 0. The general equation reveals that if the defining directrix
line is parallel to one of the coordinate axes then B = 0, since either A; or By will be zero.
The equation of a hyperbola in this position will have no zy term.

11.3 Standard Forms of a Hyperbola

By an appropriate choice of coordinate axes the general equation of a hyperbola can be reduced
to one of the following standard forms.

Transverse Axis Parallel to the xz-Axis

The equation of a hyperbola in standard position whose transverse axis is parallel to the z-axis
and whose center is at the origin is

162 Chapter 11 Hyperbolas

~Y

N

Figure 11.2: Hyperbola in standard position (z-axis).

D74

V7

Figure 11.3: Hyperbola in standard position (y-axis).

11.3 Standard Forms of a Hyperbola 163

Table 11.2: Hyperbola definition (2- and y-axis).

‘ T-axis ‘ y-axis ‘
Equation (@ ;Qh)z — (y ;2]@)2 =1 - (= gzh)Q + g ;Qk)z =1
Center C(h, k) C(h, k)
Semi-transverse axis a a
Semi-conjugate axis b b
Vertices V(hta,k) V(h,k+£a)
Foci F(h £ ae, k) F(h,k £+ ae)
Directrices x=h=xale y=k+tale
Asymptotes br+ay— (bh£ak)=0 | axrtby— (ah£bk)=0
Focal chord length 20 /a 20% Ja
Eccentricity e= # >1 e= # >1

where a and b are the lengths of the semi-transverse and semi-conjugate axes, respectively. If
the hyperbola is centered at (h, k), then the equation is

@ wok?
a? b2

as shown in Figure 11.2. When a hyperbola is in this special position, the formulas for the
important points, lines and constants associated with the hyperbola are simply determined
and are summarized in Table 11.2.

The lengths of the transverse axis, conjugate axis, focal chord and the value of the eccen-
tricity are independent of the origin and are also given in Table 11.2. Note that the equations
of the asymptotes can be obtained directly from the equation of the hyperbola in standard
form by replacing the one on the right-hand side of the equation with a zero. The left-hand
side of the equation will then factor into two linear terms which are the asymptotes of the
hyperbola.

Transverse Axis Parallel to the y-Axis

The equation of a hyperbola in standard position whose transverse axis is parallel to the y-axis
and whose center is at the origin is

164 Chapter 11 Hyperbolas

Table 11.3: Conjugate hyperbolas.

‘ ‘ TRANSVERSE AXIS ‘ CENTER AT (h, k) ‘
_ 2 _ 2
H | parallel to z-axis (= Qh) =k _q
a b2
—h 2 —k 2
H' | parallel to y-axis | — (z .) I (y — k) _1
a b2

where a and b are the lengths of the semi-transverse and semi-conjugate axes, respectively. If
the hyperbola is centered at (h, k), then the equation is

(@—1?, (y=kP _

b2 a? 1

as shown in Figure 11.3. When a hyperbola is in this special position, the formulas for the
important points, lines and constants associated with the hyperbola are simply determined
and are summarized in Table 11.2

The lengths of the semi-transverse axis, semi-conjugate axis, focal chord and the value
of the eccentricity are independent of the origin and are also shown in Table 11.2. These
constants have the same values as a hyperbola whose transverse axis is parallel to the z-axis.

Conjugate and Rectangular Hyperbolas

Two hyperbolas with the same center are conjugate hyperbolas if the transverse axis of one
coincides with the conjugate axis of the other. The equations of two conjugate hyperbolas H
and H’ in standard form are shown in Table 11.3. It is evident that if a is the semi-transverse
axis of H, then a is the semi-conjugate axis of H', and vice versa. Conjugate hyperbolas have
the same asymptotes and their foci lie on a circle with center at the center of the hyperbolas.

Example. Write the equation of the hyperbola whose center is (—2, 1), transverse
axis length 6 (parallel to the z-axis), and conjugate axis length 8. Determine its
eccentricity, foci and vertices. Find the equations of its directrices and asymptotes.
Plot the geometric objects.

Solution. The equation can be written directly using the standard form as

(@+2)? (-1 _,
9 16 '

In Descarta2D this hyperbola is written as Hyperbola2D[{-2, 1}, 3, 4, 0].

11.3 Standard Forms of a Hyperbola 165

In[2]: hl = Hyperbol a2D[{-2, 1}, 3, 4, 0];

The Descarta2D function Eccentricity2D [hyperbola] returns the eccentricity of
the hyperbola.

1n[3]: Eccentricity2D[hl]

out [3] %

The Descarta2D function Foci2D [hyperbola] returns a list of the two focus points;
the function Vertices2D [hyperbola]l returns a list of the two vertex points; the
function Directrices2D [hyperbola] returns a list of the two directrix lines; the
function Asymptotes2D [hyperbola] returns a list of the two asymptote lines.

In[4]: objs =Map[(#[hl])&,
{Foci 2D, Vertices2D, Directrices2D, Asynptotes2D}]

out [4] {{Poi nt2D[{3, 1}], Point2D[{-7, 1}]}, {Point2D[{1, 1}], Point2D[{-5, 1}]},
19

{Li ne2D[1, o, %}, Li ne2D[1, 0, ?}}, {Line2D[4, 3, 5], Line2D[4, -3, 11]}}

n[5]: Sketch2D[{h1, objs},
CurvelLengt h2D -> 40,
Pl ot Range -> {{-14, 10}, {-9, 11}}];

W
/

-10 -5 0 5 10

\l
e

N

1
N

g1 ou1o1o10

1
N

Example. Plot the hyperbola whose equation is 422 — y? 4+ 36 = 0 along with its
conjugate.

Solution. The function Loci2D[quad] constructs a list containing the objects
represented by a quadratic equation; Hyperbola2D [hyperbola, Conjugate2D] con-
structs the conjugate of a hyperbola.

166 Chapter 11 Hyperbolas

n[6]: {h1l} = Loci 2D[Quadrati c2D[4, 0, -1, 0, O, 36]]
out 6] {Hyperbol a2D[{0, 03, 6, 3, %]}

In[7]: h2 = Hyper bol a2D[h1, Conj ugat e2D]

out [7] Hyperbol a2D[{0, 0}, 3, 6, 0]

n[8]: f = {{fla, f1lb} = Foci 2D[h1], {f2a, f2b} = Foci 2D[h2]};
cl=Circle2D[fla, fib, f2a]; | sOn2D[f 2b, c1]

out [8] True

The statement IsOn2D[f2b, c1], by returning True, shows that the foci of both
hyperbolas are on a common circle.

n[9]: Sketch2D[{h1, h2, f, c1},
CurveLengt h2D -> 40,
Pl ot Range -> {{-12, 12}, {-10, 10}}1;

10
7.5

2]

2.

-7.
-1

5
0
2.5
5
5
0

-10 -5 0 5 10

A rectangular (or equilateral) hyperbola is one in which the transverse and conjugate axes
are equal in length, in which case the asymptotes are at right angles to each other.

11.4 Reduction to Standard Form

The most general equation of a hyperbola with no zy term (and hence one whose axes are
parallel to the coordinate axes) is of the form

A +Cy* + Dz + Ey+F =0, AC <0.

The condition B%2 — 4AC > 0 reduces to AC < 0 which implies that A and C' are of opposite
sign. This equation can be reduced to one of the standard forms by completing the square.

Example. Reduce z? — y? — 22 —y + 1 = 0 to standard form and plot.

11.5 Hyperbola from Vertices and Eccentricity 167

Solution. The Descarta2D function Loci2D [quad] constructs a list containing the
objects represented by the quadratic.

In[10]: hl = Loci 2D[Quadrati c2D[1, 0, -1, -2, -1, 11]

out[10] {Hyperbol a2D[{1, -3},

This is a rectangular hyperbola with a = b = %

In[11]: Sketch2D[{h1}];

P OFP N WM

-2
-3

-2-101 2 3 45

11.5 Hyperbola from Vertices and Eccentricity

Suppose we are given the two vertices, Vi (z1,y1) and Va(za,y2) and the eccentricity, e, of a
hyperbola and we wish to find the standard equation of the hyperbola. The center point (h, k)
of the hyperbola is clearly the midpoint between the vertices and is given by

1+ 22 Y1+ Y2
2 ’ 2 '

The length of the semi-transverse axis, a, is one-half the distance between the vertices, yielding
a = |V1Va]/2. The eccentricity is given by

)
a

168 Chapter 11 Hyperbolas

S0, solving for b gives the length of the semi-conjugate axis as

The line through the two vertex points determines the rotation angle of the hyperbola as

0 =tan"'(z2 — 21,92 — v1)-

Example. Find the hyperbola whose vertices are (4,2) and (—2,1), and whose
eccentricity is 3/2.

Solution. The Descarta2D function Hyperbola2D [{point, point}, €] returns the
hyperbola whose vertices are the given points with the specified eccentricity.

n[12]: pl = Point 2D[{4, 2}1;
p2 = Poi nt 2D[{-2, 1}1;
hl = Hyper bol a2D[{p1, p2}, 3/2] // N

out[12] Hyperbol a2D[{1., 1.5}, 3.04138, 3.40037, 0.165149]

In(13]: Sketch2D[{pl, p2, h1}1;

A N O N M O

-4-20 2 4 6

11.6 Hyperbola from Foci and Eccentricity

It is evident from Table 11.2 that the distance between the foci of a hyperbola is given by
|F1Fy| = 2ae and that the distance between the vertices is |V1V2| = 2a. Therefore, the

eccentricity, e, given by
- 2ae - |F1F2|

o 2a o |V1V2|

11.7 Hyperbola from Focus and Directrix 169

is the ratio of the distance between the foci to the distance between the vertices. This rela-
tionship allows us to construct a hyperbola by specifying the two foci and the eccentricity.
The semi-transverse axis length, a, is given by a = |F; F»|/2e and the semi-conjugate axis
length is b = av/e2 — 1. The center point of the hyperbola is clearly the midpoint of the two
foci and the angle of rotation is arctan(xs — x1,y2 — y1), where Fi(x1,y1) and Fy(z2,y2) are
the coordinates of the foci.

Example. Find the hyperbola whose foci are (—1,—1) and (1,1) and whose
eccentricity is 3/2.

Solution. The function Hyperbola2D [point, point, €] constructs a hyperbola
given the two foci points and the eccentricity.

In[14]: hl = Hyperbol a2D[Poi nt 2D[{-1, -1}], Point2D[{1, 1}], 3/2]

2+/2 10 »n
out [14] Hyper bol a2D[{0, 0}, S 3 21‘}
In[15]: {Foci 2D[h1], Eccentricity2D[h1]}

out[15] {{Point2D[{1, 1}], Point2D[{-1, -1}]}, %}

11.7 Hyperbola from Focus and Directrix

Given the focus point F(z1,y1), the directrix line L = px + qy + r = 0 and the eccentricity,
e > 1, of a hyperbola we wish to determine the standard equation of the hyperbola. The
rotation angle of the hyperbola is the angle the line perpendicular to L makes with the
+x-axis and is given by 6 = tan~!(p, ¢). The distance, d, from F to L is given by

de \/(pxl +ay +7)?

P+ ¢

It is clear from Table 11.2 that the distance from F to L is also given by d = ae —a/e. Solving
for a (the length of the semi-transverse axis) yields

e
a—dm

Table 11.2 shows that the eccentricity, e, is related to the lengths of the semi-transverse and
semi-conjugate axes, a and b, respectively, by

a

170 Chapter 11 Hyperbolas

Solving this equation for b yields
b=ave?—1.

Table 11.2 reveals that the distance from the focus F' to the center C'(h, k) is given by ae. If
F' is the projection of F' onto L, then we can find the center point C'(h, k) of the hyperbola
by offsetting F' in the direction from F to F' a distance ae. This computation is easily
accomplished using Descarta2D and is provided in the exploration hypfd.nb. The defining
constants of the hyperbola so computed are

D D
h:xl_pae 7 k=y1—qae 7
d
e
a=d b=ave? -1
(62—1)’)

where

Je (px1 + qyr + 1)? and Do PBLtayitr
p2+q2 p2+q2 .

Example. Find the hyperbola whose focus is (3, 2), directrix lineisz —y+2=10
and eccentricity is 5.

Solution. The Descarta2D function Hyperbola2D [point, line, e] constructs a hy-
perbola from the focus, directrix and eccentricity.

1n[16]: hl = Hyper bol a2D[pl = Poi nt 2D[{3, 2}], | 2 = Li ne2D[1, -1, 2], 5]

out [16] Hyper bol aZD[{Ei ﬂ} 8\55' Sf, 3—471}

16’ 16 7’

In[17]: {Foci 2D[hl],
Directrices2D[hl],
Eccentricity2D[h1]} // Sinplify
. 1 41 .
out (17] {{Poi ntZD[{fg, ?}} Poi nt 2D[{3, 2}]},
{Line2D[-4, 4, -9], Line2D[-1, 1, -2]}, 5}

11.8 Parametric Equations

The standard form of a hyperbola used in Descarta2D has the equation

(x—h)? (y—Fk)? _

a? b2 1

11.8 Parametric Equations 171

where (h, k) is the center of the hyperbola, and a and b are the lengths of the semi-transverse
and semi-conjugate axes, respectively. The axis of this hyperbola is parallel to the z-axis and
the hyperbola opens to the right and left. Hyperbolas in other orientations are obtained by
applying a rotation, 6, to the standard hyperbola. The parametric equations for a hyperbola
are similar to those of an ellipse, except hyperbolic functions are used instead of standard
trigonometric functions. The parametric equations are

x =h+cosht and y =k + sinht.

The parameter value t = 0 produces the vertex point on the right branch of the hyperbola.
Increasing values of ¢ produce points above and to the right of this vertex. Negative values
of t produce points that correspond to positive ¢ values reflected in the transverse axis of the
hyperbola. All of the points on the right branch need to be reflected in the conjugate axis of
the hyperbola to produce the left branch of the curve.

In Descarta2D the parametric equations of a hyperbola are scaled by a factor s so that
the end points of the focal chord are at the parameter values —1 and +1. Specifically, the
equations used in Descarta2D are

x = h+acosh(st) and y =k + bsinh(st)

where

s=cosh e

and e is the eccentricity of the hyperbola. The validity of these equations can be verified by
direct substitution.

Example. Plot eight points at equal parameter values on the upper and lower
portions of the right branch of the hyperbola 22/4 — y%/2 = 1.

Solution. The command Hyperbola2D[{h, k}, a, b, 01 [t] returns the coordi-
nates at parameter ¢ on the hyperbola.

In[18]: hl = Hyperbol a2D[{0, 0}, 2, Sqrt [2], OI;
ptsl = Map[Poi nt 2D[h1[#/3]11& Range[0, 7]];
pts2 = Map[Poi nt 2D[h1[#/311& Range[-7, 0]1;
pr = Pl ot Range -> {{-6, 10}, {-5, 5}};
Sket ch2D[{h1, pts1}, pr];
Sket ch2D[{h1, pts2}, prl;

172 Chapter 11 Hyperbolas

N\ N\
S S

-4-20 2 4 6 810 -4-20 2 4 6 810
|

As with the ellipse, a pair of rational equations may be used as the parametric equations
for a hyperbola. The hyperbola

has the parametric equations

Values of ¢ in the range 0 < ¢t < 1 generate coordinates on the hyperbola in the first quadrant.
The other portions of the curve can be generated by reflecting the coordinates generated by
these equations.

Example. Plot the hyperbola 22/25 — y?> = 1 using the rational parametric
equations in the parameter range —1/2 <t < 1/2.

Solution. The Mathematica function ParametricPlot plots curves defined by
parametric equations.
In(19]: Clear [t];

ParametricPlot [{5% (1 +t"2)/ (1-t"2), 2%1%t / (1-t"2)},
{t, -1/2, 1/2}, AspectRati o -> Automatic];

5,56 6.57 7.5 8
-0.5

-1

11.9 Explorations 173

11.9 Explorations

LENGTH OF HYPERBOLA FOCAL CHORD. ..ottt hyplen.nb

Prove that the length of the focal chord of a hyperbola is 2b?/a, where a is the length of
the semi-transverse axis and b is the length of the semi-conjugate axis.

FoCAL DISTANCES OF A HYPERBOLA.iutiii i hyp2a.nb

Show that the difference of the distances from the two foci to any point on a hyperbola is
2a, where a is the length of the semi-transverse axis.

HYPERBOLA FROM FOCUS AND DIRECTRIX.iitiiiiiiiiiiiiiiannn. hypfd.nb

Show that the hyperbola with focus F'(x1, 1), directrix L = pz + qy + r = 0 and eccentric-
ity, e > 1 is defined by the constants

aeD aeD
h:xl_pd ak:yl_qd ’
(& _
a:dm, b=ave?—1, §=tan"*(p,q),
where
g JPritap+r)? o pritaytr
p2 + q2 p2 +q2 '
RECTANGULAR HYPERBOLA DISTANCES.ttt hypinv.nb

Show that the distance of any point on a rectangular hyperbola from its center varies
inversely as the perpendicular distance from its polar to the center.

ECCENTRICITIES OF CONJUGATE HYPERBOLAS. .« ttteeieeiieeieeeenns. hypeccen.nb
Show that if e; and ey are the eccentricities of a hyperbola and its conjugate, then

1/(e) +1/(e3) = L.

POLAR EQUATION OF A HYPERBOLAttt polarhyp.nb

Show that the polar equation of a hyperbola with a horizontal transverse axis and centered
at (0,0) is given by
ab

a \/b2 cos26 — a2sin? 6

where a and b are the lengths of the semi-transverse and semi-conjugate axes, respectively.

r

TRIGONOMETRIC PARAMETRIC EQUATIONSoiiiiiiiiiii i hyptrig.nb
Show that the parametric equations

x=a sec and y=>b tanf

174 Chapter 11 Hyperbolas

represent the hyperbola

Chapter 12

General Conics

In previous chapters we have examined specific forms of an equation of the second degree
resulting in a detailed understanding of circles, parabolas, ellipses and hyperbolas. In this
chapter we will study the general second-degree equation itself resulting in a more complete
understanding of the equation.

12.1 Conic from Quadratic Equation

In this section we will present a method for converting a general quadratic equation of the form
Q = Az? + Bxy + Cy? + Dz + Ey + F = 0 to a conic curve in a standard form. The method
involves examining the coefficients of the equation and applying algebraic operations to the
equation which successively simplify the equation until a standard form can be recognized by
inspection. The general approach involves the following steps:

e If the quadratic equation is one of several special forms, then the standard form of the
curve can be determined by inspection. The following curves have a quadratic form that
can be directly recognized: (1) a single point, (2) a single line, (3) two lines (parallel, co-
incident or intersecting), (4) a circle, parabola, ellipse or hyperbola in standard position
and (5) several forms with no real locus (imaginary).

e If the quadratic equation has first-degree terms (D # 0 or E # 0), translate the equation
to a coordinate system that eliminates the x or y terms. Once the curve is identified,
translate the standard curve back to the original position.

e If there is an ay cross-product term in the quadratic equation (B # 0), eliminate it by
applying an appropriate rotation. After the standard curve is identified, rotate it back

to the original position.

The following subsections describe each of these reduction steps in more detail.

175

176 Chapter 12 General Conics

Linear Polynomial
Form: Q = Dx+ FEy+ F =0, D and E not both zero.

If the first three coefficients of) are equal to zero, and coefficients D and E are not both
zero, then the equation) represents a single straight line Dx + Ey + F = 0.

Example. Show that Descarta2D will detect a quadratic equation as a line if the
first three coefficients are zero. Use the line z — 2y + 4 = 0 as an example.

Solution. Use the Descarta2D function Loci2D [quad].

In[1]: Clear [X, YI;
Loci 2D[Quadrati c2D[x -2y +4 ==0, {X, y}1]

out[1] {Line2D[1, -2, 4]}

Pair of Vertical Lines
Form: Q = A2? + Dz + F =0, A # 0.

If Q takes the form Az? + Dz + F = 0 and A # 0 then Q can be factored into two linear
terms using the quadratic formula. This yields the two equations

_ —D+D? —4AF

. 24

If the discriminant of this equation, d = D? — 4AF, is less than zero, then there are no real
points in the locus represented by). Otherwise, @) represents a pair of vertical lines whose
equations are

24z + (D +Vd) =0 and 24z + (D — Vd) = 0.

The two lines are coincident if d = 0.

Example. Show that the equation x? + x — 6 = 0 represents two vertical lines.

Solution. Use the Descarta2D function Loci2D [quad].

n[2]: Cear [X, YI;
Loci 2D[Quadrati c2D[x"2 +X -6 ==0, {X, Y}]]

out[2] {Line2D[2, 0, -4], Line2D[2, O, 6]}
| |

12.1 Conic from Quadratic Equation 177

Pair of Horizontal Lines
Form: Q =Cy?+ Ey+ F =0, C #0.

If Q takes the form Cy? + Ey+ F = 0 and C' # 0 then Q can be factored into two linear terms
using the quadratic formula. This yields the two equations

)= —E+VE2-ACF
o 2C '

If the discriminant of this equation, d = E? — 4C'F, is less than zero, then there are no real
points in the locus represented by Q). Otherwise, () represents a pair of horizontal lines whose

equations are
20y + (E+Vd) =0 and 2Cy+ (E —Vd) = 0.

The two lines are coincident if d = 0.

Example. Show that the equation 2y? — 11y + 12 = 0 represents two horizontal
lines.

Solution. Use the Descarta2D function Loci2D [quad].

n[3]: Cear[X, Y];
Loci 2D[Quadrati c2D[2y”2-11y +12 ==0, {X, y}11]

out (3] {Line2D[0, 4, -16], Line2D[0, 4, -6])

Intersecting Lines (or a Single Point)
Form: Q = A2? 4+ Cy? =0, A # 0 and C # 0.

If Q consists of 2 and y? terms only its locus is either a single point or a pair of intersecting
lines. If AC' > 0 then the locus is the single point (0,0). If A < 0 and C > 0, then the
equation factors into the two linear terms

(\/—Ax - \/53/) (\/ —Ax + \/53/) =0.
If A> 0 and C < 0, then the equation factors into the two linear terms given by
(\/Zx — \/—Cy) (\/Zx + \/—Cy) =0.

Both of these equations represent a pair of lines that intersect at the origin.

178 Chapter 12 General Conics

Example. Show that the equation 922 — 4y? = 0 represents a pair of intersecting
lines.

Solution. Use the Descarta2D function Loci2D [quad].

In[4]: Clear [X, YI;
Loci 2D[Quadrati c2D[9x"2 -4y "2 ==0, {X, y}1]

out [4] {Line2D[3, -2, 0], Line2D[3, 2, 0]}
| |

Circle
Form: Q=Az> +Cy? +F=0,A=C, A#0,C#0, F#0.
When the coefficients of the 22 and y? terms of @ are equal and none of the coefficients A, C,

or F' are equal to zero, the equation has no locus if F' > 0; otherwise, when F' < 0, the locus
is a circle centered at the origin with radius v/—F.

Example. Show that the equation 322 + 3y? — 12 = 0 is the equation of a circle.

Solution. Use the Descarta2D function Loci2D [quad].
n[5]: Cear[X, Y];

Loci 2D[Quadrati c2D[3x"2+3y"2-12==0, {X, y}1]

out [5] {Circle2D[{0, 0}, 2]}
| |

Parabola (Horizontal Axis)
Form: Q =Cy*+Dx+ Ey+F=0,C #0 and D # 0.

When @ has a y? term and an x term, and the 2 and zy terms are missing, @) represents
a parabola whose axis is horizontal. The vertex, (h,k), and the focal length, f, may be
determined by completing the square and forming the equation

(y —k)* = 4f(z — h)

where E? —ACF E D
h:W, k:—% and f:—E

which is clearly a parabola. The parabola will open to the right if f is positive and it will
open to the left if f is negative.

12.1 Conic from Quadratic Equation 179

Example. Find and plot the parabola whose equation is y? — 8z = 0.

Solution. Use the Descarta2D function Loci2D [quad].

n[6]: O ear[X, Y];
crv = Loci 2D[Quadrati c2D[y"2-8x ==0, {X, y}11]

out [6] {Parabol a2D[{0, 0}, 2, 0]}

In[7]: Sketch2D[crv, CurvelLength2D-> 60];

15
10
5
0

-5
-10

-15

0 5 10 15 20 25

Parabola (Vertical Axis)
Form: Q = A2+ Dx+ Ey+F =0, A# 0 and E # 0.

When @ has an 22 term and a y term, and the y? and zy terms are missing, () represents a
parabola whose axis is vertical. The vertex, (h, k), and the focal length, f, may be determined
by completing the square and forming the equation

(x—h)*=4f(y — k)

where

D D? — 4AF E
C Y Uy AV

which is clearly a parabola. The parabola will open upward if f is positive and it will open
downward if f is negative.

180 Chapter 12 General Conics

Example. Find the parabola whose equation is 222 — 8z + 4y — 1 = 0.

Solution. Use the Descarta2D function Loci2D [quad].

In[8]: Cear[X, YI;
crv = Loci 2D[Quadrati c2D[2x"2-8x +4y -1==0, {X, y}11
9} 1 37TH

out (8] {Parabol aZD[{Z, T

2" 2

Central Conic (Ellipse or Hyperbola)

Form: Q = A2 +Cy? + F=0,A#0,C #0, F #0,and A # C.

If Q has non-zero coefficients on the 2, y2?, and constant terms, A # C, and all the other
coefficients are zero, then @ can be written in the form

332 y2

—%5 +
I I
(-3) (=5)
This equation represents an ellipse, a hyperbola or no real locus depending of the values of

—F/A and —F/C. The real loci (ellipses and hyperbolas) are centered at the origin (0,0) and
have sizes and orientations as shown in the following table:

=1.

| CONDITION | Locus | a | b [0]
(=&)Y <o0and (-£) <0 | nolocus - _ _
(—%) >0and (~¢) <0 | hyperbola E \/g 0
(—%) <0and (~¢) >0 | hyperbola ﬁ \/g x

(-5 > (&) >0 ellipse E \/E 0
(—¢) > (%) >0 ellipse E \/E z

Example. Find and plot the conic curve whose equation is —z2 — 4y? + 1 = 0.

Solution. Use the Descarta2D function Loci2D [quad].

12.1 Conic from Quadratic Equation 181

In[9]: Clear[X, yI;
crv = Loci 2D[Quadrati c2D[-x"2-4y"2+1==0, {X, Y}11

outfs) (EI1ipse2D[(0, 0}, 1, 3, 0]}

In[10]: Sketch2D[crv];

1
N
1
[EnN
o
[EnY
N

Remove the First-Degree Terms
Form: Q = Az> +Cy> + Dx+ Ey+ F =0, A#0, C # 0, D or E non-zero.

If both the 22 and y? terms are present in Q along with at least one of the x or y terms, then
Q@ can be simplified by introducing a change in variables. Specifically, if the substitutions

D
r_ .. I, =
r=x 5 and ¥y =y 50

are made in) a new equation
Q/ = A/x/Q + C/y/Q T F/ -0

will result where

A = 4A%C,
C' = 4AC? and
F' = —CD?— AE? + 4ACF. (12.1)

Q' is now in a form that can be recognized by inspection. The change in variables translates
the origin of the conic. To restore it to its original position we apply the inverse translation
to the standard form of the conic.

Example. Find the conic whose equation is —z2 4+ 9y? + 4z — 18y — 4 = 0. Plot
the conic.

182 Chapter 12 General Conics

Solution. Use the Descarta2D function Loci2D [quad].

In[11]: Clear [X, Y];
crv = Loci 2D[Quadrati c2D[-x"2 +9y"2 +4x -18y -4 ==0, {X, y}1]

I}

out[11] {Hyperbol a2D[{2, 1}, 1, 3,

N

In(12]: Sketch2D[crv];

/

kO Kk

Eliminate the zy Term
Form: Q = A2z? + Bxy +Cy?> + Dz + Ey+ F =0, B # 0.
All quadratic equations with a non-zero zy term coefficient are standard conics in a rotated

position. It can be shown that rotating such an equation by the angle 6, where

B

tan (29) = m,

will produce a new quadratic equation, @', whose z'y’ coefficient B’ will be zero (see explo-
ration elimxyl.nb).
The coefficient of the xy term can also be removed by making the substitutions

o =kx+y and v =ky —x

where

e= A (%)QH

(see exploration elimxy2.nb). These substitutions are equivalent to a rotation 6 where

1
tan 0 = —
an 2

and a scaling by the factor
1

VIFE2

12.1 Conic from Quadratic Equation 183

The equation for Q' resulting from the substitution is given by
AI.T/JQ +C/y/2 +DI.T/J +E/y/+F/ — O
where

A" = Ak?* - Bk+C,

C' = Ck*+ Bk+ A,

D' = Dk-E,

E' = Ek+D and

Fr = F
as shown in explorations elimxy2.nb and elimxy3.nb. Q' is then a quadratic equation
without an xy term that can be recognized by the previously presented techniques. A scaling
and rotation is applied to the resulting conic returning it to its original position. This approach

is the one implemented in Descarta2D since no trigonometric functions are involved in the
process, except for the final rotation.

Example. Find the conic curve represented by the equation
—42% + 102y — 4y® — 120+ 6y —9 =10

and plot the curve.

Solution. Use the Descarta2D function Loci2D [quad].

In[13]: Clear [X, Y]I;
crv = Loci 2D[Quadrati c2D[-4x"2 +10X*xy -4y"2-12x+6y -9==0, {X, y}1]

out[13] {Hyperbol a2D[(1, 23, 3, 1, %}}

In[14]: Sketch2D[crv];

A N O N M O

-6-4-20 2 4 6 8

184 Chapter 12 General Conics

Table 12.1: Classification of conics.

‘ ‘ DEGENERATE CoONIC, D =0 | PROPER CONIC, D # 0 ‘

K < 0 | two intersecting lines hyperbola

J < 0, two parallel lines

K =0 | J =0, two coincident lines parabola

J > 0, no real locus

ID < 0, circle (a = b,h =0)
K > 0 | single point ID < 0, ellipse
ID > 0, no real locus

12.2 Classification of Conics

We may desire to determine the type of a conic from the general equation without computing
the defining numerical parameters. This can be accomplished by examining the values of a
set of invariant expressions. For simplicity of the invariant expressions we choose to write the
quadratic equation in the form

az® 4 2hxy + by? + 292 + 2fy +c=0

where the factor 2 is inserted in the xy, x and y terms. For this form of the equation we define

I = a+b,
J = ab+ac+bec— f2—g*—h
K = ab—h?

and
a h g
D=|h b f
g f c
Each of the four expressions is invariant under rotation of the coordinate axes; that is, they

are equal respectively to the corresponding expressions after a rotation is performed. The
invariants are useful in the classification of conics as shown in Table 12.1.

12.3 Center Point of a Conic

The center point of a central conic (a circle, ellipse or hyperbola) can be determined directly
from its equation. The center point, (h,k), of ax?® + bxy + cy® + dz + ey + f = 0 has a rela-

12.4 Conic from Point, Line and Eccentricity 185

tively simple form given by

_ 2cd — be and k:2ae—bd

h=—— —_
b2 — 4ac b2 — 4ac

If b2 — 4ac = 0 then the conic is a parabola and has no center.

Example. Find the center point of 522 — 6zy + 5y% — 142 + 2y + 5 = 0.

Solution. The Descarta2D function Point2D [quad] returns the center point of a
central conic.

In[15]: Clear [X, Y];
Poi nt 2D[Quadr ati c2D[5x"2 -6x*y +5y"2-14x +2y +5==0, {X, y}1]

out[15] Point2D[{2, 1}]

12.4 Conic from Point, Line and Eccentricity

Conic curves may be defined as the locus of a point that moves so that the ratio of its distance
from a fixed point and from a fixed line is a constant. The fixed point is called the focus,
the fixed line the directriz and the constant ratio the eccentricity. In previous chapters is has
been shown that if the eccentricity, e, is a positive number less than one, then the conic curve
is an ellipse, if e = 1 a parabola and if e > 1 the curve is a hyperbola.

Consider a focus point F'(z1,y1) and a (normalized) directrix line Az + py — p = 0 (where
A2 4+ p? = 1). The distance, dy, from a point P(z,y) on the locus to the focus F is given by

dy =/ (z —21)? + (y — 11)?
and the distance, ds, from point P to the directrix line is given by
dy = £(Az + py — p).
By definition, the equation of the conic curve is

_dl

T

or

V@ —21)2+ (y —11)2 = Ze(\x + py — p).

186 Chapter 12 General Conics

Squaring both sides and rearranging yields

(€202 — 1)2? + 22 Auzy + (e2u? — 1)y +
2(x1 — e2Ap)z + 2(y1 — epp)y + (e2p? — 27 —yF) = 0.

This equation is of the form Ax? + Bxy + Cy? + Dz + Ey + F = 0 and is, therefore, a conic
curve of the second degree. The equation reveals that if the defining directrix line is parallel
to one of the coordinate axes, then B = 0, since either A or y will be zero and the equation
will have no zy term.

Example. Find the quadratic equation of the curve whose focus is the point (2, 1),
directrix is * — 3y + 3 = 0 and eccentricity is 2. Plot the conic curve.

Solution. The Descarta2D function Quadratic2D [point, line, €] returns a qua-
dratic representing the equation of the conic with the given point as a focus, the
line as a directrix and the given eccentricity.

In[16]: ql = Quadrati c2D[pt1 = Poi nt 2D[{2, 1}],
I nl=Line2D[1, -3, 3], 2] //Sinplify

out[16] Quadratic2D[-3, -12, 13, 32, -26, -7]

In(17]: Sketch2D[{pt1, | nl, Loci 2D[ql]}];

3.5
3
2.5— |
2
1.5
1 °
0.5/
0

12.5 Common Vertex Equation

All of the proper conics (circles, ellipses, hyperbolas and parabolas) can be represented by an
equation involving the vertex of the conic. The expression 2p in the equation of the parabola
y? = 2pz is the length of the chord of the parabola perpendicular to the z-axis through the

12.5 Common Vertex Equation 187

Table 12.2: Parameter of a conic.

CURVE ‘ PARAMETER ‘ VERTEX EQUATION ‘
parabola | 2p y? = 2px

ellipse 2p = 2b%/a y? = 2px — (p/a)z?
hyperbola | 2p = 2b%/a y? = 2px + (p/a)z?

focus and represents a measure of the width of the parabola. The expression 2p is called
the parameter of the parabola. This definition can be generalized to the other conics: the
parameter of a conic is defined as the length of the chord perpendicular to the principal axis
through the focus. The length of this chord for each conic is shown in Table 12.2 and is quite
easy to determine from the standard form of each conic.

Consider the equation of an ellipse centered at the origin in standard position

Transforming the origin to the vertex V(—a,0) yields the equation

x—a2 2
()+y

a? b2
which can be rearranged into y? = 2b%z/a—b%*x?/a?, or, by using the semi-parameter p = b?/a
of the ellipse, into

=1

y* = 2px — (p/a)a’.
The relation to the vertex equation of the parabola y? = 2pz is obvious. The term (p/a)x?
is subtracted from the term 2px to obtain the ellipse. This explains the name ellipse: it is
derived from the Greek term elleipsis meaning a deficiency compared with a parabola.
Similarly, the equation of a hyperbola

referred to by its vertex can be shown to be

y?> = 2px + (p/a)z’

where p = b?/a is the semi-parameter of the hyperbola. Compared with the parabola y? = 2pz,
there is a term (p/a)x? in excess of the term 2px. This explains the name hyperbola from the
Greek hyperbole meaning the excess.

By introducing the eccentricity e of the conic, all of the vertex equations can be represented
by the common vertex equation

(y—k)* =2p(x — h) — (1 = e*)(z — h)?

188 Chapter 12 General Conics

where (h, k) is the vertex point of the conic, 2p is the parameter of the conic and e is the
eccentricity. The vertex equation also includes the case of a circle by using e = 0 as the
eccentricity.

Example. Plot the four curves represented by the vertex equation
=2 —-1)—(1—-e})(zx—1)2

for the eccentricities e ={0,3/4,1,3/2}.

Solution. The Descarta2D function Loci2D [point, len, e,] constructs a conic
(circle, ellipse, hyperbola or parabola) from the vertex point, focal chord length,
eccentricity and rotation angle.

1n[18]: conl = Map[Loci 2D[Poi nt 2D[{1, 0}1, 1, #, 01& {0, 3/4, 1, 3/2}]

out [18] {{CircIeZD[{%, o}, %

1
{Par abol a2D[{1, 0}, T O]} {Hyper bol a2D[{

1. {EIIipseZD[{l7—5, 0 g 2 . 0]},

L
T oL & = o}

n[19]: Sketch2D[conl, PlotRange -> {{1/2, 5}, {-2, 2}}1;

=

©

1
©

1
=
N U P Ulo U R UN

. DescartazD Hint. The Descarta2D function Quadratic2D [point, len, e, 0] re-
turns a quadratic given the vertex point, focal chord length, eccentricity and
rotation angle.

12.6 Conic Intersections 189

12.6 Conic Intersections

Intersecting two curves is most easily accomplished if we can obtain parametric equations
for one of them and an implicit equation for the other. Specifically, suppose that the first
curve has parametric equations = z(t) and y = y(¢) and the second curve has an implicit
equation f(x,y) = 0. By substitution these two curves intersect at values of ¢ satisfying
f(z(t),y(t)) = 0. Once the values for ¢ are known they can be substituted into the parametric
equations to find the (z,y) coordinates of the intersection points.

As a specific application of this technique, suppose we wish to find the intersection points
of a line px + gy +r = 0 and a conic curve ax? + bry + cy? + dx + ey + f = 0. We can take
either z or y as the parameter of the equation px + qy +r = 0; suppose we select x (assuming
q # 0), yielding the parametric equations

pr+r

r=x and y=— .
q

Substituting these values into the equation for the conic curve yields a quadratic equation in
the variable = given by

2
az’® + bx (_px;—r) +c (_px(;—r) +dzr+e (_pxq—f—r) +f=0

which is easy to solve using the quadratic formula. Once the two values for x are known, the
corresponding values for y can be determined using the parametric equations of the line. So,
in the general case, a line and a conic will intersect in two points, the points being real and
distinct, real and coincident (the line being tangent to the conic) or imaginary (the line does
not intersect the conic).

Now consider the case of two intersecting conic curves whose equations are given by

a1z’ + bixry + C1y2 +dix+ey+fi = 0
aox? + boxy + coy? +dox + ey + fo = 0.

Depending on the values of the coefficients it may or may not be easy to express one of the
equations with a pair of parametric equations; therefore, we look for alternative techniques
for finding the points of intersection. The brute force approach to the problem is to simply
regard it as a problem of solving two non-linear equations in two unknowns. Mathematica
can solve such systems of equations both numerically and symbolically, and this is, in fact,
the method implemented in Descarta2D.

Alternatively, the method of pencils can be used. Suppose we have two curves f(z,y) and
g(x,y). For any given value of A\, we can form the equation f(z,y) + A g(z,y) = 0 which
obviously passes through all the points of intersection of the original two curves. As A varies,
an entire family of curves, called a pencil, will be produced. By selecting an appropriate value
for A we can hope to produce an equation f(z,y) + A g(x,y) = 0 that is particularly simple.
We can then intersect the simpler curve with one of the original curves. This approach works
well for conic curves because there always exists a value for A such that f(z,y)+ A g(z,y) =0

190 Chapter 12 General Conics

represents two straight lines. Intersecting these two lines with either of the original conics
produces the four intersection points (which may be real and distinct, real and coincident
or imaginary). So there may be up to four points of intersection between two conic curves.
Since there exist three pairs of lines passing through four points, there are three values for A
that represent two lines in the equation of the pencil. Finding the three values for A involves
solving a cubic equation, which appears to be easier than solving two non-linear equations
in two unknowns. (Since solving two non-linear equations in two unknowns is equivalent to
solving a fourth-degree equation, and solving a fourth-degree equation reduces to solving a
cubic equation, the two techniques are mathematically similar in complexity.)

Example. Find the points of intersection of the line — 2y + 2 = 0 with (a) the
circle 22 + y? = 4 and (b) the ellipse 22/9 + 32 = 1.

Solution. The Descarta2D function Points2D [curve, curve] returns a list of
points that are the intersection of the two curves.

1n[20]: |1 =Line2D[1, -2, 2];
cl=Circle2D[{0, 0}, 2];
el =Ellipse2D[{0, 0}, 3, 1, 0J;
pts = {Poi nts2D[l 1, el], Poi nts2D[cl, el]} // N

out[20] {{Point2D[{-2.76923, -0.384615}], Point2D[{0., 1.}]},
(Poi nt 2D[{-1. 83712, -0. 790569}], Poi nt 2D[{-1. 83712, 0.790569}],
Poi nt 2D[{1. 83712, -0. 790569}], Poi nt2D[{1.83712, 0.790569}]}}

In[21]: Sketch2D[{l 1, c1, el, pts}];
3

e
:i/%%

12.7 Explorations

ELIMINATE CROSS-TERM BY ROTATION..... elimxyl.nb

Show that rotating a quadratic ax? + bxy + cy? + dz + ey + f = 0 through an angle # given
by
b

tan(26) = -

12.7 Explorations 191

will cause the xy term to vanish.

ELIMINATE CROSS-TERM BY CHANGE IN VARIABLES.cooiuiuinennnn.. elimxy2.nb
Show that applying the change in variables ' = kx + y and vy’ = ky — x, where

A Chnll) Y (%)2—1—1,

b

to the equation az? + bry + cy? + dx + ey + f = 0 will cause the 2y term to vanish and a new
quadratic with the following coefficients will be formed:

ad = ak?®—bk+ec,
¥ o= 0,
d = ck?®+bk+a,
d = di—e
e = ek+d and
= 1r
ELIMINATE CROSS-TERM BY CHANGE IN VARIABLES.c0vvoeenneeeann.. elimxy3.nb

Show that applying the change in variables ' = kx + y and y' = ky — x, where

P Gl S (C;a>2+1,

to the equation ax? + bxy + cy? + dr + ey + f = 0 is equivalent to rotating the quadratic by
an angle 6 given by

1
tanf = —
an .

and scaling the quadratic by a scale factor

ELIMINATE LINEAR TERMS. ...ttt e e elimlin.nb
Show that applying the change in variables

d e
/ = _—— d / = _——
r=ux g and ¥y =y e

192 Chapter 12 General Conics

to the quadratic equation az? + cy? 4+ dx + ey + f = 0 yields the quadratic

2 n &€
ar'” + cy —E—E—i—fzo
whose linear terms have vanished.
CENTER OF A QUADRATIC. ..\t tnte ettt e e e e e e e e e e e e eae s center.nb
Show that applying the change in variables
v 2cd — be and y =y + 2ae — bd

b2 — 4ac b2 — 4ac

to the quadratic ax? + bxy + cy? + dx + ey + f = 0 causes the linear terms to vanish, implying
that the center of the conic is

_ 2cd —be k_2ae—bd

"EP dae "7 W dae
;LAR EQUATION OF A CONICttt polarcon.nb
yA bl P
F X

Let the focus F of a conic be at the pole of a polar coordinate system and the directrix D be
perpendicular to the polar axis at a distance p to the left of the pole as shown in the figure.
Show that the polar equation of the conic is

__ep
" T 1 " ccosd

where e is the eccentricity of the conic.

PARAMETERIZATION OF A QUADRATIC tvitete et e e e e e pquad.nb
Show that the quadratic Q = az? + bxy + cy® + dz + ey = 0, that passes through the origin,
can be parameterized by the equations
d+et t(d + et)
=—-—"" and y(t)=———
z(®) a+t(b+ ct) and y(t) a+ t(b+ ct)
where —oo < t < +00.

Chapter 13

Conic Arcs

In previous chapters we introduced line segments and circular arcs which are pieces of more
complete curves. In this chapter we introduce a conic arc which is a piece of a conic curve.
As with circular arcs, conic arcs are useful for constructing smoothly connected sequences of
curves as well as pleasing aesthetic shapes.

13.1 Definition of a Conic Arc

Let points Py (2o, yo) and Pi(z1,y1) be the start and end points, respectively, of a segment of
a conic curve, @, and let Pa(xa,y4) be the point of intersection, or apez, of the two tangent
lines to the curve at Py and P; as shown in Figure 13.1. Furthermore, let h equal the maximum
height of the segment measured from the chord PyP; and k be the distance from P4 to the
chord PyP;. The points Py, Py, P4 and the ratio p, given by p = h/k, define a conic arc. The
ratio p is called the projective discriminant of the conic arc, and the point at the maximum
height on the curve is called the shoulder point. The points Py, P, and P4 are called control
points of the conic arc.

Figure 13.1: Definition of a conic arc.

193

194 Chapter 13 Conic Arcs

Example. Plot the conic arc with start and end points (—2,1) and (3, 0), respec-
tively, apex point (1,2) and projective discriminant p = 0.45.

Solution. Descarta2D represents a conic arc as

ConicArc2D [{:co, yo}, {SCA, yA}, {$1’ yl}: pl

where (29, o) and (z1,y1) are the coordinates of the start and end points, respec-
tively, (xa,ya) is the apex point and p is the projective discriminant.

1n[1]: Sketch2D[{cl = Coni cArc2D[{-2, 1}, {1, 2}, {3, 0}, 0.45]1},
Pl ot Range -> {{-3, 3}, {-1, 2}}1;

2

=Y

©
R UOo Uk Ol

There are several functions provided by Descarta2D to query conic arcs. The func-
tion Rho2D [cnarc] returns the p value of the conic arc. Point2D [cnarc, Apex2D]
returns the apex control point of a conic arc. The coordinates of points on a conic
arc at a parameter value ¢ are returned by the function cnarc[t], t = 0 returns the
start point coordinates, ¢ = 1 the end point coordinates and ¢ = 1/2 the shoulder
point coordinates.

n[2]: {Rho2D[cl],
Poi nt 2D[c1, Apex2D],
Map [c1l[#]& {0, 1/2, 1}1}

outf2] {0.45, Point2D[{1, 2}], {{-2., 1.}, {0.725, 1.175}, {3., 0}}}

13.2 Equation of a Conic Arc

The curve underlying the conic arc is clearly a conic curve since there are five conditions
imposed on the curve (two points, two tangents and the projective discriminant, p). The
projective discriminant, p, can be interpreted as defining a third line tangent to the curve,

13.2 Equation of a Conic Arc 195

parallel to the line PyP; at a distance h from PyPj, where h is given by h = pk and k is the
distance from P4 to line PyP;.

In a subsequent chapter we will describe a general procedure for finding the quadratic
equation of a conic constrained by two points and three tangent lines, and we will show that
when the two points are on two of the tangent lines, there is only one quadratic satisfying the
conditions. Specifically, the equation is given by

af =k(1—a-—p)?
where,

1— 2

PR 4p2p)

0 — (y —ya)(w1 —za) — (x —24) (Y1 — ya)
(Yo —ya)(z1 —za) — (o — 2a) (41 — Ya)

5 = (y —ya)(@o —za) = (@ —2a) (Yo — ya)
(y1 —ya)(zo —2a) — (z1 — a) (Yo — ya)

Example. Find the quadratic associated with the conic arc with start and end
points (0,0) and (3, 0), respectively, apex point (1,2) and projective discriminant
p =1/4. Find the conic curve associated with the conic arc.

Solution. The function Quadratic2D[cnarc] returns the quadratic associated
with a conic arc. The function Loci2D [cnarc] returns a list containing the conic
curve associated with a conic arc.

1n[3]: cal = Coni cArc2D[{0, O}, {1, 2}, {3, 0}, 1/41;

{gql = Quadratic2D[cal] //Sinplify,
cl = Loci 2D[cal] // N}

out 3] {Quadratic2D[-16, -8, -73, 48, -24, 0],
(El i pse2D[{1.5625, -0.25}, 1.60506, 0.743424, 3.07187]}}

In[4]: Map[Sket ch2D[{#}, Pl otRange -> {{-1, 4}, {-2, 1}}1&
{cal, c1}];

1

0.5

0

-0.5 - 0.

-1 -

-1.5 -

-2 -

©

o
N Ol 01O 01

=

196 Chapter 13 Conic Arcs

13.3 Projective Discriminant

In this section we will examine the significance of the value of the projective discriminant, p.
By definition, p may take on values in the range

0<p<l.

Consider the conic arc, S, with start and end points (0,0) and (1,0), respectively, apex
point Pg(za,ya) and projective discriminant p. Clearly, any arbitrary conic arc can be
transformed to coincide with S by applying a proper sequence of translations, rotations and
scaling transformations. Such transformations do not change the type of conic curve associated
with the conic arc. Using Mathematica we can find the quadratic equation underlying S as
shown by the following commands.

In[5]: O ear [XA, YA, pl;
S = Coni cArc2D[{0, 0}, {xA, YA}, {1, 0}, pl;
Q= Quadratic2D[S] //Sinplify

out [5] Quadratic2D[-4p2yAZ, 4p2 (-1+2xA) yA -1+2p-p? (1-2xA)2, 4p2yA?
-4 p2xAyA, 0]

As has already been shown in a previous chapter, the specific conic type of the quadratic
equation
ar? +bry+cy? +dr+ey+ f=0

is determined by the discriminant, D = b?> — 4ac. For an ellipse D < 0, for a parabola D = 0,
and for a hyperbola D > 0. For the quadratic, @), representing the conic arc S defined above,
D = 16p?(—1 + 2p)y?. It is clear by inspection, that if 0 < p < 1/2 the conic is an ellipse; if
p = 1/2 the conic is a parabola; and for 1/2 < p < 1 the conic is a hyperbola.

13.4 Conic Characteristics

In Section 13.2 we showed that the quadratic equation associated with a conic arc is given by

afB =k(l—a—p)?
where,

(1-p)°

k = TPQ

0 = W—ya)@m —za) (@ —za) (1 —ya)
(Yo —ya)(@1 —xa) — (o — za)(y1 — Ya)

5 (y —ya)(@o —wa) — (x — a)(yo — ya)
(y1 —ya)(xo —za) — (21 —) (Y0 — ya)

Therefore, since we know its quadratic equation, all the geometric characteristics of the conic
curve associated with the conic arc can be expressed in terms of the defining elements of the

13.4 Conic Characteristics 197

conic arc, Py(xo,y0), Pa(za,ya), Pi(z1,y1) and p. Of particular interest is the formula for
the center of a central conic (circle, ellipse or hyperbola), since this formula is used in the next
section to convert a conic into a conic arc. The center point (H, K) is given by

—p*ra+(p—1)%xum

H = 13.1
=3, (13.1)
2 _1\2
K - p*ya+ (p—1)°ym
1-2p

where Pyr(xpr, yar) is the midpoint of the conic arc’s chord and has coordinates

ry = (o +21)/2 and yu = (yo +y1)/2.

This formula is derived in the exploration cacenter.nb.

Example. Find the center of the conic arc with control points (0,0), (2,1) and
(3,0) and p = 1/4.

Solution. The Descarta2D function Point2D [cnarc] returns the center point of a
conic arc (the underlying conic cannot be a parabola).

1n[6]: cal = Coni cArc2D[{0, 0}, {2, 1}, {3, 0}, 1/471;
Poi nt 2D[cal]

out [6] Poi ntZD[{%g—, f%}]
|]

Let @@ be a conic and L be a line that intersects () in two distinct points. We wish to
determine the conic arc, S cut by L through @. Clearly, the intersection points of the line L
with @ are the start and end points of S. Also, the line passing through the intersection points
is the polar (line) of the apex point, P4, of S. To complete the definition of the conic arc, we
need to determine p. If the conic is a parabola, then p = 1/2; otherwise, we can assume that
the conic is a central conic. Assume the center of the conic is (h, k). Then, using the formula
for the z-coordinate of the center of a conic arc given in Equation (13.1), we solve to find the

value of p to be
1

1t/ (h—za)/(h—zm)
where Pyr(xar,yar) is the midpoint of PyPy. We choose the plus sign in the denominator
because p has to be less than one and the radical produces a positive number. In certain

configurations, this formula will be indeterminate and we instead use the y-coordinate of the
center of the conic arc yielding

p

1
1t/ (E—ya)/k—ym)

again choosing the plus sign in the denominator.

p

198

Chapter 13 Conic Arcs

Example. Find the conic arc cut by the line 22 — 4y = 0 through the ellipse

(z—-1)2 @+1)?>
Gt =1L

Plot the original curves and the conic arc separately.

Solution. The Descarta2D function ConicArc2D [line, conic] returns a conic arc
defined by a line cutting a conic curve.

In[7]: |11 =Line2D[2, -4, 0];
el =Ellipse2D[{1, -1}, 3, 2, 01;
cal = Coni cArc2DI[l 1, el]

w| o1
|5
|5
oo w

out[7] Coni cArc2D[{-2, -1}, {-2,

n[8]: Map[Sketch2D[{#}, Pl ot Range -> {{-5, 5}, {-3, 3}}1&,
{{l'1, el}, cal}y;

13.5 Parametric Equations

The conic arc defined in this chapter is a special case of a more general curve called a rational
quadratic Bézier. The parametric equations of this simplified formulation are given by

bo(1 — p)zo + bipra + b2(1 — p)z1
bo(1 — p) +bip+ba(l — p)

bo(1 = p)yo + bipya + b2(1 — p)yn
bo(1 = p) +bip+ba(l —p)

13.6 Explorations 199

where p = h/k is the projective discriminant and

bo = (1-1)°
by = 21—t
by = t2

It is clear from direct substitution that P, is the point whose coordinates correspond to ¢t = 0,
and P; corresponds to ¢ = 1. The point where the curve intersects the line through the
midpoint of PyP; and P4 is called the shoulder point of the conic arc. The shoulder point
corresponds to the parameter value ¢t = 1/2.

Example. Plot nine points at equal parameter values on the conic arc with (-2, 1)
and (1,2) as start and end point, (0,3) as the apex point and p = 0.45.

Solution. The Descarta2D function cnarc[t] returns the coordinates of a point
on a conic arc at a parameter t.

In[9]: cal = Coni cArc2D[{-2, 1}, {0, 3}, {1, 2}, 0.45];
Sket ch2D[{cal, Map[Poi nt 2D[cal[#]]& Range[O0, 8]1/81}1;

RN

2.

PEREPE
PNAOOONN

-2 -1.5 -1 -0.5 0 0.5 1

13.6 Explorations

CIRCULAR CONIC ARC.ot cacircle.nb
Show that the conic arc with control points (0, 0), (a,b) and (2a,0) will be a circular arc if

a(—a+ va? +b?)
b2 '

200 Chapter 13 Conic Arcs

CENTER OF A CONIC ARC. .o\ttt et et e cacenter.nb
Show that the center point (H,K) of a conic arc whose control points are Py(zo,Yyo),
Py(xza,ya) and Py(z1,y1) and projective discriminant p is
—pra+(p—1)>zum
1-2p
2 2
—p'ya+ (P —1)*ym
1-2p

where Pur(2ar, yar) is the midpoint of the conic arc’s chord and has coordinates

H =

K

_Tot T Yoty
foT and nyT.

TANGENT LINE AT SHOULDER POINT. e catnln.nb

Let P be the point at parameter value ¢ = 1/2 on a unit conic arc, C, whose control points
are Py(0,0), Pa(a,b) and P;(1,0) and whose projective discriminant is p. Let L be the line
tangent to C' at t. Show that L is parallel to the chord Py P, at a distance bp from PyP;. The
point P is called the shoulder point of the conic arc.

COORDINATES OF SHOULDER POINT.o e shoulder.nb
Show that the coordinates of the shoulder point of a conic arc with control points Py (zo, yo),
Py(xa,ya) and Py(z1,y1) and projective discriminant p are given by

(@r +p(xa — M), ym + p(Ya — yur))
where Pys(2r,yar) is the midpoint of the conic arc’s chord and has coordinates

_Tot T Yoty
Ty = 5 and yy = 5

SHOULDER POINT ON MEDIAN. ..ttt ittt ettt et e e eeiiee e camedian.nb

Let C be a conic arc with control points Py(xo, o), Pa(za,ya) and Pi(x1,y1) and projective
discriminant p. Let P be the point on the median P4 Py associated with vertex P, of triangle
PyPa Py such that |PPu|/|PaPu| = p (Pu(zar, yar) is the midpoint of PyP;). Show that P
is coincident with the shoulder point of C, having coordinates

(war + p(wa —20r), ym + p(ya — yar)) -

PARAMETRIC EQUATIONS OF A CONIC ARC..... ..ottt caparam.nb
Show that the parametric equations of a unit conic arc represent the same implicit quadratic

equation as the one underlying the conic as derived from the control points Py(0,0), Pa(a,b)
and Pyi(1,0) and p.

Chapter 14

Medial Curves

A medial curve is the locus of points equidistant from two loci of points. In this chapter we
will derive the equations of medial curves that are equidistant from two points, a point and a
curve (line or circle) and two curves (lines or circles).

14.1 Point—Point

Consider two distinct points Pj(x1,y1) and Pe(x2,y2) and a point P(z,y). The distance, di,
from P to P is given by

di =/ (z —21)2+ (y —)2

Likewise, the distance, do, from P to P» is given by
dz = \/(z —2)> + (y —y2)*.
If point P is on the medial curve defined by P; and P», then d; = ds and
Vi(E—a1)? 4+ (y —y1)? = V(z —22)2 + (y — y2)*.

Squaring both sides of this equation and rearranging yields

2wy —z)z 4+ 2(y2 —y1)y + (@7 +45) — (23 +43) =0

which is easily recognized in this form as the general equation of a line. The medial line is
the perpendicular bisector of the line segment joining P; and P,. The derivation is provided
in the exploration mdptpt.nb.

Example. Find the equation of the medial line determined by the two points
(1,2) and (—1, —1). Plot the points and the medial line.

201

202 Chapter 14 Maedial Curves

Solution. The function MedialLoci2D [{point, point}] returns a list of one line
that is the medial line determined by the two points.

In(1]: 112 = Medi al Loci 2D[{p1 = Poi nt 2D[{1, 2}],
p2 = Poi nt 2D[{-1, -1}1}]

out [1] {Line2D[-4, -6, 3]}

In[2]: Sketch2D[{pl, p2, |12}];

. DescartazDp Hint. The function Point2D [point, point, Perpendicular2D] re-
turns the perpendicular bisector of the line segment joining two points. This
function may also be used.

14.2 Point-Line

Consider the point Pj(z1,y1) and the line Ly = Asx + Boy + Co = 0, where A2 + B2 =1 (to
simplify the derivation, the coefficients of the line are normalized because distance is involved).
The distance, di, from a point P(z,y) to Py is given by

dy = /(z —21)2 + (y — 1)
The distance, dg, from a point P(z,y) to the normalized line Lo is given by
d2 = i(AQJ) + Bgy + CQ)

Since P is the locus of points on the medial curve, d; = ds, and by squaring and rearranging
we obtain the quadratic equation

Az? + Bry +Cy?> + Dz + Ey+ F = 0.

14.2 Point-Line 203

where
A = B
B = —2A3Bs,
C = 4
D = =2(z1+ AxCy),
E = —2(y1 + B2Cs) and
F = af+yi-Ci

These equations are derived in the exploration mdptln.nb.
The definition of a parabola is the locus of points equidistant from a point and a line, so
it is obvious that in the general case the medial curve of a point and a line will be a parabola.

Example. Find the medial curve of the point (—1,—1) and —z —y + 1 =0 and
plot.

Solution. The function MedialLoci2D [{point, line}] returns a list of one curve
that is the medial curve of the point and the line.

In([3]: crvl = Medi al Loci 2D[{p1 = Poi nt 2D[{-1, -1}],
12 =Line2D[-1, -1, 1]}]
1 3 57
} I}

out (3] {Parabol aZD[{ b am E

1
T Tah

In[4]: Sketch2D[{pl, |2, crv1l}];

4

2

4 -2 0 2 a

If the point Pj is on line Loy, then the medial curve will be a line perpendicular to the defining
line.

204 Chapter 14 Maedial Curves

Example. Find the medial curve of the point (1,0) and the line —z —y+1=0
and plot. Notice that the point is on the line.

Solution. The same function, MedialLoci2D [{point, line}], introduced in the
previous example will return a list containing the medial curve, which is a line in
this case.

In[5]: crvl = Medi al Loci 2D[{p1 = Poi nt 2D[{1, 0}1,
|2 =Line2D[-1, -1, 1]}]

out (5] {Line2D[2+2, -2+/2, -2+2]}

1n[6]: Sketch2D[{pl, |2, crvl}];

0

-2

-4
-3-2-101234

14.3 Point—Circle

Consider a point P;(z1,y1) and a circle Cy with center (hs, k2) and radius ro. The distance,
dy, from a point P(xz,y) to Py is given by

di =/ (z—21)? + (y —)2

The distance, ds, from a point P(x,y) to the circle Cy is given by

dy = \/(a:—hg)2+(y—k2)2—r2
when P is outside of circle C5. When P is inside C5 the distance, ds, is given by

dy =712 = \/(z = h2)? + (y — k2)2.

14.3 Point—Circle 205

If P is the locus of points equidistant from P; and Cj, then d; = ds. Squaring both sides
of this equation eliminates the distinction between points P inside the circle and outside the
circle. Rearranging the resulting equation yields the quadratic equation

Az? + Bry+Cy* + Dz +Ey+F =0

where
4((x1 — h2)2 — r%),
= 8(z1 —h2)(y1 — k2),
= 4 - k2)2 - Tg)a

4(R(x1 — h2) + 27“%3:1),
= 4(R(y1 — ka2) + 2r51n),
= R?—4r2(2? +y?) and
= (3 + k) — (af +yi) — 3.

((z1
(
((n
(
(

ST MmO QW
|

This derivation is included in the exploration mdptcir.nb.

If the point P; is outside circle Cs, the medial curve will be a hyperbola. If Pj is inside
C5, the medial curve will be an ellipse. In the special case that P; is on Cy, the medial curve
will be a line containing the center point of Cs. If P is coincident with the center of Cs, then
the medial curve will be a circle centered at P; with a radius of /2.

Example. Find the medial curves of four points (—8,1), (—4,1), (—2,1) and (0,1)
with the circle 22 + (y — 1) = 4. Plot each of the curves separately.

Solution. The Descarta2D function MedialLoci2D [{point, circle}] returns a list
of one object equidistant from the point and the circle.

In[7]: pts = {Poi nt2D[{-8, 1}], Poi nt2D[{-4, 1}],
Poi nt 2D[{-2, 1}], Poi nt2D[{0, 1}1};
c2=Circle2D[{0, 1}, 4];
crvs = Map[Medi al Loci 2D[{#, c2}]1& pts]

out[7] {{Hyperbol a2D[{-4, 1}, 2, 2+/3, 0]}, {Line2D[0, -128, 128]},
{Ellipse2D[{-1, 1}, 2, +/3, 0]}, {Gircle2D[{0, 1}, 2]}}

In[8]: Map[Sketch2D[{pts[[#]], c2, crvs[[#]1}1& {1, 2, 3, 4}];

206 Chapter 14 Maedial Curves

N
iR
W,

AN O N DO
®

4
2

[)
0

=

ﬂ
N
=/

-4 -2 0 2 4 -4 -2 0 2

14.4 Line—Line

The locus of points equidistant from two lines

L1 5A1x+Bly+C1:0 and
Lo=Asx+ Boy+Cy =0

are the two angle bisector lines. The equations of these two lines are

Aoz + Boy + Oy

Ajx + By + o .
VA2 + B?

as shown in the exploration mdlnln.nb.

IS

Example. Find the medial lines for 3x —4y+1 =0 and 2z + 2y — 3 =0 and

plot.

14.5 Line—_Circle 207

Solution. The function MedialLoci2D [{line, line}] returns a list of lines that
are the medial lines of the two given lines. If the lines are parallel, then the list
will contain one line; otherwise, it will contain two lines.

In[9]: | ns = Medi al Loci 2D[{l 1 = Li ne2D[3, -4, 11,
12 =Line2D[2, 2, -31}]

out[9] {Line2D[-10+6+/2, -10-8+/2, 15+2+/2],
Line2D[10 +6 /2, 10-8+/2, -15+2+/2]}

n[10]: Sketch2D[{l 1, 12, Ins}];

“4-20 2 4

14.5 Line—Circle

Consider a line Ly = A1z + Byy + C; = 0, where A? + B? = 1 (to simplify the derivation,
the coefficients of the line are normalized because distance is involved), and a circle Cy with
center at (he, k2) and radius r3. The distance, d;, from a point P(x,y) to line Ly is given by

d1 = i(Alx + Bly + Cl)

The distance, ds, from point P(z,y) to circle Cy is given by

I = /o= Rl + (y = F2)? — 72

when P is outside of circle Co. When P is inside Cs the distance, da, is given by

do = —\/({E — h2)2 + (y — k2)2 —+ 9.

We introduce a sign constant, s, which takes on the values 41, so that we can combine the
two equations for ds yielding

dg:s<\/(x—h2)2+(y—k2)2—7“2).

208 Chapter 14 Maedial Curves

If P is the locus of points equidistant from P; and Cs, then d; = d2. Rearranging the resulting
equation yields the quadratic equation

Ax? + Bay+Cy* + Da+Ey+F =0
where
B3,
= —24B,
A3,
= —2(ha+ A1(C1 + s12)),

= —Z(kg + 31(01 + 87“2)) and
= R34 k3—r3—C1(Cy+ 2sm3).

MmO AQm e
Il

This derivation is included in mdlncir.nb. If the line intersects the circle in two distinct
points, then the medial curves will be two parabolas, each passing through the points of
intersection of the line and the circle.

Example. Find the curves that are equidistant from the line y = 1 and the circle
22 + (y — 1)? = 4. Plot the curves.

Solution. The function MedialLoci2D[{line, circle}] returns a list of curves
equidistant from a line and a circle.

1n[11]: |11 =Line2D[0, 1, -11;
c2=Circle2D[{0, 1}, 2];
crvs = Medi al Loci 2D[{l 1, c2}]

371”

out(11] {Parabol a2D[(0, 0}, 1, g} Par abol a2D[{0, 2}, 1, -

1n[12]: Sketch2D[{l 1, c2, crvs}];

P O F N W

14.5 Line—_Circle 209

If the line is tangent to the circle then one of the medial curves will be a parabola, and
the other will be a line passing through the tangency point and the center point of the circle.
Strictly speaking, not all of the points on the line are equidistant from the line and the circle,
unless we consider the distance to be measured both from the closest point on the circle and
the farthest point on the circle.

Example. Find the curves that are equidistant from the line y = 3 and the circle
22 + (y — 1)? = 4 and plot. Notice that the line is tangent to the circle.

Solution. Use the function MedialLoci2D[{line, circle}] introduced in the pre-
vious example.

In[13]: |11 =Line2D[0, 1, -3];
c2=Circle2D[{0, 1}, 21;
crvs = Medi al Loci 2D[{l 1, c2}]

377}}

out[13] {Line2D[2, 0, 0], Parabol a2D[{0, 3}, 2, 5

In[14]: Sketch2D[{l 1, c2, crvs}];

O R, N WhA~OOU

If the line and the circle do not intersect, then the two medial curves will be parabolas.
Strictly speaking, only one of these parabolas is equidistant from the circle and the line, unless
we consider the distance to be measured both from the closest point on the circle and the
farthest point on the circle.

Example. Find the curves that are equidistant from the line y = 5 and the circle
22 + (y — 1)? = 4. Plot the curves.

Solution. Use the function MedialLoci2D[{line, circle}] as described in the
previous examples.

210 Chapter 14 Maedial Curves

1n[15]: |11 =Line2D[0, 1, -5];
c2=Circle2D[{0, 1}, 2];
crvs = Medi al Loci 2D[{l 1, c2}]

w

3
Par abol a2D[{0, 4}, 3, TNH

]

out[15] {Parabol a2D[(0, 2}, 1, =],

1n[16]: Sketch2D[{l 1, c2, crvs}];

RN

P OFRPNWRAO

4 -2 0 2 4

14.6 Circle—Circle

Consider two distinct circles
Cir=@—h)?+@W—k)?>=7r? and Co = (z — h2)? + (y — k2)? = 3.

Using the same distance equating techniques outlined in previous sections, and introducing a
sign constant s = +1, we can obtain the quadratic equation of the curves equidistant from
the two circles

Ax? + Bxy+Cy* + Da+Ey+F =0

where
A 4((h1 — h2)* = R),
B = 8(h1 ho) (k1 — k2),
C = 4(k—k2)®—-R),
D = 4(hi(— D1+D2+R)+h2(D1 Ds + R)),
EF = 4((D1+D2+R)+k2(D1 D2+R)) and
F = (Dy—D5)*—2(D; +Ds)R+ R?
and
R = (r —sr)?
D, = hI+k
Dy = hZ+Ek2 and

s = =£l1.

14.6 Circle—Circle 211

Table 14.1: Medial curves for two circles.

CONFIGURATION, C/Cs ‘ TL# T2 ‘ TL=T2 ‘
externally disjoint two hyperbolas | line/hyperbola
externally tangent line/ellipse line/line

intersecting (2 points) | ellipse/hyperbola line/ellipse

internally tangent line/ellipse (impossible)
internally disjoint ellipse/ellipse (impossible)
concentric circle/circle (all points)

This derivation is included in the exploration mdcircir.nb. Table 14.1 summarizes the medial
curves associated with a pair of circles in several configurations taking into consideration
differing radii and equal radii. Strictly speaking, some of the branches of these curves are not
equidistant from the two circles, unless we consider the distance to be measured both from
the closest and the farthest point on the circles.

Example. Find and plot the curves equidistant from the two circles 2 + y?> = 9
and 2% + (y — 2)? = 4.

Solution. Use the function MedialLoci2D [{circle, circle}].

In[17]: ¢l =Crcle2D[{0, O}, 31;
c2=Circle2D[{0, 2}, 21;
crvs = Medi al Loci 2D[{c1, c2}]

5 /21

out [17] {EIIipseZD[{O, 1, 5~ %} Hyper bol a2D[{0, 1}, 5, —5—,

n[18]: Sketch2D[{cl, c2, crvs}];

WNPFRPORFRPNWHS

4 -2 0 2 4

212 Chapter 14 Maedial Curves

Descartazp Hint. The function MedialLoci2D[{obji, obj2}] produces the
same result as MedialLoci2D[{obj2, obj; }1, that is, the objects may be pro-
vided in any order in the list. In addition, MedialEquations2D [{obji, 0bj2}]
will return a list of lines and/or quadratics representing the medial curves.

14.7 Explorations

MEDIAL CURVE, POINT-POINT. mdptpt.nb
Show that the line 2(xg — x1)x + 2(y2 — y1)y + (22 + 4?) — (23 +y3) = 0 is equidistant from
the points Py (z1,y1) and Pe(x2,ys).

MEDIAL CURVE, POINT-LINE.o mdptln.nb
Show that the quadratic equation

A2® 4+ Baxy + Cy* + Da+ Ey + F = 0.
where
B3,
= _2A2B2;
A3,
—2(x1 + A2Cy),
= —=2(y1 + B2C%) and
= 2 +yi-C5

MmO QW
Il

is equidistant from the point P;(z1,y1) and the line L = Ayx + Boy + Cz = 0, assuming that
L is normalized (4% + B3 = 1).

MEDIAL CURVE, POINT-CIRCLE.ttt mdptcir.nb
Show that the quadratic equation

Ax? + Bxy+Cy* + Da+Ey+F =0

where
A = 4(x1 = he)? —13),
B = 8(:[,’1)(k2)
C = 4y — ka)* —13),
D = 4(R(hg) + 27‘2.131)
E = 4(R(y1 —k2) + 2r5y1),
F = R?—4ri(2? +y?) and
R = (h3+k3)— (af +y7) — 713

14.7 Explorations 213
is equidistant from the point P;(x1,y1) and the circle

(:L’ — h2)2 + (y — k2)2 = 7’%.
MEDIAL CURVE, LINE-LINE. e e mdlnln.nb

Show that the pair of lines whose equations are

Az + Biy+Cr iAzﬂzerBzerCz

JETE JOi;

is equidistant from the two lines Ajx + B1y + C1 = 0 and Asx + By + Co = 0.

MEDIAL CURVE, LINE=CIRCLE. ...ttt ittt

Show that the two quadratics whose equations are given by
Az + Bry+Cy* + D+ Ey+F =0
where

= B,

—2A, By,

At

—2(hg + A1 (Cy + sr2)),

= —2(ky + B1(C1 + sra)),

h3 + k3 —r2 — C1(Cy + 2sr5) and
+1

MmO QW
| I |l

®
\

are equidistant from the line
A1£L'+Bly+01 =0

and the circle
(x = ho)? + (y — ka2)* =13,

assuming A} + B = 1.

MEDIAL CURVE, CIRCLE—CIRCLE. . ..ttt it e aiie e

Show that the two quadratics whose equations are given by

Az? + Bry+Cy* + D+ Ey+F =0

....... mdlncir.nb

mdcircir.nb

214 Chapter 14 Maedial Curves
where
A = 4(() - R)a
B = 8(h1 ha) (k1 — k2),
C = 4((kr—k2)® = R),
D = 4(h1(Dy + Dy + R) + ho(D1 — D2 + R)),
EF = 4((D1 + D2 + R) + kQ(Dl DQ + R)) and
F (Dy — D2)? —2(Dy + D2)R + R?
and
R = (r1—srm)?,
Dy = hI+k
Dy = hZ+Ek2 and
s +1
are equidistant from the two circles
(x—h)>+ (y—k1)> =77 and (z — hp)? + (y — ko)? = 12,
MEDIAL CURVE TYPE.ttt mdtype.nb

Show that the medial curve equidistant from a point and a circle is a hyperbola when
the point is outside the circle and it is an ellipse when the point is inside the circle. (Hint:

Examine the value of the discriminant B2 —

4AC of the medial quadratic.)

Part IV

Geometric Functions

Chapter 15

Transformations

A transformation is a mathematical operation that changes a function of variables, say f(x,y),
into a new function f/(z’,y") where

o' = fi(z,y) and y' = fo(z,y).

These equations are called the equations of the transformation. Transformations can often be
constructed so that f’ is much simpler than f. In this chapter we will study four transforma-
tions that have useful geometric interpretations: translation, rotation, scaling and reflection.

15.1 Translations
A translation is a transformation that maps coordinates (x,y) into
(z +u,y+v).

When a translation is applied to a locus of points, the resulting locus has the same shape and
orientation as the original one, but its position with respect to the coordinate axes is offset by
distances u in the z-direction and v in the y-direction. The equations of the transformation
are

¥ =x+u and ¥ =y +ov.

Example. Determine the coordinates of the point that results from translating
(3,2) by u = —1 and v = =3.

Solution. The function Translate2D[{z, y}, {u, v}] translates a coordinate list
(z,y) by the specified offset (u,v), returning a new coordinate list. The function
Translate2D [point, {u, v}] performs the same translation and returns a trans-
lated point.

217

218 Chapter 15 Transformations

In[1]: {Transl ate2D[{3, 2}, {-1, -3}1,
Tr ansl at e2D[Poi nt 2D[{3, 2}], {-1, -3}1}

out[1] {{2, -1}, Point2D[{2, -1}]}

|
A translation can also be applied to an equation. For example, if
flz,y) = Az +By+C

is a linear equation in two variables, we can translate this by making the substitutions
z =2 —wand y =y —v. Mathematica provides powerful functions for performing these
transformations.

In[2]: Clear [X, ¥y, u, v, a, b, c1;
a*X+bxy+c /. {X->Xx-u, y->y-v} //Expand

out[2] c-au-bv+ax+by

In standard mathematical notation the translated equation is

Ax 4+ By — Au— Bv+ C.

Mathematica Hint. The Mathematica function Replace, represented by the
/. operator, applies a set of replacement rules to an expression.

In a similar manner a quadratic equation can be translated. Again Mathematica provides
a convenient means for performing the algebraic operations.

n[3]: Clear[x, ¥, u, v, a, b, c, d, e, f1;
axX"2+bxXxxy+Ccxy 2+dxx+exy+f /.
{X->X-u, y->y-v} //Expand

out(3] f ~du+au®-ev+buvs+cvli+dx-2aux-bvx+ax?+ey-buy-2cvy+bxy+cy?

Collecting terms and writing in standard mathematical notation yields the translated qua-

dratic equation
A2> + Bay+C'y* +D'a+E'y+F =0

where
A = A
B = B
¢ = C

D' = D—-2Au— Bv
E = E-2Cv— Bu
F' = Au?+Buww+Cv?>—Du— Ev+ F.

15.2 Rotations 219

Using these basic formulas for translations it is easy to translate other objects. The location
of curves, such as circles, ellipses and conic arcs, are defined by points and can be translated
by translating the points themselves. For example, E11ipse2D[{h, k}, a, b, 6] is translated
to Ellipse2D[{h+ u, k + v}, a, b, 0].

Example. Translate the ellipse

(=12, +3? _

1
16 9

by the offsets u = 2 and v = —2. Plot both the original ellipse and the translated
ellipse.

Solution. The function Translate2D [object, {u, v}] translates an object u in
the x-direction and v in the y-direction. The object may be a coordinate list, a
geometric object or a list of Descarta2D objects.

In[4]: e2 = Transl ate2D[el = El | i pse2D[{1, -3}, 4, 3, 0], {2, -2}]

out[4] Ellipse2D[{3, -5}, 4, 3, 0]

In[5]: Sketch2D[{el, e2}];

-2
-4
-6

-2 0 2 4 6

15.2 Rotations

A rotation by an angle 6§ about the origin is a transformation that maps coordinates (z,y)
into (zcosf —ysind,ycosd + xsinf). The mapping is easily confirmed using trigonometry as
shown in Figure 15.1.

x/r

COs «x

sina = y/r

220 Chapter 15 Transformations

r

iﬂ

|
|
|
I
O A

>

X

Figure 15.1: Rotation transformation.

¥ = OA
= rcos(a+0)
= r(cosacosf — sinasinf)
= r((z/r)cosf — (y/r)sinh)
= xcosf — ysinb.
Similarly, it can be shown that 3’ = ycos € + z sin 6.
In order to rotate about a point (h, k), we first translate the coordinates to the origin,
perform the rotation using the equations above, then apply the inverse translation to restore

the object to its original position with the rotation applied. The general equations of a rotation
so derived are

¥ = h+(z—h)cosh — (y—k)sin6
y = k+(x—h)sind+ (y —k)cosé.

In order to rotate a linear equation Az + By + C' = 0 we need to solve these equations for
x and y so that we can substitute these values into the equation. Solving for and y in terms
of 2 and ' (and making use of the identity sin?@ + cos? § = 1) yields the equations

x = h+ (2 —h)cosO+ (y —k)sinf
= k— (2 —h)sinf+ (v — k) cos@.

Substituting into Ax + By + C yields the equation
Az +Bz+C =0
where

A" = Acosf — Bsinf

15.2 Rotations 221

B’ = DBcosf+ Asiné
C' — Ah+ Bk+C — (Ah + Bk)cos0 — (Ak — Bh) sin 6.

Rotating the quadratic equation Q = Ax? + Bxy+ Cy?+ Dz + Ey+ F = 0 is accomplished
in the same manner, by replacing x and y with the proper rotated coordinates. The resulting
expressions for the coefficients of the rotated quadratic equation,

Q =A2>+Bay+Cy>+Dx+Ey+F =0,

are somewhat long, but can be written symbolically as

A" = Acos?0 — Bcosfsind + Csin? 0

B’ = B(cos®6 —sin?) + 2(A — C) cos fsin f

C'" = Asin?0+ BcosOsind + C cos>

D' = (—=2Ch+ BE)sin®6 — (2Ah + Bk) cos® 6 +

2(Bh — (A—C)k)cosfsin6 +

(2Ah + Bk + D) cosf — (Bh + 2Ck + E)sin 0
E' = (Bh—2Ak)sin®@ — (Bh + 2Ck) cos® 0 —
2((A = C)h + Bk)cosfsin6 +
Bh +2Ck + E)cos 0 4 (2Ah + Bk + D) sin 6
Ah +Bhk+Cl€2)Cos 0 —
B(h? — k?) — 2(A — C’)hk) cosfsiné +
Ch? — Bhk + Ak?)sin® 0 —
2Ah? + 2Bhk + 2Ck* + Dh + Ek) cos 0 +
Bh? — 2(A — C)hk — Bk* + Eh — Dk)sin +
Ah? 4+ Bhk + Ck* + Dh+ Ek + F.

(
(Ah
(
(
(
(

By applying the formulas for rotating coordinates, linear equations and quadratic equa-
tions, we can now specify how to rotate all of the Descarta2D objects. Points and lines can be
rotated by directly applying the formulas for coordinates and linear equations, respectively.
Curves that are located by points can be rotated by rotating the defining points; addition-
ally, curves that have orientation angles, such as arcs, parabolas, ellipses and hyperbolas, are
rotated by adding the rotation angle, 6, to the angle of the curve.

Example. Rotate the ellipse
(=37 ¢

Z 1
1 +4

/2 radians about its center point and about the origin. Plot all three ellipses.

222 Chapter 15 Transformations

Solution. The Descarta2D function Rotate2D [object, 8, {zo, yo}] rotates an ob-
ject by angle 6 about point (xg,yo). The function Rotate2D [object, 8] rotates
an object by angle 6 about the origin. The object may be a coordinate list, a
geometric object or a list of Descarta2D objects.

In[6]: el =Ellipse2D[{3, 0}, 2, 1, Pi /2];
{e2 = Rotate2D[el, Pi /2, {3, 0}], e3 = Rotate2D[el, Pi /2]}

out[6] {Ellipse2D[{3, 0}, 2, 1, 0], Ellipse2D[{0, 3}, 2, 1, 0]}

1n[7]: Sketch2D[{el, e2, e3}];

4

N P O P N W

-2-10 1 2 3 4 5

15.3 Scaling

A scaling transformation maps coordinates (z,y) to (z',y’) using the transformation equations
¥ =h+s(x—h) and ¢ =k+s(y — k).

The scale factor, s > 0, indicates the ratio of corresponding lengths of the scaled object with
respect to the original object. The point (h, k) is called the center of scaling. A point at the
center of scaling does not change coordinates during a scaling transformation.

Solving the scaling transformation equations for (z,y) in terms of (z',y’) yields

(& — 1) v~k

r=h+ and y=Fk+

Substituting the coordinates (z,y) into the linear polynomial Az + By + C' yields the scaled
linear polynomial

Ax + By + Ah(s — 1) + Bk(s — 1) + sC.

Similarly, applying a scaling transformation to the quadratic polynomial

Az? + Bry +Cy*+ Dz + Ey+ F

15.3 Scaling 223
yields
Az + Bay+C'y?* +D'a+Ey+F =0

where

A = AJs?

B" = B/s?

C = C/s?

D' = (D+(1-s)(24h+ Bk))/s

E' = (E+(1-s)(Bh+2Ck))/s

F' = (1-5)*(Ah* + Bhk + Ck*) + (1 — s)(Dh + Ek) + F.

The scaling transformation may be applied to Descarta2D geometric objects by apply-
ing the coordinate scaling transformation to the positioning arguments and simultaneously
multiplying the length arguments by the scale factor.

Example. Scale the circle (x —2)? + (y — 1) = 1 by a factor of 3/2 about its
center point and the origin. Plot the three circles.

Solution. The function Scale2D [object, s, {h, k}]1 scales the object using scale
factor s about the center of scaling (h, k). Scale2D[object, s] scales the object
about the origin. The object may be a coordinate list, a geometric object or a list
of Descarta2D objects.

n[8]: cl=Circle2D[{2, 1}, 11;
{c2 = Scal e2D[c1, 3/2, {2, 1}], c¢3 = Scal e2D[c1, 3/2]}

outrs) {Grcle2D[(2, 1), 3], Grele2D[(3, 3},]}

n[9]: Sketch2D[{cl1, c2, c3}];

=
0o Uk N O W

224 Chapter 15 Transformations

15.4 Reflections

A reflection transformation maps the coordinates (z,y) to coordinates that are the “mirror”
reflection of the coordinates with respect to a line that represents the position of the mirror.
Consider the point P (z1,y1) and the reflection line Ly = Asx + Boy + Co = 0. The following
Descarta2D commands can be used to determine the coordinates of the reflection of point P;
in line Lo.

In[10]: Cear [x1, y1, A2, B2, C2];
pl = Poi nt 2D[{x1, y1}1;
|2 =Line2D[A2, B2, C21;
p2 = Poi nt 2D[p1, Poi nt 2D[p1, | 2],
2 «Di stance2D[pl, 12]] //Sinplify

“A22x1+B22x1-2A2 (C2+B2yl) -2B2 (C2+A2x1) +A22y1-B22y1 1]
A2? + B2? ' A22 + B2?

out [10] Poi nt 2D[{

In standard mathematical notation the coordinates Ps(z2,y2) of the reflected point are given
by the transformation equations

_ 2A5(Asz1 + Bayr + Cs)

ro = X1
A3 + B3
v o= 2B3(Asx1 4 Bayy + C2)
2 = Y1— :
A3 + B2

Solving the transformation equations for P;(z1,y1) in terms of Po(xa,ys2) yields

(B% - A%)xg - 214232:{]2 - 2A202
A3 + B3

o —2AQBQJ)2 + (A% - B%)yg - 23202

o= A2 + B3 '

xr, =

Mathematica Hint. While it is feasible to solve these equations manually using
algebra, it is much less effort to let Mathematica do the work using the Solve
function. The command would be of the form

In[11]: Sol ve[{x2 == XCoor di nat e2D[p2],
y2 == YCoor di nat e2D[p2]}, {x1, y1}] // Sinplify

~A22x2 +B22x2 -2 A2 (C2 +B2y2)

-2B2 (C2+A2x2) + A22y2 - B22y2 1
A2% ;. B2?

Lyl
i A2?2 B2

out[11] {{x1 -

Substituting the coordinates (z1,y1) into a linear equation Aix + Biy + C; yields the
reflected linear equation
Asz + B3y + Cs

15.4 Reflections 225

where

Ay = A(B: - A3) —2B1AyB,

By = Bi(A2—-DB2)—-24,A:B,

C3 = C1(A2+ B2) —2C5(A1As + B By).
)

Substituting the coordinates (z1,%1) into a quadratic polynomial
Q=A2>+Bay+Cy*+Dx+ Ey+ F
yields a quadratic @’ reflected in the line Lo = Asxz + Boy + Cy = 0 of the form
Q =A2>+Bay+C'y>*+Dx+Ey+F

where
AI = Aflfg —|— ZBpf4 —|— 4Cp2
B' = AApfi+ B(4p® — fi) — ACpfa
C' = 44p®> —2Bpfi+Cfifs
D' = 4Aqfi+2Br(243 + f1) + 8CqB3 — Dfsfs — 2Epfs
E' = 8AAjr+2Bq(2B; — f1) —ACrfy — 2Dpfs + Efsfs
F' = 4(A¢* + BpC2 + Cr?) — 2f3(Dq + Er) + F f3

and

p=ABy, q=A3Cs, 71 =DB(Y,

fi = (A2 + B2)?, f2 = (A2 — Bs)?,
fs = (A3 + B3), fa= (A3 - Bj).

Reflection of an Angle

What angle does a reflected line make with the +z-axis? Let L be a line that makes an angle
6 with the +x-axis, Lr be a reflection line that makes an angle « with the +x-axis, and L’
the reflection of L in Lgr as shown in Figure 15.2. We wish to determine the angle 6’ that
L' makes with the +z-axis. Using the fact that supplementary angles sum to 7 and that the
interior angles of a triangle sum to m, the angle 8/ = 2a: — #. The relationship also holds true
when « = 6, in which case L and L’ do not intersect. By applying the methods for reflecting
coordinates, equations and angles we are able to reflects all of the geometric objects in the
Descarta2D system.

Example. Reflect the arc centered at (3, 2) with radius 1 and start and end angles
of 7 and 37/2 in the line x + 3y + 2 = 0.

226 Chapter 15 Transformations

y=n—(2a—0)

Figure 15.2: A reflected angle.

Solution. The Descarta2D function Reflect2D [object, line] reflects the object

with respect to the line. The object may be a coordinate list, a geometric object,
or a list of objects.

In[12]: a2 = Refl ect 2D[al = Arc2D[Poi nt 2D[{3, 2}], 2, {Pi, 3 Pi /2}],
11 =Line2D[1, 3, 2]]

out[12] Arc2D[(2, -3}, {7%, ,15l}, 1442]

1n[13]: Sketch2D[{al, |1, a2}];

2

) _

0

-1 \
-2

-3 RS

15.5 Explorations

REFLECTION IN A POINT. ... e e reflctpt.nb

A point P'(2',y’) is said to be the reflection of a point P(x,y) in the point C'(H, K) if C
is the midpoint of the segment PP’. Using this definition show that

15.5 Explorations 227

e The transformation equations for a reflection in a point are
¥ =2H —x r=2H -1
y =2K —y y=2K —y.
e The reflection of the line az + by + ¢ = 0 in the point (H, K) is

ar + by — (2aH + 2bK +¢) = 0.
e The reflection of the quadratic ax? 4+ bzy + cy? + dz + ey + f = 0 in the point (H, K) is
ax? + bry + cy? — (4daH + 20K + d)x — (2bH + 4cK + e)y+
4aH? + 4bHK + 4cK? + 2dH + 2eK + f = 0.

Also, verify that the reflection in a point transformation is equivalent to a rotation of 7 radians
about the reflection point (H, K).

INVERSION. ottt e et e e e e e inverse.nb

A point P'(2',y’) is said to be the inverse of a point P(z,y) in the circle
C=(x—h)?+@y—k)?=r
if points O(h, k), P and P’ are collinear and |OP| |OP’| = r%. Using this definition show that
e The coordinates of P'(z',y’) are
r2(z — h) r2(y — k)

(@ —h)>+ (y —k)? (@ —h)2+(y —k)*

e If the circle of inversion is 22 + % = 1, the coordinates of P’ are

_y

2 4+ y?

e If the circle of inversion is 22 + 3% = 1, the inverse of the line L = A1x + Biy + C; = 0,
assuming L does not pass through the origin, is the circle

e AN (B At Bt
201 YT90y) T Tac?

o If the circle of inversion is x2 + 3% = 1, the inverse of the line L = A1z + B1y + C; = 0,
assuming L passes through the origin (Cy = 0), is L itself.

' =h+ and vy =k +

/

f— /_
x RECERY and y' =

e If the circle of inversion is 22 +y? = 1, the inverse of the circle (z — h1)? + (y — k)% = r?

is
hi) 2 B\> 2
<x—5> +<y—5 :—1, whereD:hf—Hff—Tf-

e If the circle of inversion is 2 +y? = 1, the inversion of C' = (z — h)?+ (y— k)2 = h3 + k2,
which passes through the origin, is the line L = 2hjx + 2k1y = 1. L is parallel to the
tangent line to C' through the origin. The equation of the tangent line is 2h,x+2k1y = 0.

Inversion is clearly a non-rigid transformation.

Chapter 16

Arc Length

Intuitively, arc length is a measure of distance along a curve. For a straight line the distance
is called the length and is easily computed using the distance formula. For some curves the
arc length has other special names such as the perimeter of a triangle or the circumference
of a circle. This chapter discusses methods for computing the arc lengths of simple geometric
curves, such as those provided in Descarta2D.

16.1 Lines and Line Segments

Length of a Line

By definition, a line is a curve of infinite length. We can, however, specify two parameter values
on the line and determine the distance between the points associated with these parameter
values. Since lines in Descarta2D are parameterized by distance, the distance, s, between the
points represented by any two parameter values, ¢ and to, is simply the absolute value of the
difference of the parameter values, s = |ta — t1].

Example. Find the distance between the parameter values —2 and 1 on any line
(assuming the parameterizations defined in the Descarta2D packages).

Solution. The function ArcLength2D [line, {t1, t2}] returns the arc length be-
tween two parameter values on a line.

In(1]: Clear[a, b, cI;
ArcLengt h2D[Li ne2D[a, b, c], {-2, 1}]

out[1] 3

229

230 Chapter 16 Arc Length

Length of a Line Segment

The length of a line segment is the distance between its start and end points. In Descarta2D
the start and end points have parameter values of 0 and 1, respectively. The distance, s,
between any two parameter values, t1 and ta, is given by |t2 —¢1|l, where [is the length of the
line segment.

Example. Find the length of the line segment connecting the points (1,3) and
(2,4). Find the arc length on the line segment between the parameter values 1/4
and 1/2.

Solution. The function Length2D [Inseg] returns the length of a line segment
(the distance between the start and end points). ArcLength2D[inseg, {t1, t2}]
returns the distance between two parameter values on a line segment.

In[2]: |1 =Segment2D[{1, 3}, {2, 4}1;
{Lengt h2D[l 1], ArcLength2D[l 1, {1/4, 1/2}]}

out [2] {\/5 23@ }

16.2 Perimeter of a Triangle

The sum of the lengths of the sides of a triangle is called the perimeter, s, and is given by
§ = 81 + S2 + s3, where s, is the length of side n of the triangle.

Example. Find the perimeter of a triangle whose vertices are (1,2), (3,4) and
(5,6).

Solution. The Descarta2D function Perimeter2D [{riangle] returns the perimeter
of a triangle.

In[3]: Perimeter2D[Tri angl e2D[{1, 2}, {4, 4}, {5, 6}1]

out[3] 4+/2 ++/5 ++/13

16.3 Polygons Approximating Curves 231

Figure 16.1: Circle approximated by an inscribed polygon.

16.3 Polygons Approximating Curves

If we inscribe a polygon in any closed curve, it is evident that as the number of sides of
the polygon is increased, the area of the polygon approaches the area bounded by the curve.
Likewise, the perimeter of the polygon approaches the perimeter, or arc length, of the curve.
If the number of sides of the polygon is increased ad infinitum, the polygon will coincide with
the curve. In like manner, we can see that as the number of sides of a circumscribing polygon
is increased, the more nearly its area and perimeter will approach the area and perimeter of
the curve. Therefore, when investigating the area or arc length of a curve, we may substitute
for the curve an inscribed or circumscribed polygon with an indefinitely increasing number of
sides. These notions are formalized in the study of calculus, but they can be applied intuitively
in the study of areas and perimeters of simple curves as will be shown in the following sections.

16.4 Circles and Arcs

Circumference of a Circle

Consider the circle shown in Figure 16.1. The length, d, of the perpendicular segment from the
center of the circle to one of the sides of a regular, inscribed polygon is given by d = r sin (%9)
where 7 is the radius of the circle and 6 is angle between adjacent radii connecting the sides
of the polygon. The length of the sides of the polygon, s, is given by s = 2r cos (%9) Clearly,
the perimeter of the inscribed polygon, S, is given by S = ns, where n represents the number

of sides of the polygon. Now consider the ratio of the perimeter of polygons for two circles,

232 Chapter 16 Arc Length

C1 and Cy, which is given by

St nsi _ 2nry cos (%9) T

5_2 nsy 2nr9 COS (%0) Ty

As n increases S7 and Sy approach the circumferences of C; and Cy; therefore, the ratio of
the circumferences of two circles equals the ratio of their radii. Since the radii of the circles
are proportional to their diameters, the ratio of the circumferences to the diameters is also a
constant which has been given the symbol 7. Therefore,

S

D

™

relating the circumference of a circle to its diameter is a constant for all circles; or writing in
a different form, the circumference S of a circle is given by

S =nD =27r.

Example. Find the circumference of a circle centered at (0,0) with a radius of 2.
Also, find the arc length of 1/4 of the circle’s circumference.

Solution. The function Circumference2D [circle] returns the circumference of
a circle. The function ArcLength2D [circle, {t1, t2}] returns the arc length of a
circle between two parameter values.

In[4]: ¢l =Circle2D[{0, 0}, 2];
{Gi rcunference2D[cl], ArcLength2D[cl, {0, Pi /2}]1}

out[4] {4 n, i}

Arc Length of an Arc

The arc length, s, (or span) of an arc is the ratio of the angular span of the arc to the angular
span of a full circle (27) times the circumference of a circle and is given by

0
s = %(271'7') = (03 — 01)r.

Example. Find the arc length of the sector defined by the arc centered at (0,0)
with radius 2 and start and end angles of 7/4 and 37 /4.

16.5 Ellipses and Hyperbolas 233

Solution. The function Span2D [arc] returns the arc length of an arc.

In[5]: Span2D[al = Arc2D[Poi nt 2D[{0, 0}1, 2, {Pi /4, 3Pi /4}]]1 //Sinplify

Out [5] 7t

Example. For the arc defined in the previous example, find the arc length between
the parameter values 0.25 and 0.75.

Solution. The function ArcLength2D [arc, {t1, t2}] returns the arc length of an
arc between two parameter values.

In[6]: ArcLength2D[al, {0.25, 0.75}] //N

out[6] 1.5708

16.5 Ellipses and Hyperbolas

If = fu(t) and y = f,(¢) are the parametric equations of a curve, then the arc length, s, of
the curve between parameter values t; and t5 is given by the integral

= [V@R @

where 2’ and y’ are the derivatives of the parametric equations of the curve with respect to
t. For many curves this integral is difficult to evaluate in symbolic form, but by using the
numerical integration capabilities of Mathematica we can find an approximate arc length.
Even for the conic curves (except the parabola, which we will discuss subsequently) the
integral for arc length leads to elliptic integrals, a class of integrals that cannot be expressed in
closed form in terms of elementary functions. This does not mean that these integrals do not
exist, but require the definition of non-elementary functions. Fortunately, the elliptic integral
needed to evaluate the arc lengths of ellipses and hyperbolas is built-in to Mathematica as the
EllipticE[phi, m] function, which is written E(¢p|m) in traditional mathematical notation.
The arc length, s, in the parameter range 0 < t < 27, of an ellipse in terms of this elliptic

integral is given by
a2

234 Chapter 16 Arc Length

where a and b are the lengths of the semi-major and semi-minor axes, respectively, of the
ellipse. Since all elliptic arcs can be expressed as sums or differences of such arcs, the formula
serves to provide a means for expressing the arc length between any pair of parameters.
Similarly, the arc length, s, of a hyperbola, using the parametric equations for a hyperbola
defined in Descarta2D, can be expressed in terms of this elliptic integral and is given by

2 2 2
s=ibFE[icos™! il t‘l—i—a—
a b2

where a and b are the lengths of the semi-transverse and semi-conjugate axes, respectively, of
the hyperbola and i = v/—1. Even though complex numbers are present in this formula, the
resulting arc length is a real number.

Example. Find the approximate arc length of the ellipse 22 /9+4y2/4 = 1 between
parameter values 0 and 7/2.

Solution. The DescartazD function ArcLength2D [curve, {t1, t2}] returns the arc
length of a curve between two parameter values.

In[7]: el =Ellipse2D[{0, 0}, 3, 2, 07;
ArcLengt h2D[el, {0, Pi /2}] //N

out [7] 3.96636

16.6 Parabolas
Consider a parabola represented by the parametric equations
z = ft? and y = 2ft.

The arc length, s, of such a parabola between two parameters, t; < t9, can be derived in terms
of elementary functions. The derivation is provided in the exploration pbarclen.nb where
the arc length is shown to be s = f(S2 — S1) where

S, = tn\/1 412 +sinh ' (t,).

Example. Find the arc length of the parabola 32 = 4z between parameter values
—2 and 3. Find the arc length cut off by the focal chord of the parabola.

16.7 Chord Parameters 235

Solution. The Descarta2D function ArcLength2D [parabola, {t1, t2}] returns the
arc length of the parabola between the two parameter values. The focal chord of
a parabola has end points at parameter values +1.

n[8]: pl = Parabol a2D[{0, 0}, 1, 0];
{ArcLengt h2D[p1, {-2, 3}], ArcLength2D[pl, {-1, 1}]} //N

out (8] {17.2211, 4.59117)

16.7 Chord Parameters

For some curves, such as circles and ellipses, it is fairly easy to determine the parameter value
that corresponds to a particular point on the curve; however, for hyperbolas and parabolas,
whose parametric representation is more complex, it may be difficult to determine the para-
meter values needed to compute the arc length of some specific portion of the curve. The
function Parameters2D provides a more geometric definition of the chord that can be used
with the arc length functions. Essentially, the Parameters2D function computes the parame-
ter values of the points of intersection between a line and a second-degree curve (circle, ellipse,
hyperbola or parabola). This function will also be useful in the area functions introduced in
the next chapter.

Example. Find the arc length of the parabola with vertex at (0,0), focal length
of 1 (opening upward) cut off by the line 2z + 4y — 5 = 0.

Solution. The Descarta2D function Parameters2D [line, curve] returns a list of
the two parameters which are the points of intersection between the line and the
curve. The curve may be a circle, an ellipse, a hyperbola or a parabola.

1n[9]: pl = Parabol a2D[{0, 0}, 1, Pi /2];

|1 =Line2D[2, 4, -5];
t12 = Par anet ers2D[l 1, p1l]

ouers) (3 (1-+/6), 3 (1+6))

In[10]: ArcLength2D[pl, t12] // Full Sinplify

236 Chapter 16 Arc Length

) DescartazD Hint. Only the primary branch of a hyperbola in standard position
is parameterized (the primary branch is the branch opening to the right when the
hyperbola’s rotation angle is zero); positions on the other branch are generated by
reflecting coordinates on the primary branch. As a result of this parameterization,
the Parameters2D function will only return parameter values if the line intersects
the primary branch of the hyperbola.

16.8 Summary of Arc Length Functions

Descarta2D provides a general function, ArcLength2D for computing the arc length of para-
metric curves and several special functions for computing arc lengths of specific curves. The
Descarta2D function ArcLength2D[curve, {t1, t2}] can be used to compute the arc length
of any parametric curve in Descarta2D (arcs, lines, line segments, circles, parabolas, ellipses,
hyperbolas and conic arcs). The function Length2D [Inseg]l computes the length of a complete
line segment. The function Circumference2D [curve] computes the arc length of a complete
circle or ellipse. The function Span2D [curve] computes the arc length of a complete arc or
conic arc. The function Perimeter2D [triangle] computes the perimeter of a triangle.

16.9 Explorations

ARC LENGTH OF A PARABOLA. i pbarclen.nb
Show that the arc length, s, of a parabola whose parametric equations are

z = ft? and y=2ft

is given by s = f(S2 — S1) where

Sp =tn/1+12 + sinh_l(tn).

APPROXIMATE ARC LENGTH OF A CURVE. ...\ttt narclen.nb

The arc length of a smooth, parametrically defined curve can be approximated by a polygon
connecting a sequence of points on the curve. Write a Mathematica function of the form
NArcLength2D[crv, {t1, t2}, n] that approximates the arc length of a curve between two
parameter values using a specified number of coordinates at equal parameter intervals between
the two given parameters. Produce a graph illustrating the convergence of the approximation
to the Descarta2D function ArcLength2D[crv, {t1, t2}] //N.

ARC LENGTH OF A PARABOLIC CONIC ARC. ..ottt caarclen.nb

Using exact integration in Mathematica show that the arc length of a parabolic conic arc
with control points Py(0,0), Pa(a,b), and P;(1,0) can be expressed exactly in symbolic form
in terms elementary functions of a and b.

Chapter 17

Area

Intuitively, area is the measure of the number of unit squares that can be contained inside
a boundary. For a square with sides of length s, the area, A, is given by A = s?. For a
rectangle with sides a and b, A = ab. As the boundary becomes more complex or contains
curved elements, the computation of the area requires more complex considerations. In this

chapter we will derive formulas for the areas of Descarta2D objects.

17.1 Areas of Geometric Figures

Before exploring formulas for computing areas using analytic geometry, we will look at some
formulas from planar geometry. Consider the right triangle ABC shown in Figure 17.1 with
height i and base b. Clearly, the area of AABC is one-half of the area of rectangle ABCD,
so the area, A, of a right triangle is

a=
2

Now consider the acute AABC in the center of Figure 17.1. The area of ABC is given by

Area ABC = Area BCDE — Area ABE — Area ACD

Figure 17.1: Areas of right, acute and obtuse triangles.

237

238 Chapter 17 Area

Figure 17.2: Area of a trapezoid.

or
Area ABC = bh — % — %

Simplifying and using b = b1 + b yields

A= —.
2

The same formula results for the area of an obtuse triangle (using b = ba — b1), as shown on
the right in Figure 17.1.
Now consider the trapezoid ABCD shown in Figure 17.2. The area of ABCD is given by

Area ABCD = Area ABEF — Area ADF — Area BCE

or
Area ABCD = bh — hby @
2 2
Simplifying and using b = a + by + by yields
s (a+D) h

2

These formulas from planar geometry will be useful in upcoming sections for deriving the
formulas using analytic geometry.

Triangular Area

There are several formulas for the area, A, of a triangle that involve lengths associated with
the triangle. The simplest is the familiar A = bh/2, where b is the length of one of the sides
of the triangle (the base) and h is the height of the triangle (the distance from the base to the
opposite vertex).

17.1 Areas of Geometric Figures 239

|

A |
| |

| |

| |

| I

—

AI B/ C/ X

Figure 17.3: Area of a triangle by coordinates.

The formula of Heron gives the area of the triangle in terms of the lengths of its sides, s,
alone:

A= \/s(s —51)(s — s2)(s — s3)

where s = (s1 + s2 + s3)/2 is the semi-perimeter. This formula is derived in the exploration
heron.nb.

Since a triangle is represented in Descarta2D by the coordinates of the vertices, we wish to
derive a formula based on the coordinates. Consider the triangle ABC as shown in Figure 17.3,
where the coordinates are A(x1,y1), B(x2,y2) and C(x3,y3). Projecting A, B and C onto the
x-axis produces three points A’(x1,0), B'(x2,0) and C’'(x3,0). The area of triangle ABC' is
given by

Area ABC = Area AA'C'C — Area AA'B'B — Area BB'C'C.

The height and base lengths of these trapezoids can be determined as the difference of the
coordinates of the points, yielding

Area ABC = (y1 + y3)2(x3 —z1) (yt y2)2(x2 —z1) (y2 + y3)2(x3 - 1'2).

Expanding and rearranging will show that the area of a triangle, A, is given by the determinant

Rl 1
A=+ 5 T2 Y2 1
x3 ys 1

where (21,y1), (z2,y2) and (zs3,ys3) are the coordinates of the vertices of the triangle. The
sign is selected to yield a positive area.

Alternately, if we multiply the length of the line segment joining two of the points, by the
length of the perpendicular line segment on that line from the third point, we have double the
area of the triangle determined by the three points.

240 Chapter 17 Area

Example. Find the area of a triangle whose vertices are (1,2), (4,4) and (5, 6).

Solution. The function Area2D [triangle] returns the area of a triangle.

In[1]: Area2D[Triangl e2D[{1, 2}, {4, 4}, {5, 6}1]

out[1] 2

17.2 Curved Areas

If we inscribe a polygon inside any closed curve, it is evident that as the number of sides of
the polygon is increased, the area of the polygon approaches the area bounded by the curve.
Likewise, the perimeter of the polygon approaches the perimeter, or arc length, of the curve.
If the number of sides of the polygon is increased ad infinitum, the polygon will coincide with
the curve. In like manner, we can see that as the number of sides of a circumscribing polygon
is increased, the more nearly its area and perimeter will approach the area and perimeter
of the curve. Therefore, when investigating the area or perimeter of a closed curve, we may
substitute for the curve an inscribed or circumscribed polygon with an indefinitely increasing
number of sides. These notions are formalized in the study of calculus, but they can be applied
intuitively in the study of areas of simple curves as will be shown in the following sections.

17.3 Circular Areas

To determine the area of a circle, we examine a polygon inscribed in the circle as shown in
Figure 17.4. The area of any triangle in the figure is given by Ax = %sd, and the area of the
entire polygon is given by nAa, because there are n such triangles. As n increases without
limit, we find that ns approaches S = 27r and d approaches r. Therefore, the area of the
polygon approaches %Sr or mr2. Accordingly, the area, A, of a circle is given by A = 772,

where r is the radius of the circle.

Example. Find the area of a circle centered at (0,0) with a radius of 2.

Solution. The Descarta2D function Area2D [circle] returns the area of a circle.

In[2]: Area2D[Circl e2D[{0, 0}, 2]]

out[2] 47

17.3 Circular Areas 241

Figure 17.4: Circle approximated by an inscribed polygon.

The area of an arc sector of radius r as shown in Figure 17.5 may be determined as the
ratio of the angular span of the arc to the span of a complete circle (27 radians) times the
area of the circle. Since the area of a complete circle is 772, the area of an arc sector is given

by
2

r
A — 5(92 - 61)

Example. Find the area of the sector defined by the arc centered at (0,0) with
radius 2 and start and end angles of 7/4 and 37 /4.

Figure 17.5: Areas of an arc sector and segment.

242 Chapter 17 Area

Solution. The Descarta2D function SectorArea2D [circle, {01, 02}]1 returns the
area of the sector defined by an arc of a circle.

In[3]: Sector Area2D[Circl e2D[{0, 0}, 2], {Pi /74, 3Pi /4}]

out[3] Tt

The area of an arc segment, which is the area bounded by the arc and the chord connecting
the end points of the arc as shown in Figure 17.5, is calculated as the difference of the areas
of the sector and the triangle whose vertices are the end points and the center. Since the area
of this triangle is A = %7"2 sin @, the formula for the area of the arc segment is

2
A = mr? (21) — %sin@
T

7“2

= 3 (0 —sin0)

where 6 = 05 — 61 is the span of the arc, and r is the radius of the arc.

Example. Find the area of the segment defined by the arc centered at (0,0) with
radius 2 and start and end angles of 7/4 and 37 /4.

Solution. The Descarta2D function Area2D [arc] returns the area of the segment
defined by an arc and its chord.
In[4]: Area2D[Arc2D[Poi nt 2D[{0, 0}1, 2, {Pi /4, 3Pi /4}11 //Sinplify

out([4] -2+

Notice that if the angle 8 is greater than 7 radians, the formula is still valid because sin 6 will
be negative and the area of the central triangle will be added to the sector area producing the
correct result.

17.4 Elliptic Areas

The area of an ellipse depends only on the lengths of its semi-major and semi-minor axes,
and is independent of its position and orientation. It is shown in calculus that integrating the
equation y = f(z) of the curve between limits on the z-axis produces the area between the
curve and the z-axis. The equation of an ellipse in standard position is given by

17.4 Elliptic Areas 243

Solving for y yields y = by/1 — 22 /a2 for the upper portion of the ellipse. The following steps
outline the integration process that is used to compute the area:

A:/ydx

= / b\/1—22/a?dx

_ mab
= <
Therefore, the area of the complete ellipse (both the upper and lower portions) is given by
A =mab

where a and b are the lengths of the semi-major and semi-minor axes, respectively, of the
ellipse.

vV
179

Example. Calculate the area of the ellipse

Solution. The Descarta2D function Area2D [ellipse] returns the area of an ellipse.
In(5]: Area2DI[El|ipse2D[{0, 0}, 3, 2, Pi /2]]

out[5] 67
|
Consider an ellipse in standard position with the equation
2 2
x Yy
i) _|_ b_2 =
as shown in Figure 17.6. The area, A, of a segment of the ellipse bounded by the chord
defined from (a,0) and a general point on the ellipse, (acosf,bsin@), can be determined by
subtracting the area under the chord from the area under the ellipse between limits on the
z-axis. The equation of the line containing the chord is given by
bsinf(a — x)
a(l — cos®)
as can be determined from the two-point form of a line. The area of the segment is determined
using integration as follows:

A = / (y1 — y2) d

Y2 =

cos 6
@ bsinf(a — x)
= by/1—a2ja2 — 221 g
/acos@< x/ 1—COS€)> !
ab

= 7 (m —2sin""(cos 0) — 2siné) .

244 Chapter 17 Area

S N
L

Figure 17.6: Areas of an elliptic segment and sector.

The formula is valid for angles € in the range 0 < 6 < 7. Since all segments can be computed
as sums or differences of such segments and simple triangles, the area of all ellipse segments
can be determined using this basic formula.

Example. Find the area of the ellipse segment from 7/6 to 7/3 radians for an
ellipse with semi-major axis length of 3 and semi-minor axis length of 1.

Solution. The function SegmentArea2D [ellipse, {t1, t2}]1 returns the area of an
ellipse segment defined by two parameter values.

In[6]: Segment Area2D[El | i pse2D[{0, 0}, 3, 1, 0], {Pi /6, Pi /3}]
out [6] —% + %
| |

The area of an ellipse sector, as illustrated in Figure 17.6, can be found by adding the area
of the triangle formed by the sector sides and the chord of the sector. The area of the triangle
is given by

bh absinf
A = — =
A7 2
and the resulting formula for the area of the sector is given by
A= ab (m —2sin”"(cos0))
1 .

Example. Find the area of the ellipse sector from /6 to 7/3 radians for an ellipse
with semi-major axis length of 3 and semi-minor axis length of 1.

17.5 Hyperbolic Areas 245

PZ P2

Py P1

Figure 17.7: Areas of a hyperbolic segment and sector.

Solution. The Descarta2D function SectorArea2D [ellipse, {t1, t2}] returns the
area of an ellipse sector defined by two parameter values.

n[7]: SectorArea2D[El | i pse2D[{0, 0}, 3, 1, 0], {Pi /6, Pi /3}]

out [7] %

17.5 Hyperbolic Areas

Using the integration techniques demonstrated previously for ellipses the areas associated with
hyperbolas can also be computed. Consider the hyperbolic segment as shown in Figure 17.7.
In Descarta2D the parametric equations for the hyperbola are

x = acosh(st) and y = bsinh(st)

where a and b are the lengths of the semi-transverse and semi-conjugate axes, respectively,
5§ = coshfl(e)7 and e is the eccentricity of the hyperbola. The exploration areahyp.nb uses
calculus to derive the formula for the area of the segment, which is given by

b, .
Asegment = %(Sll’lh(s(tg — tl)) — 5(t2 — tl))

Interestingly, the area does not depend on the values of ¢; and ¢ directly, but only upon the
difference between the two parameters.
Since we know the coordinates of the vertex points of the triangle OP; P> we can compute

its area directly as
b
Ap = % sinh(s(ty — t1)).

246 Chapter 17 Area

The area of a hyperbolic sector is the difference between the area of the triangle OP; P,
and the hyperbolic segment as illustrated in Figure 17.7. The area of the hyperbolic sector is
given by

Asector = AA - Asegment
abs
= —(ta —t1).
5 (2 —11)
Example. Find the area of the hyperbolic segment between parameters t; = —2

and to =1 for a hyperbola centered at the origin with a = 1 and b = 1/2 in
standard position. Also, find the area of the associated hyperbolic sector.

Solution. The Descarta2D function SegmentArea2D [hyperbola, {t1, t2}] returns
the area of a segment of a hyperbola defined by two parameters. The function
SectorArea2D [hyperbola, {t1, t2}] returns the area of the associated hyperbolic
sector.
1n(8]: hl =Hyperbol a2D[{0, 0}, 1, 1/2, 0];

{Segnent Area2D[h1, {-2, 1}],

Sect or Area2Drh1, {-2, 131} // N
out[8] {0.139091, 0.360909}
|

17.6 Parabolic Areas

Consider a parabola in standard position with vertex at (0,0), axis parallel to the z-axis,
focal length of f, and opening to the left as shown in Figure 17.8. Such a parabola can be
represented with the set of parametric equations

z = ft? and y = 2ft.

The area of the chordal area defined by the parameters ¢; and ¢5 can be determined by
subtracting the area between the parabola and the y-axis from the area between the chord
and the y-axis. The end points of the chord are (ft%,2ft;) and (ft3,2ft2), and the line
through these two points is given by

(t1 +t2)y — 2ft1to
5)

The appropriate integral is then given by

Y2
A = / (xo —x1)dy

Y1

_ /112 <(f,1 +t2)y — thltg B i) dy
" 2 4f

17.6 Parabolic Areas 247

P>

E(f, 0 y

Pa

Figure 17.8: Area of a parabolic segment.

Performing the integration and making the substitutions y; = 2ft; and yo = 2fty yields the
formula for the area, A, of a parabolic segment to be

Sty —)P
3
where ¢; and ¢y are the parameters of the end points of the chord defining the segment, and

t1 < to for positive areas. A parabola has no sector area definition because a parabola does
not have a center point.

A:

Example. Find the area between the parabola y?> = x/2 rotated 7/2 radians
about its vertex and its focal chord.

Solution. The function SegmentArea2D [parabola, {t1, t2}]1 returns the area of a
parabolic segment defined by parameters ¢; and t2. In Descarta2D the end points
of the focal chord occur at parameter values t; = —1 and t; = 1.

n[9]: pl = Parabol a2D[{0, 0}, 1/2, Pi /2];
Segnent Area2D[pl, {-1, 1}]

out [9] %

%S\ DescartazD Hint. Notice that the parabola’s position and orientation have no
M X bearing on the area of a parabolic segment. The area depends solely on the focal
length and the chord position.

248 Chapter 17 Area

17.7 Conic Arc Area

The area between a conic arc and its chord can also be computed by summing infinitesimal
rectangles through the use of calculus. Consider, for example, a conic arc whose start point
is (0,0), end point is (d,0), apex point is (a,b) and projective discriminant is p. Intuitively,
since the chord of this conic arc is coincident with the z-axis we can imagine subdividing the
area of the conic arc into a large number of horizontal rectangles of very small height. By
summing the areas of these small rectangles we can provide an approximation to the area of
the conic arc. The methods of integral calculus accomplish this summing process, and in the
limit as the height of the rectangles approaches zero, the area approaches the true area of the
conic arc segment. The details of this process are captured in the exploration caareal.nb.
The area of the conic arc segment is found to be

bdp 2 1-p
A= — -1 1
oo (o (=14 p1og, (152

where r = /=14 2p (assuming b > 0 and d > 0). Notice that the abscissa, a, of the apex
point has no bearing on the area of the segment bounded by the conic arc and its chord.

If the conic arc is a parabola, then p = 1 and the formula for the area given above is
invalid. The formula for a parabola is much simpler and is given by

_ b
T3

A

as shown in the exploration caarea2.nb.

This process can be generalized to find the segment area of any conic arc. Notice that the
position of the conic arc in the plane has no bearing on its chordal area. Therefore, we can
translate the start point to (0,0) and rotate the conic so that the end point is on the z-axis.

Example. Find the area between the conic arc with start point (1,2), end point
(5,0), apex point (3,4) and p = 0.75 and its chord.

Solution. The Descarta2D function Area2D [cnarc] computes the area between a
conic arc and its chord.

In(10]: Area2D[Coni cArc2D[{1, 2}, {3, 4}, {5, 0}, 0.75]1 //N

out[10] 5.34774

17.8 Summary of Area Functions 249

Table 17.1: Descarta2D area functions.

OBJECT ‘ Area2D ‘ SectorArea2D | SegmentArea2D

arc yes no no
circle yes yes yes
conic arc yes no no
ellipse yes yes yes
hyperbola no yes yes
parabola no no yes
triangle yes no no

17.8 Summary of Area Functions

Table 17.1 summarizes the area functions provided by Descarta2b.
Area2D[object] returns the area enclosed by a closed object (circle, ellipse or triangle).
SectorArea2D [object, {t1, t2}] returns the area of a sector defined by two parameters.

SegmentArea2D [object, {t1, t2}] returns the area between a chord and the curve.

17.9 Explorations

HERON'S FORMULA. .. oottt e e e e heron.nb
Show that the area, K, of a triangle AABC is given by

K =+/s(s—a)(s —b)(s — ¢),

where the semi-perimeter s = (a + b+ ¢)/2, and a, b and ¢ are the lengths of the sides.

AREA OF TRIANGLE CONFIGURATIONS. . .ttt ettt ettt e et triarea.nb

a4 a
\1 S Va

250 Chapter 17 Area

For the triangle illustrated in the figure, show that the area, A;, associated with the AAS
(angle-angle-side) configuration whose parameters are a1, as and s is given by

s? sin(az) sin(a; + az)

2sin(aq)

A =

Show that the area, As, associated with the ASA (angle-side-angle) configuration whose pa-
rameters are a1, s3 and ag is given by

52 sin(ay) sin(asg)

A =
2 251n(a1 + ag)

Show that the area, As, associated with the SAS (side-angle-side) configuration whose para-
meters are s1, as and s3 is given by

s183 sin(az)

Ay = 22

AREA OF TRIANGLE BOUNDED BY LINES. ..ot triarlns.nb
Show that the area of the triangle bounded by the lines

y=mix+cy, y=mox+cy and =0

is given by

A:l (c1 — c2)® ,
2y/(my —mg)?

AREAS RELATED TO HYPERBOLAS. ..o\ttt hyparea.nb

Referring to Figure 17.7, use calculus to verify that the areas between two parameters ¢;
and to of a segment and a sector of a hyperbola are given by

ab .
Asegment = ?(Slllh(s(tg — tl)) — S(tQ — tl))
abs
Asector = 7@2 — tl)

where a and b are the lengths of the semi-transverse and semi-conjugate axes, respectively,
s = coshfl(e)7 and e is the eccentricity of the hyperbola (assuming the parameterization
Descarta2bD uses for a hyperbola).

AREA OF A CONIC ARC (GENERAL)ttt caareal.nb

For the conic arc whose control points are (0,0), (a,b) and (d,0), show that the area
between the conic arc and its chord is given by

_ bdp 2 1-p
A= 573 <p7"+(1+ p)*log, <p+r>>

17.9 Explorations 251

where 7 = y/—1+ 2p (assuming b > 0 and d > 0).

AREA OF A CONIC ARC (PARABOLA) ...ttt caarea2.nb

Show that the area between a conic arc whose projective discriminant is p = 1 and its

chord is given by

A=t
3

when the control points are (0,0), (a,b) and (d,0).

ONE-THIRD OF A CIRCLE’S AREA ..ttt et e circarea.nb

Show that the angle, 6, subtended by a segment of a circle whose area is one-third the area
of the full circle is the root of the equation

E_G—siné

32
Also, show that € is within 1/2 percent of 57 /6 radians.

EQUAL AREAS POINT ... e egarea.nb

Given AABC with vertices A(za,y4), B(zp,ys) and C(zc,yc) show that there are four
positions of a point P, (x,y) such that AAPB, AAPC and ABPC have equal areas. The
coordinates of P, are given by

Po(3(ra +xp+20), 3 (ya + Yy +yc))

P (—xs+xp +xc,—ya+yB +yc)
Py(+x4 —xp+20,+ya —ys + yo)
Py(+za +2x5 —2xc,+ya +YB — Yo).

Py is the centroid of AABC and AP, P,P3. AABC connects the midpoints of the sides of
AP, P, P;.

AREA OF A TETRAHEDRON’'S BASE ..ot tetra.nb

A tetrahedron is a three-dimensional geometric object bounded by four triangular faces.
Given a tetrahedron with vertices O(0,0,0), A(a,0,0), B(0,b,0) and C(0,0, ¢) show that the
areas of the triangular faces are related by the equation

(Aapc)? = (Aaon)? + (Aaoc)* + (Apoc)?

where A,,. is the area of the triangle whose vertices are z, y and z. Note the similarity to
the Pythagorean Theorem for right triangles.

Part V

Tangent Curves

Chapter 18

Tangent Lines

Let two points, P and @), be taken on any locally smooth convex curve, and let the point
move along the curve nearer and nearer to the point P; then the limiting position of the line
PQ, as @ moves up to and ultimately coincides with P, is called the tangent line to the curve
at point P. The line through P perpendicular to the tangent line is called the normal to the
curve at the point P.

18.1 Lines Tangent to a Circle

Tangent Through a Point On a Circle

Let (x — h)? + (y — k)? = r? be a circle and P;(x1,y1) a point on it as shown in Figure 18.1.
We desire to find the equation of the tangent line at P;. Since the slope of the line joining
the center (h,k) and P; is (y1 — k)/(x1 — h), the slope of the line tangent to the circle will be
the negative reciprocal —(x; — h)/(y1 — k) and the equation of the line tangent to the circle
at point P; becomes (point—slope form)

— ——Ll_h)a:—a:
T k)(1) (18.1)

Since the point P; is on the circle we also have the equation
(1 — h)* + (y1 — k)? =2 (18.2)
Adding Equation (18.1) to Equation (18.2) results in
(x1 —R)x+ (1 —k)y+ (h* +k* —r? — hay —kyy) =0
or, in a factored form that is easier to remember,

(x —h)(x1 —h)+ (y —k)(y1 — k) =2 (18.3)

255

256 Chapter 18 Tangent Lines

/

/
P1(X1, Y1)

“Y

Figure 18.1: Line tangent to a circle.

If the circle is centered at the origin, 22 + y? = r?, the equation of the tangent line at P; is
1T + Y1y = r2.
If the circle is given in general form,
2?4+ +ar+by+c=0

then the tangent line at Pj is

a b
zer+yyr+ (@ +z)+ Sy +y) +e=0.

Example. Confirm that the point (3,1 + @) is on the circle
(-2 +(y-1)°=1

and find the tangent line at that point.

Solution. The function Is0n2D [point, circle] returns True if the point is on the
circle; otherwise, it returns False. TangentLines2D [point, circle] returns a list
of lines through the point and tangent to the circle.

In[1]: |sOn2D[pl = Poi nt2D[{5/2, 1+Sqrt [3]/2}],
cl=Crcle2D[{2, 1}, 1]1]

out[1] True
In[2]: | ns = Tangent Li nes2D[pl, c1] // Sinplify

out (2] {Line2D[2, 2+/3, -2 (4++/3)]}

18.1 Lines Tangent to a Circle 257

A /%\
Q Vaz—r

Q2

VY

Figure 18.2: Lines through a point, tangent to a circle at the origin.

n[3]: Sketch2D[{pl, cl1, I ns}, PlotRange -> {{0, 4}, {-1, 3}}1;
4

O P N W

1
=

01 2 3 45

Tangents Through a Point Outside a Circle

If the point Pj(z1,y1) is outside of the circle (z — h)? + (y — k)? = r? there will be two
tangent lines from P; to the circle. Consider the circle 22 4+ y? = r? and the point D(d,0) in a
convenient position as shown in Figure 18.2. Clearly, the two tangent lines can be determined
directly from the normal form of a line as

xcosh+ysinf —r =0
where
2 _ 12
d
If the point D is rotated by an angle a about the origin, as shown in Figure 18.3, it will have

new coordinates Py(zo,yo) and the tangent lines will also be rotated by « resulting in the two
lines

cosf = 2 and sinf = +

xcos(a+0) +ysin(a+6) —r=0

258 Chapter 18 Tangent Lines

y ‘ Po(Xo, Yo)
Q

(Wi

\ 9
| o

1 —
r X
Q2

Figure 18.3: Lines through a rotated point, tangent to a circle at the origin.

where
cosa = il and sina = Yo
d d
Using the standard trigonometric formulas for the sine and cosine of the sum of two angles
yields

cos(a+60) = cosacosf —sinasinf

Tor Yo £Vd2 —r?

dd d d

1
= — (onT FyoVd? — 7'2)

d

and

sin(e+6) = cosasinf + cosfsina

To £Vd2 —r? N T Yo

d d dd

1

= = (yor +x9V/d? — r2> .

As a final adjustment we translate the geometry so that the center of the circle may be a

general location (h, k) as shown in Figure 18.4. Translating the tangent lines from (0,0) to
(h,k) using o = 1 + h and yo = y1 + k yields

xcos(a + 0) + ysin(a + 0) — (r + hcos(a + 0) + ksin(a + 6)) =0

where cos(a +) and sin(a + 6) are functions of (z1,y1), (h, k), and r and d is the distance
between (h, k) and (z1,y1). Notice that after the substitutions are performed no trigonometric
functions are present in the formulas.

18.1 Lines Tangent to a Circle 259

q

P1(X1, Y1)

Figure 18.4: Lines through a general point, tangent to any circle.

Tangent Contact Points

Given a circle (z — h)? + (y — k)? = r? and a point P;(x1,y1) outside the circle, as shown in
Figure 18.4, we desire the coordinates of the points of contact between the circle and the two
tangent lines. From the previous section it is clear that when the geometry is in the standard
position the coordinates of the contact points are given by

Q1,2(rcosf,rsinb)
where
2 _ 2
—

If the geometry is rotated and translated to a general position the coordinates of the contact
points are given by

cosf = 2 and sinf = +

Q1,2 (h+rcos(a+6),k+ rsin(a+ 0))

where cos(a + 6) and sin(« +) have the same formulas as in the previous section.

Example. Find the lines passing through the point (3, —1) and tangent to the
circle (x + 1)% + (y — 1)? = 4. Find the coordinates of the points of tangency and
plot.

Solution. The function TangentLines2D [point, circle] returns a list of lines
through the point and tangent to the circle. TangentPoints2D [point, circle] re-
turns a list of the points of tangency.

260 Chapter 18 Tangent Lines

In[4]: pl=Point2D[{3, -1}]; cl=Circle2D[{-1, 1}, 2];
obj s = {Tangent Li nes2D[p1, c1], Tangent Poi nt s2D[pl, c1]}

out[4] {{Line2D[0, -20, -20], Line2D[16, 12, -36]},

{Poi nt2D[{-1, -1}], Poi HIZDH% 15~1}H}

In(5]: Sketch2D[{pl, cl1, objs}];

AN
Do

-4 -2 0 2 4

Tangent Line Segment Length

To find the length of the tangent line segment drawn from a given point, P (x1,y1), to a circle
(x — h)? + (y — k)? = r? without computing the point of tangency, the following method can
be used. Since AOP; P in Figure 18.2 is a right triangle the distance D between P and P; is
given by

D? = ¢®—r?
= (z1—h)’+(n —k)*—r?

Therefore the length of the tangent line segment (squared) is found by substituting the coor-
dinates of the point into the equation of the circle.

Example. Find the length of the tangent line segment from the point (4, 3) to
the circle (z + 1)% + (y +2)% = 4.

Solution. Descarta2D does not have a built-in function to compute the length of a
tangent line segment. However, a few built-in functions can be combined to apply
the technique described in this section. The function Quadratic2D [circle] returns
the quadratic equation of a circle. Polynomial2D [quad, {z, y}] substitutes the
coordinates (z,y) into the quadratic equation.

18.1 Lines Tangent to a Circle 261

/N X

Figure 18.5: Lines tangent to a circle.

n[6]: cl=Circle2D[{-1, -2}, 2];
Sqgrt [Pol ynom al 2D[Quadr ati c2D[c1], {4, 3}1]

out [6] /46

Of course this gives the same result as constructing the tangent points and finding
the distance directly.

1n[7]: Di stance2D[Tangent Poi nt s2D[Poi nt 2D[{4, 3}], c1]1[[1]11,
Poi nt 2D[{4, 3}1] // Sinplify

out [7] /46

Tangents Parallel to a Line

The equations of the two lines parallel to the line L = Az + By + C = 0 and tangent to the
circle (z — h)? + (y — k)2 = r? as shown in Figure 18.5 are given by

L' = Az + By — (Ah+Bkir\/A2+BQ) —0.

Notice that the constant coeflicient C' of the line is not involved in the equations of the tangent
lines since only the slope is involved in establishing the parallel condition. The formula is
derived by constructing a line L. that passes through the center (h, k) of the circle with slope
m = —A/B. The two tangent lines are then determined by offsetting L. a distance +r. Using
equations the derivation is

L = Az+By+C=0

262 Chapter 18 Tangent Lines

L. = Az+By— (Ah+ Bk) =0
ax + by — (ah + bk) =0
L' = ar+by—(ah+bk+7r)=0

Ax + By — (Ah + Bk £/ A% + B2) = 0.

where

A b
=——— and b= ——
CcVaEr VA? + B2

are the normalized coefficients of the line.

Tangents Perpendicular to a Line

To find the equations of the two lines, L”, perpendicular to the line
Az +By+C =0

and tangent to the circle
(x—h)?+(y— k) =r?

as shown in Figure 18.5, simply use the line Bx — Ay + C = 0 (which is perpendicular to
the given line) and apply the formula from the previous section. Once again the value of the
constant coefficient C' has no bearing on the equations of the resulting lines.

Example. Find the lines tangent to the circle (x — 3)? + (y — 2)? = 1 and parallel
and perpendicular to the line 2z 4+ 3y — 1 = 0 and plot.

Solution. The Descarta2D function TangentLines2D [line, circle, Parallel2D]
returns a list of lines parallel to the line and tangent to the circle. The function
TangentLines2D [line, circle, Perpendicular2D] returns a list of lines perpendic-
ular to the line and tangent to the circle.

n[8]: | 1 =Line2D[2, 3, -1]; cl1l=Crcle2D[{3, 2}, 17;
I ns = {Tangent Li nes2D[l 1, c1, Parall el 2D],
Tangent Li nes2D[l 1, c1, Perpendi cul ar 2D] }
outrs] {{Line2D[2, 3, -12-+/13], Line2D[2, 3, -12++/13 |},
{Line2D[-3, 2, 5-+/13], Line2D[-3, 2, 5++/13]}}

n[9]: Sketch2D[{l 1, c1, Ins}, PlotRange -> {{-2, 5}, {-2, 5}}1;

18.1 Lines Tangent to a Circle 263
5
4
3
2
1
0
-1
-2
-1012345
|]
/‘\k\ DescartazDp Hint. TangentLines2D [line, circle] returns the same result as
NBY,

TangentLines2D [line, circle, Parallel2D]

because specifying the keyword Parallel2D is optional.

Example. Using the geometric objects from the previous example, find the points
of contact of the four tangent lines.

Solution. The function Point2D [line, circle] will return the point of contact if
the line is tangent to the circle.

In[10]: pts = Map[(Poi nt 2D[#, Quadratic2D[c1]])&,
Flatten[lns]] 7/ Sinplify

out (10 {Poi nt2D[{3+%, 2+%H, Poi nt2D[{37%, 27%}},
Poi nt2DH3—T%;, 2+A\/%H, Poi nt 2D[{3 + \/% 27—\/%”}
In[11]: Sketch2D[{l 1, c1, Ins, pts},
Pl ot Range -> {{-2, 5}, {-2, 5}},
CurvelLengt h2D -> 207;
5
4
3
2
1
0
-1
-2
-1012345

264 Chapter 18 Tangent Lines

Figure 18.6: Lines tangent to two circles.

Tangents to Two Circles

Suppose C; and Cs are two circles and we wish to determine the equations of the lines tangent
to both circles. We proceed by finding the equations of tangent lines when the circles are in
a special position and then we transform the result to a general position.

Let C; be a circle, with radius 71, centered at the origin with equation 22 + y? = r?, and
let C'5, with radius r2, be positioned so that its center is on the +xz-axis a distance d from the
origin with equation (z — d)? +y? = r3. Since C; is centered at the origin any line tangent to
C7 can be written in the form L = Axz 4+ By + 1 = 0 because no line tangent to C7 can pass
through the origin.

Let d; and ds be the distances from the center of C; and C5 to L, respectively. If L is
tangent to the circles then d; and d2 must equal the radii of the circles, yielding

. Ahut Bk 41
o VA? + B2
9 (Ahy,, + Bk, +1)2
T =
n A2 + B2
r2(A*+ B?*) = (Ah,+ Bk, +1)

where hy =0, ky =0, ho = d and ko = 0. Simplifying, we have the two equations

r2(A>+B?*) = 1
r3(A* + B?) = (1+ Ad)%

Solving these two equations for A and B produces four pairs of solutions given by

A = 7r1+sars
B = sp\/d?— (11 + sa79)?

18.1 Lines Tangent to a Circle 265

where the sign constants s4 ={ —1,—1,1,1} and sp ={1,—1,1, —1} take on the values +1
in pairs as shown in the lists. The first pair of solutions gives the external, or direct, tangents
and the second pair gives the internal, or transverse, tangents.

We now use the special solution given above to find the tangent lines when the circles are
in a general position. Let C; = (z—hy)? + (y—k1)? =72 and Cy = (z — h2)? + (y — k2)? = 13
be the equations of the two circles. To attain a general positioning we first rotate the lines
given in the special solution by an angle 6 where sinf = (hy — hs)/d and cos8 = (k1 — ko) /d.
After the rotation we translate the lines from (0,0) to (h1, k1). Applying these transformations
yields the four lines

(AH — BK)x + (BH + AK)y + d*r; — h1(AH — BK) — ky(BH + AK) =0

where
H:hl—hg and K:kl—kg

and A and B take the values given as before.

Example. Find the four lines tangent to the circles (z — 3)2 + 3% = 4 and

(x + 3)%2 + y?> = 4. Sketch the external tangents and the internal tangents in
separate plots.

Solution. The Descarta2D function TangentLines2D [circle, circle] returns a list
of lines tangent to two circles. The first two lines in the list are the external
tangents (if returned); the third and fourth lines in the list (if returned) are the
internal tangents.

n[12]: {11, 12, 13, 14} =

Tangent Li nes2D[cl = Ci rcl e2D[{3, 0}, 2],
c2=Circle2D[{-3, 0}, 2]]

out[12] {Line2D[0, -36, 72], Line2D[0, 36, 72], Line2D[24, -12/5, 0],
Line2D[24, 12+/5, 0]}

In[13]: Sketch2D[{cl, c2, |11, |2}, PlotRange -> {{-6, 6}, {-3, 3}}1;
Sket ch2D[{c1, c2, |3, |14}, PlotRange -> {{-6, 6}, {-3, 3}}1;

T~
{1

-4 -2 0

<
/

6

266 Chapter 18 Tangent Lines

18.2 Lines Tangent to Conics

Tangent Through Point on Conic

Suppose we have the general equation of a conic curve given by
az? + by + ey’ +dr +ey+ f =0.

The equation of the chord joining any two points, P;(z1,y1) and Py(z2,y2), on the curve may
be written

a(z —z1)(z — 22) + b(z — 21)(y — y2) + c(y — y1)(y — y2)
=ax’+bry+cy’?+dr+ey+ f

as the equation is clearly first-degree in « and y (the terms above first-degree cancel out), and
it is satisfied by the two points P; and P,. Putting 1 = x5 and y; = y2, we get the equation
of the tangent line

a(x —x1)? + bz — 21)(y — v1) + cly —1)? = ax® + bry + ey’ + dx + ey + f;
or, expanding,
2ax17 + b(x1y + y12) + 2cp1y + dr + ey + f = ax? 4+ briyr + eyl

Adding dxq1 + ey + f1 to both sides will cause the right-hand side to vanish, because P;
satisfies the equation of the curve. Thus the equation of the tangent becomes

e

2(y+y1)+f = 0. (18.4)

b d
az1z + 5 (21y + y12) + ey + S (2 + @) +
This equation is most easily remembered if we compare it with the equation of the curve
and notice that it is derived by replacing 22 and y? with z1z and 11y, zy with %(xly + 1)
and x and y with (24 1) and $(y + y1). Whether or not Py (z1,y1) is on the curve, the line
represented by Equation (18.4) is called the polar of P; with respect to the curve, and P; is
the pole of the line with respect to the curve.

18.2 Lines Tangent to Conics 267

Example. Find the line tangent to the parabola y? = 4x at the point (4 ;4).

Solution. The DescartaeD function Line2D[point, conic] returns the polar (line)
of a pole (point) with respect to a conic. If the point is on the conic, then the line
will be tangent to the conic.

In[14]: 11 =Line2D @1 = Point2D @&, 4 <D,
crv = Parabola2D @®, 0 <,1,0 DD

Out[14] Line2D @ 4,8, -16D
In[15]: Sketch2D @#®1, crv, 11 <,

CurveLength2D -> 15,
PlotRange -> 88-1,7 <, 8-1,5 <<D;

1
P orNvwbhao

012345617

Pole Point and Point of Tangency
Given alineL px+ gy+ r =0 and a conic
Q Ax?+Bxy+Cy?’+Dx+Ey+F=0

we wish to determine the coordinates of the pole point,P1(X1;y1), of L with respect to
Q. The equation of the polar (line) of the pole (point) Py is derived in general form from
Equation (18.4) and is given by

(2Ax1+ By; + D)x+(Bx; +2Cy; + E)y+(Dx,+ Ey; +2F)=0:

If this line and line L are the same line, then the coe cients of the polar line must be equal to
some multiple of the coe cients of L yielding the following system of three linear equations
in three unknowns

kp = 2Ax;+By;+D
kg = Bx;+2Cy; + E
kr = Dxi+ Ey;+2F:

18.2 Lines Tangent to Conics 269

Solution. The Descarta2D function TangentEquation2D [line, quad] returns an
equation establishing the condition that a line be tangent to the conic represented
by the quadratic. Solve this equation for the unknown coefficient c.

n[17]: Cear [C];
11 =Line2D[2, 5, c];

gl = Quadratic2D[2, 1, -4, -2, -3, 1];
egl = Tangent Equat i on2D[l 1, g1]

out[17] 80+24c-33¢c2==0

In[18]: ans = Sol ve[eql, c]

out (18] {{c > g (3-VITA)}, {c» 4o (3+/IT4)})

In[19]: Sketch2D[{Map[(l 1 /. #)& ans], Loci 2D[ql]},
Pl ot Range -> {{-3, 3}, {-2, 2}}1;

>
x

-2-10 1 2 3

o ok

NO1IR 01001 01N

Polar of a Conic

As previously shown, if the point P;(z1,y1) is on the conic curve
Az? + Bay+Cy> + Dz + Ey+F =0
the equation of the tangent line at P; is
2Azx1 + B(ayr + 1y) +2Cyy1 + D(z + 1) + E(y +y1) + 2F = 0.

This equation expresses a relation between the coordinates (z,y) of any point on the tangent
line, and those of the point of contact (z1,y1). But the equation, being symmetrical with
respect to the coordinates (x,y) and (z1,y1), can be interpreted to represent the line passing
through the points of contact from (x1,y;) when (z1,y1) is not on the curve. Thus the polar,
which has the same equation as the tangent line, passes through the points of tangency (when
they are real) when the point is not on the curve.

Without proof we list the following theorems concerning poles and polars that refer to
Figure 18.7.

270 Chapter 18 Tangent Lines

Figure 18.7: Poles and polars.

e If the polar L, of pole P; passes through pole P», then the polar Ly of P> passes through
Py.

e If the polars of P; and P, intersect at point P, then P is the pole of the line Py Ps.

e The polar of an exterior point P; is the line joining the points of contact of the tangents
drawn from P;.

e The polar of an interior point P is the locus of the point of intersection of the tangents
at the extremities of every chord through P.

e The polar of a focus is the corresponding directrix.

o There is no (finite) polar of the center of a conic.

Example. Show the inverse functional relationship between the polar and the pole
(3, —1) with respect to the quadratic equation 222 + 3zy — y? + 4o — 2y + 1 = 0.

Solution. The Descarta2D function Line2D [point, quad] returns the polar line
of the point with respect to the quadratic. The function Point2D [line, quad]
returns the pole (point) of the line with respect to the quadratic.

In[20]: | 1 =Line2D[Poi nt 2D[{3, -1}1,
gl = Quadratic2D[2, 3, -1, 4, -2, 1]]

out [20] Line2D[13, 9, 16]
In(21]: pl ="Point2D[l 1, ql]

out [21] Point2D[{3, -1}]
| |

18.2 Lines Tangent to Conics 271

Tangents Parallel to a Line
Once again, consider the conic curve whose equation is
Q=A2>+Bay+Cy* + Dz + Ey+F =0,
and the equation of the tangent line at the point P;(z1,y1) on the conic whose equation is
2Axx1 + B(ayr + ©1y) +2Cyy1 + D(z+ 1) + E(y+y1) +2F =0
or, in general form,
(2Az1 + By1 + D)z + (Bz1 +2Cy1 + E)y + (Dz1 + Eyy +2F) = 0.

To find the lines tangent to Q and parallel to a line Ly = Ajx + B1y + C1 = 0 the following
technique can be used. Let Ly = Ajx + By + Co = 0 be the desired tangent line (the linear
coefficients Ay and B; of Ly are set equal to the corresponding coefficients of L; because the
lines are parallel). If Ly is to be tangent to @, then the pole point P of Ly with respect to
@ must satisfy the equation for). The coordinates of P are functions in the variable Cj,
therefore, solving this equation for Cy gives the coefficients of the desired tangent line(s) L.
The Descarta2D function TangentLines2D [line, quad] implements this technique and can be
used to derive the specialized formulas for lines tangent to conics in standard position as
presented later in this chapter.

Lines Tangent to Two Conics
The equation relating the coefficients of a quadratic equation
Az? + Bry+Cy* + Dz +Ey+F =0
to the coefficients of a line px + qy 4+ 7 = 0 tangent to the quadratic given previously is
(ACF — E?)p? + (4AF — D?)¢® + (4AC — B2)r*+
2(BD — 2AE)qr + 2(BE — 2CD)pr + 2(DE — 2BF)pq = 0.

If we select a suitable translation, we can insure that the tangent line does not pass through
the origin (i.e. r # 0) and the equation of the tangent line can be written in the form

r
Bx—l—g—l—— =pr+qdy+1=0.
T ror
Now, given two quadratic equations
Q1 = A2® +Biry+Ciy* + Dz + Eyy+ Fy =0 and
QQ = A2$2 + ngy + C2y2 + Dox + E2y +F,=0
and using Equation (18.2) we can find the coefficients p’ and ¢’ of the lines tangent to the
quadratic by solving two quadratic equations in two unknowns, resulting in equations for four
tangent lines. The formulas can be derived in symbolic form, but the results are too unwieldy

to be of practical use. Descarta2D, however, can be used to construct such tangents when the
problem involves numerical coefficients.

272 Chapter 18 Tangent Lines

Example. Find the four lines tangent to the ellipses

$2 y2 1‘2 y2
T oY) amd 4L
162 and 475

Plot the ellipses and the tangent lines.

Solution. The Descarta2D function TangentLines2D [curve, curve] returns a list
of lines tangent to the two curves. The following result was computed using Mathe-
matica Version 3.0.1. Version 4.0 produces lines in the same positions with slightly
different coefficients.

n[22]: el =Ellipse2D[{0, 0}, 4, 2, 01;
e2 = El | i pse2D[{0, 0}, 3, 2, Pi /2];
I ns = Tangent Li nes2D[el, e2] // N

out [22] {Line2D[-0.542326, -0.840168, -2.74398],
Li ne2D[-0. 542326, 0.840168, -2.74398],
Li ne2D[0. 542326, -0.840168, -2.74398], Line2D[0.542326, 0.840168, -2.74398]}

1n[23]: Sketch2D[{el, e2, I ns}];

-4-20 2 4

Line Segments Tangent to Two Conics

Given a line tangent to a conic, the tangent point is the pole point of the line with respect to
the conic. Using this relationship the line segments connecting the points of tangency can be
determined as illustrated in the next example.

Example. Using the geometric objects from the previous example, find the line
segments connecting the contact points of the tangent lines.

18.3 Lines Tangent to Standard Conics 273

Solution. Use the function TangentSegments2D [curve, curvel to construct a list
of line segments connecting the contact points of the lines tangent to the two curves.
The following result was computed using Mathematica Version 3.0.1. Version 4.0
produces the same line segments, but in a different order.

In[24]: | nSegs = Tangent Segnent s2D[el, e2] // N

out [24] {Segment 2D[{-3. 16228, -1.22474}, {(-0.790569, -2.75568)],
Segnent 2D[(3. 16228, 1.22474}, {-0.790569, 2. 75568},
Segnent 2D[(3. 16228, -1.22474}, {0.790569, -2. 75568},
Segnent 2D[(3. 16228, 1.22474}, (0.790569, 2. 75568}]}

n[25]: Sketch2D[{el, e2, I nSegs}];

1
IS
1
N
o
N
N

18.3 Lines Tangent to Standard Conics

Lines that are tangent to conics in standard position have particularly simple forms. This sec-
tion summarizes the equations for these tangent lines for the parabola, ellipse and hyperbola.

Tangents to a Parabola

A line that is parallel to the axis of a parabola intersects the parabola in only one (finite)
point; all other lines will cut the parabola in two points real and distinct, real and coincident,
or complex. Any line which meets a parabola in two coincident points is a tangent line.
Table 18.1 provides formulas for the line tangent to a parabola in standard form at a point
Py (x1,y1). Table 18.2 provides the formulas for tangents to a parabola in standard form with
a given slope m.

Example. Find the lines through the point (—1,—1) that are tangent to the
parabola (y + 1)? = 2(z — 1) and plot.

274 Chapter 18 Tangent Lines

Table 18.1: Tangents to a parabola at a point.

‘ PARABOLA EQUATION ‘ TANGENT AT P (z1,y1) ‘
y? =Afax yy1 = 2f(z + 11)
z? =4fy rx1 = 2f(y +y1)

(y—k)=4f(x—h) | (y—k)(yr —k) =2f(z + a1 —2h)
(@—h)?=4f(y—k) | (@—h)(x1—h)=2f(y+y —2k)

Solution. The function TangentLines2D [point, curve] returns a list of the lines
through the point and tangent to the curve. The function Point2D [line, curvel
will return the point of tangency for each tangent line.

n[26]: Cear[Xx, yl;
pl=Point2D[{-1, -1}1;
crvl = First [Loci 2D[Quadrati c2D[(y +1)"2==2 (x-1), {X, y}111;
| ns = Tangent Li nes2D[p1, crvl]

out[26] {Line2D[2, 4, 6], Line2D[-2, 4, 2]}

In(27]: Sketch2D[{pl, crvl, I ns, Map[Poi nt 2D[#, crv1]& |ns1}];

/

2

1

0
_1>.<
-2
-3

'4-2-1012345

Tangents to an Ellipse

A line that intersects an ellipse in two coincident points is a tangent line. As in the case
of the circle, but unlike that of the parabola, there will be two tangents with a given slope.
Table 18.3 provides formulas for the line tangent to an ellipse in standard form at a point
Py(x1,y1). In the formulas a is the length of the semi-major axis of the ellipse and b is the
length of the semi-minor axis. Table 18.4 provides the formulas for tangents to an ellipse in
standard form with a given slope m.

18.3 Lines Tangent to Standard Conics 275

Table 18.2: Tangents to a parabola with slope m.

‘ PARABOLA EQUATION ‘ TANGENT WITH SLOPE m ‘

y?=4fx y=mz+ f/m

2 =4fy y=mz — fm?
(y—k?=4f(x—h) | y—k=m(z—h)+ f/m
(x—h?=4f(y—k) | y—k=m(z—h)+ fm?

Example. Find the lines tangent to the ellipse
(z—1)
9

rotated 45° counter-clockwise about its center point and passing through the point
(4,—1) and plot.

+y?=1

Solution. The function TangentLines2D [point, curve] returns a list of lines
through the point tangent to the curve. Point2D [line, curve] will return the
tangent point of the line with respect to the curve.

In[28]: pl =Point2D[{4, -1}];
el =Ellipse2D[{1, 0}, 3, 1, 45Degree] // N,
I ns = Tangent Li nes2D[pl1, el] //N

out (28] {Line2D[1.19166, -4.48728, -9.25392], Line2D[-2.94842, -0.782995, 11.0107]}

In[29]: Sketch2D[{pl, el, I ns, Map[Poi nt 2D[#, el]& Ins]}];
6

4

276 Chapter 18 Tangent Lines

Table 18.3: Tangents to an ellipse at a point.

‘ ELLIPSE EQUATION ‘ TANGENT AT P (z1,y1)

P Ty Yy

2 Ty Tl 2 T T
@—n?, =k _ | @=n—h, G-ky—k) _
a? b2 a? b2 B

2 2

Yy Ty Yy

el T 7!
@—0?, =k _ | @=n—h, G-ky—k) _
b2 a? B b2 a? B

Table 18.4: Tangents to an ellipse with slope m.

‘ ELLIPSE EQUATION

‘ TANGENT WITH SLOPE m

2_24_%_221 y = mz +va2m? + b2
(a:;Qh)QJr(ngk)Q:l y—k=m(z — h) £ VaZm? + b2
:2_22_'_?;_2:1 y =mx £ Vb2m?2 + a?
(93;2h)2+(y;2k)2:1 y—k=m(z —h) £ Vb?m? + a?

18.3 Lines Tangent to Standard Conics 277

Tangents to a Hyperbola

A line that intersects a hyperbola in two coincident points is a tangent line. For the hyperbola
there will be two tangent lines (real and distinct, coincident with an asymptote, or complex)
with a given slope. Table 18.5 provides formulas for the line tangent to a hyperbola in standard
form at a point P;(z1,y1). In the formulas a is the length of the semi-transverse axis of the
hyperbola and b is the length of the semi-conjugate axis. Table 18.6 provides the formulas for
tangents to a hyperbola in standard form with a given slope m. Note that for real tangents
with slope m the quantity under the radical must be positive. If, for a given slope, the tangents
are real for a particular hyperbola, then the tangents are complex for the conjugate hyperbola.

Example. Find the lines tangent to the hyperbola
(-1 (y+1)°* _

- =1
9 4

rotated 30° counter-clockwise about its center point passing through the point
(0,0) and plot.

Solution. The function TangentLines2D [point, curve] returns a list of lines
through the point tangent to the curve. Point2D [line, curve] will return the
tangent point of the line with respect to the curve.

In[30]: pl =Point2D[{0, 0}1;
hl = Hyper bol a2D[{1, -1}, 3, 2, 30 Degree] // N,
I ns = Tangent Li nes2D[p1, h1] // N

out [30] {Li ne2D[5.38369, -1.8453, 0], Line2D[1.04481, 8.2738, 0])

In[31]: Sketch2D[{pl, hl, I ns, Map[Poi nt 2D[#, h1]& | ns]},
CurvelLengt h2D -> 157;

N

N

1
N
Ul ool O Ul Ul

-10

278

Chapter 18 Tangent Lines

Table 18.5: Tangents to a hyperbola at a point.

HYPERBOLA EQUATION ‘

TANGENT AT Py (x1,y1) ‘

oy) Ty
b @2 v
(@—m? =k?_ | @G=W@-h G-kHy—k) _,
a? b2 a? =
22 LT | Yy
2 ! 2 T 7!
(=1 =k _ | =" -h L=kl k)
a? = a? = B

Table 18.6: Tangents to a hyperbola with slope m.

‘ HyPERBOLA EQUATION ‘

TANGENT WITH SLOPE m ‘

2 42
E_b_2:1 y=mz +va*m? — b2
—h)? —k)?
oW Wy |y k= e) VaT? B2
2 4P
¥+b_2_1 y =mz + Vb2 —a?m?
_}2 —k2
_ 2L> (yb2> =1|y—k=m(x—h)+Vb?>— a?>m?
a

18.3 Lines Tangent to Standard Conics 279

Parallel and Perpendicular Tangents

Using the equations from the tables in the previous sections in the columns labeled TANGENT
WITH SLOPE m, we can easily construct lines parallel or perpendicular to a given line and
tangent to a given second-degree curve.

Example. Find the lines parallel and perpendicular to the line x 4+ 2y — 2 = 0
and tangent to the ellipse

2 9\2
e+, =2 _,
4 16

and plot.

Solution. The Descarta2D function TangentLines2D [line, curve, Parallel2D]
constructs a list of lines parallel to the given line and tangent to the curve; the
function TangentLines2D [line, curve, Perpendicular2D] returns a list of lines
perpendicular to the given line and tangent to the curve.

n[32]: | 1 =Line2D[1, 2, -2];
el =Ellipse2D[{-1, 2}, 4, 2, Pi /2];
I ns = {Tangent Li nes2D[l 1, el, Parall el 2D1,
Tangent Li nes2D[l 1, el, Perpendi cul ar2D] }

out[32] {{Line2D[1, 2, -3-2+/17], Line2D[1, 2, -3+2+/17]},
{Line2D[-2, 1, 4 (-1-+/2)], Line2D[-2, 1, 4 (-1++2)]}}

In[33]: Sketch2D[{l 1, el, I ns}, PlotRange -> {{-8, 6}, {-5, 7}}1;

A NODNDMO®

W

-6-4-20 2 4 6

280 Chapter 18 Tangent Lines

18.4 Explorations

LINE TANGENT TO A CIRCLE. ..ttt ettt e et et Intancir.nb

Show that the line y = m(x — a) + a/1 +m? is tangent to the circle 22 + y? = 2ax for all
values of m.

LINE NORMAL TO A QUADRATIC. .\t ittt ettt ettt e et et een lnquad.nb

Show that the normal line passing through the point (x1,y;1) on the quadratic whose equa-
tion is Az? + Bxy + Cy? + Dx + Ey + F = 0 is given by

kix — koy — k11 + koy1 =0

where
ki =Bx1 +2Cy1 + F and ko = 2Ax1 + By, + D.

EYEBALL THEOREM. . .ttt ettt et e et e e e e eyeball.nb

The tangents to each of two circles from the center of the other are drawn as shown in the
figure. Prove that the chords illustrated are equal in length.

PERPENDICULAR TANGENTS TO A PARABOLA. ..., pbtnlns.nb

Show that if Ly and Lo are two lines tangent to a parabola that intersect on the directrix
of the parabola, then L, and Ly are perpendicular to each other.

TANGENT TO A PARABOLA WITH A GIVEN SLOPE.coiuiuiiiinininann... pbslp.nb
Show that the line tangent to the parabola y? = 4px with slope m is y = mx + p/m.

18.4 Explorations 281

TANGENT TO AN ELLIPSE WITH GIVEN SLOPE. ...ttt ellslp.nb

Show that the lines tangent to the ellipse 22/a? + y?/b* = 1 with slope m are given by
y = mx £+ vVa2m?2 + b2.

TANGENT TO A HYPERBOLA WITH GIVEN SLOPE. ... t\utiteiteineainanennnn. hypslp.nb

Show that the lines tangent to the hyperbola 22/a? — y?/b* = 1 with slope m are given
by y = mz & Va?m?2 — b2

TANGENCY POINT ON CIRCLE. ...ttt e tancirpt.nb

Show that if a line Az + By + C = 0 is tangent to a circle (z — h)? + (y — k)2 = r? then
the coordinates of the point of tangency are

- Ar? o — Br?
Ah+ Bk +C’ Ah+Bk+C /)"

MONGE’S THEOREM.ottt ettt et et e e e e e e monge .nb

Given three circles and the external tangent lines of the circles taken in pairs, show that
the three intersection points of the three tangent pairs lie on a straight line.

LINE TANGENT TO A CONIC. « ittt ittt ettt Intancon.nb

Show that the relationship between the coefficients of a line px 4 qy + r = 0 tangent to the
conic Az? + Bxy + Cy? + Dx + Ey + F = 0 is given by

(ACF — E2)p? + (4AF — D?)¢? + (4AC — B?)r2+
2(BD —2AFE)qr 4+ 2(BE —2CD)pr + 2(DE — 2BF)pq = 0.

NORMALS AND MINIMUM DISTANCE.ottt normal.nb

Given a point Py(zo,y0) and a quadratic @, find point(s) P(z,y) on @ such that the line
PP, is perpendicular to @ at P. Such a line is called a normal to the quadratic. Use the
points P to find the minimum distance from Py to Q. Assume that Py and @ are defined
numerically.

Chapter 19

Tangent Circles

In our study of circles we noted that the equation of a circle
(@ —h)?+(y — k) =1

has three parameters, h, k and r, that may be varied independently. A circle, therefore, is
said to have three degrees of freedom (DOF). These degrees of freedom allow us to construct
a circle so that it meets three conditions. Some common conditions and the corresponding
equations that establish the condition are shown in Table 19.1.

By specifying a combination of conditions so that the degrees of freedom add up to three,
we can then solve three simultaneous equations in three unknowns (h, k and r) and determine
the (possibly empty) set of circles that satisfy the conditions. For economy of expression in
the following sections, we will use the convention that a point which is on a circle (i.e. satisfies
the equation of the circle) will be said to be tangent to the circle.

19.1 Tangent Object, Center Point

To construct a circle tangent to an object (a point, line or circle) with a given center point,
we select equations as follows from Table 19.1. To establish the condition that a circle be
tangent to a point, line or circle, we select the appropriate equation from cases [5], [6] or [7];
to establish the condition that a circle have a given center point we select the two equations
from case [1]. Solving these three equations in three unknowns produces the values for the
parameters h, k and 7 of the circles which satisfy the stated conditions.

Example. Construct the circle(s) tangent to the circle 22 + y? = 4 with center
point (—1,0) and plot.

Solution. The function TangentCircles2D [{circle}, point] returns a list of cir-
cles tangent to a circle with a given center point.

283

284

Chapter 19 Tangent Circles

Table 19.1: Circle tangency equations.

‘ CASE ‘ CONDITION EQUATION(S) ‘ DOF ‘
[1] Fixed radius r=r 1
1
2] Fixed center point h=xz; and k=1 2
(z1,91)
[3] Center on line Ath+Bik+Ci =0 1
A1z + Biy+Cy =0
[4] Center on circle (h—h1)?+ (k—k1)? =13 1
(o=)+ (g = k) = 73
[5] Through a point (r1 — h)? + (y1 — k)% = r? 1
(z1,91)
[6] Tangent to a line (A2 + B?)r? = 1
Az +Biy+C; =0 (A1h + Bik + C1)?
[7] Tangent to a circle (D — (ry —1)?)x 1
(= 11)* +(y — k1)* =17 (D~ (r1+71)%) =0,
where
D= (h1 —h)?+ (k1 — k)?

19.2 Tangent Object, Center on Object, Radius 285

In[1]: cirs = Tangent Circl es2D[{cl = Circl e2D[{0, O}, 21},
pl="Poi nt2D[{-1, 0}]1]

out[1] {Circle2D[{-1, 0}, 1], Grcle2D[{-1, O}, 3]}
In[2]: Sketch2D[{pl, cl, cirs}];
3
2

-4 -3 -2 -1 0 1

N

/‘\k\ DescartazD Hint. TangentCircles2D[{pt|in| cir}, point] is the general func-
M tion that returns a list of circles tangent to an object (a point, line or circle) with
a given center point. The vertical bar syntax separating the point, line and circle
arguments indicates that a point, line or circle may be specified.

19.2 Tangent Object, Center on Object, Radius

To construct a circle tangent to an object (a point, line or circle) with center point on an
object (a line or circle), with a given radius, we select equations as follows from Table 19.1.
To establish the condition that a circle be tangent to a point, line or circle, we select the
appropriate equation from cases [5], [6] or [7]; to establish the condition that the center of the
circle be on a given line or circle we select the appropriate equation from cases [3] or [4]; to
establish the condition that the circle have a given radius we select the equation from case [1].
Solving these three equations in three unknowns produces the values for the parameters h, k
and r of the circles which satisfy the stated conditions.

Example. Construct the circle(s) tangent to the circle #2 + y? = 4, center on the
line x — 2y + 1 = 0 and with radius 1 and plot.

Solution. The function TangentCircles2D[{circle}, line, r1 returns a list of
circles tangent to a given circle, with center on a line, with a given radius.

286 Chapter 19 Tangent Circles

In[3]: cirs =Tangent Circl es2D[{cl =Circl e2D[{0, 0}, 2]},
|1 =Line2D[1, -2, 1], 1]
out[3] {Circle2D[{-1, 0}, 1],
Grele2[(3, g} 1], Grele2d[{4 (-1-4viT), & (1-viI)}, 1],
Grele2D[{§ (-1+441T), & (1+vI1)}, 1]}

1n[4]: Sketch2D[{l 1, c1, cirs}];

NN Descartazp Hint. TangentCircles2D[{pt|In|cir}, In| cir, r1 is the general-
ized function that returns a list of circles tangent to an object (a point, line or
circle) with center on a line or circle, with a given radius, .

19.3 Two Tangent Objects, Center on Object

To construct a circle tangent to two objects (points, lines or circles) with center point on
an object (a line or circle), we select equations as follows from Table 19.1. To establish the
condition that a circle be tangent to a point, line or circle, we select the appropriate equation
from cases [5], [6] or [7]—this produces two equations (one for each tangent object); to establish
the condition that the center be on a line or circle we select the appropriate equation from
cases [3] or [4]. Solving these three equations in three unknowns produces the values for the
parameters h, k and r of the circles which satisfy the stated conditions.

Example. Construct the circle(s) tangent to the two circles
(x+2)2+9y*=1 and (z—2)2+y* =1,

with center point on the line x — 2y + 1 = 0 and plot.

Solution. The function TangentCircles2D[{cir, cir}, linel returns a list of cir-
cles tangent to two circles, with center point on a given line.

19.4 Two Tangent Objects, Radius 287

In[5]: cirs = TangentCircl es2D[{cl =Circl e2D[{-2, 0}, 1],
c2=Circle2D[{2, 0}, 11},
I1=Line2D[1, -2, 1]]

out[s5] {CGircle2D[{-1, 0}, 2], Grcle2D[{0, i}, L (-2+17)],

2 2
arelezn[{o, 1}, L (2.vi7)], arelean[{13, 12} 26))

n[6]: Sketch2D[{l 1, c1, c2, cirs}];

I'I\)II—‘OI—‘I\)(JO
%g

>

4 -2 0 2 4

/‘\k\ Descartazp Hint. TangentCircles2D[{pt|In| cir, pt|in| cir}, in|cirl is the
AN general function that returns a list of circles tangent to two objects (points, lines
or circles) with center point on a line or circle.

19.4 Two Tangent Objects, Radius

To construct a circle tangent to two objects (points, lines or circles) with a given radius, we
select equations as follows from Table 19.1. To establish the condition that a circle be tangent
to a point, line or circle, we select the appropriate equation from cases [5], [6] or [7]—this
produces two equations (one for each tangent object); to establish the condition that the
circle have a given radius we select the equation from case [1]. Solving these three equations
in three unknowns produces the values for the parameters h, k and r of the circles which
satisfy the stated conditions.

Example. Construct the circle(s) tangent to the two circles
(x+2)%+9y?>=9 and (z—2)2+4*> =09,

with a radius of 1 and plot.

Solution. The function TangentCircles2D [{circle, circle}, r] returns a list of
circles tangent to two circles, with a given radius.

288 Chapter 19 Tangent Circles

In[7]: cirs =TangentCircl es2D[{cl =Circl e2D[{-2, 0}, 3],
c2=Circle2D[{2, 0}, 31}, 1]

out (7] {G rcIeZD[{f%, 7l/£—} 1], Gircl ezDHfg, \—/;—5—} 1],

2
Gircle2D[{0, 0}, 1], Gircle2D[{0, -2+/3}, 1], Circle2D[{0, 2+/3}, 1],
O‘rcleZD[{%, 7@} 1], O'rcleZD[{%, @} 1]}

1n[8]: Sketch2D[{cl, c2, cirs}];

4

NN Descartazp Hint. TangentCircles2D[{pt|in| cir, pt|in|cir}, r] is the gen-
eral function that returns a list of circles tangent to two objects (points, lines or
circles) with a given radius, r.

19.5 Three Tangent Objects

To construct a circle tangent to three objects (points, lines or circles), we select equations
as follows from Table 19.1. To establish the condition that a circle be tangent to a point,
line or circle, we select the appropriate equation from cases [5], [6] or [7]—this produces three
equations (one for each tangent object). Solving these three equations in three unknowns
produces the values for the parameters h, k and r of the circles which satisfy the stated
conditions.

Example. Construct and plot the circle(s) tangent to the three lines xt —y+1 = 0,
r+y—1=0and y+1=0.

Solution. Use the function TangentCircles2D[{in, In, In}]1 that returns a list
of circles tangent to the three lines.

19.6 Explorations 289

In[9]: cirs = Tangent G rcl es2D[{
I1=Line2D[1, -1, 1],
|2 =Line2D[1, 1, -1],
13 =Line2D[0, 1, 1]}] //Sinplify

out[9] {Gircle2D[{0, -3-2+/2}, 2+2+/2], Circle2D[{0, -3+2+/2}, -2+2+/2],
Grcle2D[{-2+/2, 1}, 2], Grcle2D[{2+/2, 1}, 2]}

In[10]: Sketch2D[{l 1, 12, 13, cirs}, PlotRange -> {{-5, 5}, {-5, 5}}1;

4
2
DAL
-2
-4

-4 -2 0 2 4

X~ Descartazp Hint. The function TangentCircles2D[{obj, obj, 0bj3}] is the
\a 9

general function that returns a list of circles tangent to three objects (points,
lines or circles).

19.6 Explorations

ARCHIMEDES’ CIRCLES. .+« et ottt et e e e e e e archimed.nb

CI/
3

i
r2

“Y

290 Chapter 19 Tangent Circles

Draw the vertical tangent line at the intersection point of the two smaller tangent circles, ¢;
and cg, in an arbelos (shoemaker’s knife, see figure). Prove that the two circles C' and C”
tangent to this line, the large semicircle, ¢s and ¢; and ¢y are congruent (have equal radii).
These circles are known as Archimedes’ Circles.

CIRCLE TANGENT TO CIRCLE, GIVEN CENTER ... tttittattataenenneanenn. tancirl.nb
Show that the radii of the two circles centered at (hi, k1) and tangent to the circle

(& = h2)* + (y — k2)* =13

are given by
r=|d=£re

where d = /(h1 — h2)2 + (k1 — k2)2. This formula is a special case of the Descarta2D function
TangentCircles2D [{pt| In| cir}, point].

CIRCLE TANGENT TO CIRCLE, CENTER ON CIRCLE, RADIUS. tancir2.nb

Show that the centers (h, k) of the two circles passing through the point (z1, y1) with center
on the circle z2 + 2 = 1 and radius » = 1 are given by

4 —d? NI
(h,k):<%i7yl LAy 1)

2d; "2 2d;

where d; = \/x? + y?. This is a special case of the Descarta2D function
TangentCircles2D[{pt| In| cir}, In| cir, r]

that constructs a list of circles.

CIRCLE TANGENT TO TWO LINES, RADIUS.ot tancir3.nb
Show that the centers (h, k) of the four circles tangent to the perpendicular lines

Az +Biy=0 and — Bixz+ A1y=0
with radius r = 1 are given by

(h,k) = (A1 — B1, A1+ By),

= (A1 + By, —A1 + By),
(—A; — B1,A1 — By) and
(A1+B1,—A1—Bl).

Assume that the two lines are normalized, A? + B? = 1. This construction is a special case of
the Descarta2D function TangentCircles2D[{obji, obja}, 71 when the two objects are lines.

19.6 Explorations 291

CIRCLE THROUGH TWO POINTS, CENTER ON CIRCLE.tutiieeneennnn.. tancir4.nb

Show that the radii of the two circles passing through the points (0,a) and (0, —a) with
centers on the circle 2% + y? = rZ are both given by

r=1/a?+r3.

This is a special case of TangentCircles2D[{obj1, obja}, In| cir]l where the two objects are
points.

CIRCLE TANGENT TO THREE LINES.........iiitiiiii i tancirb.nb
Show that the radii of the four circles tangent to the lines

r=0,y=0 and Az + By+C =0,

are given by

r=|

_c
1+A+B
taking all four combinations of signs and assuming the lines are normalized. This is a special

case of the function TangentCircles2D [{obji, obja, 0bjs}] where all three of the objects are
lines.

CIRCLES TANGENT TO AN ISOSCELES TRIANGLE.ovuuntiiiiiinanennnnn. tncirtri.nb

A circle is inscribed in an isosceles triangle with sides a, a and 2b in length. A second,
smaller circle is inscribed tangent to the first circle and to the equal sides of the triangle. Show
that the radius of the second circle is

L Ja—bp
"= T

Assume that a > b.

Chapter 20

Tangent Conics

The most general quadratic equation in two unknowns
Az + Bry+Cy* + Dz +Ey+F =0

has six coefficients, but since we can divide the coefficients by any non-zero constant, say F,
without altering the equality obtaining

A2> 4+ Bay+C'y>’+Dx+FE'y+1=0

a quadratic equation only has five degrees of freedom. Thus we may specify five conditions (or
constraints) on a quadratic equation. In this chapter we will investigate the construction of
conic curves (circles, parabolas, ellipses and hyperbolas) that satisfy a set of five conditions,
when the conditions are of two specific types: either passing through a given point, or tangent
to a given line. The resulting equations are sufficiently complex that obtaining the solutions
in symbolic, closed form is of no practical value, so we will illustrate the solution techniques
and use the numerical capabilities of Mathematica to compute specific solutions.

20.1 Constraint Equations

As mentioned in previous chapters, if the curve represented by the quadratic equation
Az? + Bry+Cy* + Dz +Ey+F =0

passes through the point Pj(x1,y1), then the point will satisfy the equation yielding the

relationship
Az? + Bxyy, + Cy? + Dxy + Eyy + F = 0. (20.1)

It has also been shown in previous chapters that the line pz + qy + r = 0 will be tangent to
the curve represented by the quadratic equation if the coefficients satisfy the equation
(4CF — E?)p? + (4AF — D*)¢® + (4AC — B*)r*+

20.2
2(BD —2AFE)qr+ 2(BE — 2CD)pr + 2(DE — 2BF)pq = 0. (20-2)

293

294 Chapter 20 Tangent Conics

20.2 Systems of Quadratics

In this section we will outline the general technique for finding quadratics that pass through
the four points of intersection of two quadratic curves. These techniques will be the basis for
subsequent sections wherein we will find quadratics satisfying a variety of conditions.

Two quadratics intersect in four points (four real, two real and two complex, or four
complex) since each equation is of the second degree. If

Q1 = A2’ 4 Biay+ Ciy? + Diz+ Eyy+ Fy =0 and
QQ = AQ(E2 + ngy + ng2 + Dox + E2y +F,=0

represent the equations of the two quadratics, then Q = Q1 + kQ2 = 0, for any constant k, is
the equation of a quadratic through the points of intersection of)1 and Q2. The equation @
is called a system or pencil of quadratics, and placing one additional condition on the equation
for @ allows us to solve for k and find a specific quadratic in the pencil. The equation of the
pencil is sometimes written as @ = (1 — k)Q1 + kQ2 in order to allow the original quadratics,
@1 and Q2, to be in the pencil (for K = 0 and k = 1, respectively).

Example. Find the quadratic that passes through the intersection of the ellipse
22 + 4y?> — 10z — 39 = 0 and the hyperbola —z? 4+ y?> — 1 = 0 and also passes
through the point (—4,0).

Solution. The equation of the quadratic pencil containing the solutions is
(22 + 4y* — 102 — 39) + k(—2* + 3> — 1) =0,

and this must be satisfied by (—4,0). Hence, solving for k yields £k = 1 and the
final equation of the conic sought is 2% + 2y — 8 = 0 (a parabola).

1n[1]: Sketch2D[{Quadratic2D[1, O, 4, -10, 0, -39],
Quadratic2D[-1, O, 1, 0, 0, -1],
Quadr ati c2D[0, 0, 1, -2, 0, -8],

Poi nt 2D[{-4, 0}1},
CurvelLengt h2D -> 40,
Pl ot Range -> {{-10, 15}, {-6, 6}}1;

Pz
Ve

-5 0 5 10 15

ORNONDMOD

20.2

Systems of Quadratics

\

N

DescartazD Hint. Quadratic2D[quad, quad, k, Pencil2D] returns a quadratic
parameterized by the variable k representing the pencil of quadratics passing
through two quadratics.

A Degenerate Case

If @ = 0 is the equation of a quadratic and L = 0 is the equation of a straight line, then
Q + kL? = 0 is the equation of a quadratic tangent to) at the intersection points of @ = 0
and L = 0. We may think of L? = 0 as a (degenerate) quadratic (two coincident lines)

intersecting @ = 0 in two pairs of coincident points each.

Example. Find the quadratic tangent to @ = 22 —y? —y+1 = 0 at the points of
intersection of @ and L = 3z — 2y — 1 = 0 and passing through the point (—1,0).

Solution. The equation is of the form
(> =y —y+1)+kBz -2y —-1)*=0.

Substituting (—1,0) into this equation we get k = 1/8, which yields as the equation
of the conic sought

2% —12xy + 12y — 62 + 12y — 7 = 0 (a hyperbola).

In[2]: Sketch2D[{Quadratic2D[1, 0, -1, 0, -1, 1],
Li ne2D[3, -2, -11,
Quadratic2D[1, -12, 12, -6, 12, -7],
Poi nt 2D[{-1, 0}1}1;

NZARN

296 Chapter 20 Tangent Conics

N\
\\P4
Ps
P
I i——
P ~
PN ™
AN

Figure 20.1: Quadratic through five points.

20.3 Validity Conditions

In the remainder of this chapter we will outline techniques for finding conics that satisfy five
conditions. The conditions will be of two types: either passing through a given point, or
tangent to a given line. The following assumptions are made with respect to the five points
and/or lines:

e 10 pair of points is coincident,

e 1o pair of lines is coincident,

e no triple of points is collinear,

e no triple of lines is concurrent,

e no triple of lines is mutually parallel,

e no more than one point is on each line, and

e no more than one line passes through each point.

Degenerate conics may exist that satisfy configurations of points and lines that violate these
restrictions, but we will focus our attention on cases that produce proper conics (circles,
parabolas, ellipses and hyperbolas).

20.4 Five Points

Given five points, P;, Py, P35, Py and P;, satisfying the validity conditions stated in Sec-
tion 20.3, we wish to find the quadratic that passes through all five points. Consider the
lines Li2, L34, L13 and Loy passing through the points in pairs as shown in Figure 20.1. Let

20.4 Five Points 297

Q1 = L12L34 be a (degenerate) quadratic (a pair of lines) passing through Py, P», Ps and Py.
Similarly, let Q2 = Li3L24 = 0 be a second quadratic passing through the same four points.
The equation @ = Q1 + kQ2 = 0 will then represent the pencil of quadratics parameterized
by the variable k passing through the four points.

Applying Equation (20.1), by substituting the coordinates of the point Ps into the equation
for), we can solve this linear equation for the value of k, thereby yielding the specific quadratic
in the pencil of quadratics that passes through all five points. Mathematica can be used to
solve for k and form the symbolic equation for @, although the result is quite cumbersome
in expanded form. A determinant can be used to represent the resulting quadratic in a more
convenient and simplified form and is given by

Ty T4Ys Yy T4 Y4

2
Ty TsYs Ys Ts Ys

22 xzy v oz oy 1

@} oz oy w1

0= a3 Tays Y5 w2 Y2 1
a3 ways Y3 w3 yz 1

2 2 1

1

Example. Find the quadratic passing through the five points (3,0), (3,1), (0, 1),
(—3,0) and (0,—1).

Solution. The function Quadratic2D[pt, pt, pt, pt, pt] returns the quadratic
passing through the five points.

In[3]: pts = {pl =Point2D[{3, 0}], p2 = Poi nt 2D[{3, 1}1,
p3 = Poi nt 2D[{0, 1}], p4 = Poi nt 2D[{-3, 0}1,
p5 = Poi nt 2D[{0, -1}1};
gl = Quadrati c2D[pl, p2, p3, p4, p5]

out (3] Quadratic2D[36, -108, 324, 0, 0, -324]

Example. Find the conic represented by the quadratic found in the previous
example. Plot the points and the conic curve.

Solution. The conic can be determined directly from the result of the previous
example using the function Loci2D [quad]. Descarta2D also provides the function
TangentConics2D [{pt, pt, pt, pt, pt}]1 that constructs a list containing the conic
directly from the five points.

298 Chapter 20 Tangent Conics

In[4]: {Loci 2D[gl], crvl = Tangent Coni cs2D[pts]} // N

out[4] {{Ellipse2D[{0, 0}, 3.51606, 0.985223, 0.179385]},
(Elli pse2D[{0, 0}, 3.51606, 0.985223, 0.179385])}}

In[5]: Sketch2D[{pts, crvi1}];

©
) oo g ok

. Descartazp Hint. TangentQuadratics2D[{pt, pt, pt, pt, pt}] constructs a
list containing the single quadratic passing through five points. Except for the
fact the TangentQuadratics2D checks for the validity conditions stated in Sec-
tion 20.3, this function is equivalent to Quadratic2D[pt, pt, pt, pt, pt].

20.5 Four Points, One Tangent Line

In this section we will consider the construction of quadratics and conics passing through four
points and tangent to a line. Two cases are distinguished: the first constructs the quadratic
or conic when none of the given points lie on the tangent line; the second constructs the
quadratic or conic when one of the given points does lie on the tangent line.

Points Not on a Tangent Line

Assume that points Py, P», Ps and Py and line L5 as shown in Figure 20.2 satisfy the validity
conditions stated in Section 20.3 and that none of the four points lie on Ls. To find the
equation of the quadratic passing through the four points and tangent to the line, we form a
pencil of quadratics passing through the four points parameterized by the variable k that is
given by

Q= LioL3s +kLi3Lay = 0.
We now apply the condition that line Ly is tangent to @ by using Equation (20.2) resulting in

a quadratic equation in the variable k. Solving this equation yields two values for k that can
be substituted into the equation for @, giving two quadratics satisfying the stated conditions.

20.5 Four Points, One Tangent Line

299

Figure 20.2: Four points, one line, no points on the line.

Example. Find the quadratics passing through the points (2, 1), (=2,1), (-2, —1)
and (2, —1) and tangent to the line 3z+4y—12 = 0. Plot the conic curves associated
with the quadratics.

Solution. The Descarta2D function TangentQuadratics2D [{pt, pt, pt, pt, In}]
constructs a list of quadratics passing through the four points and tangent to
the line. TangentConics2D[{pt, pt, pt, pt, In}] constructs a list of conic curves
passing through the four points and tangent to the line. Both functions allow the
points and line to be listed in any order.

In[6]: objs = {Point2D[{2, 1}], Point2D[{-2, 1}],
Poi nt 2D[{-2, -1}], Point2D[{2, -1}],
Li ne2D[3, 4, -121};
Tangent Quadr at i cs2D[obj s]

out (6] {Quadrati czo[% (-23-+/385), 0, -2 (-23-+/385) - 16 (1 L (23 /385)),

8
0,0, 16 (1+% (23++/385))], Quadratic2D[5 (-23+/385), 0,
-2 (-23++/385) - 16 (1+% (23-+/385)], 0, 0, 16 (1+é (23-+/385))]}

In[7]: crvs = Tangent Coni cs2D[obj s] // N

out(7] {Ellipse2D[{0, 0}, 2.51549, 2.17963, 1.5708],
El li pse2D[{0, 0}, 3.67034, 1.19261, 0]}

In[8]: Sketch2D[{objs, crvs}i;

300 Chapter 20 Tangent Conics

Figure 20.3: Four points, one line, one point on the line.

NFRORPNWRAO

One Point on Tangent Line

We now examine the case when one of the four points is on the tangent line. Consider the
points P, P, Ps and P, and the line L; as shown in Figure 20.3 satisfying the validity
conditions stated in Section 20.3, where the point P; is on L;. Since the desired quadratic
is tangent to Ly at P;, we can consider P; to be a pair of coincident intersection points of
the pencil of quadratics passing through the four points Py, P, and P5 (P is counted as two
coincident intersection points). We now form the pencil of quadratics parameterized by the
variable k& and given by Q = LioL13 + kL1Loz = 0. The coordinates of the remaining point,
Py, must satisfy the equation of the quadratic, and by applying Equation (20.1) we generate
a linear equation in the variable k£ that can be solved yielding the single quadratic equation
satisfying the stated conditions.

Example. Find the conic curve passing through the points (2,0), (0,1), (—2,0)
and (0,—1) and tangent to the line y = 1.

20.6

Three Points, Two Tangent Lines 301

Solution. The function TangentConics2D[{pt, pt, pt, pt, In}] returns a list of
conic curves passing through four points and tangent to a line. The points and
line may be listed in any order.

In[9]: crv = Tangent Coni cs2D[
obj s = {Poi nt2D[{2, 0}], Poi nt2D[{0, 1}1,
Poi nt 2D[{-2, 0}], Point2D[{0, -1}1,
Li ne2D[0, 1, -1]}]

out[9] {Ellipse2D[{0, 0}, 2, 1, 0]}
In[10]: Sketch2D[{objs, crv}, PlotRange -> {{-3, 3}, {-1.5, 1.5}}1;

1.

©

1
IC)
Ok 01O 01~ 01

—
-

DescartazDp Hint. In the remaining sections of this chapter we will use the
function TangentConics2D to find the tangent curves satisfying a variety of con-
ditions. The function TangentQuadratics2D is also available in all these cases
and will return a list of quadratics instead of a list of conic curves.

20.6 Three Points, Two Tangent Lines

We now consider the construction of a conic passing through three points and tangent to two

lines.

Three cases need to be considered: the first constructs the conic when none of the given

points lie on either of the tangent lines; the second constructs the conic when one of the given
points lies on one of the tangent lines; and, finally, two points lie on two of the tangent lines.

Points Not on Tangent Lines

Consider three points Py, P, and Ps and two lines L4 and Ls satisfying the validity conditions
stated in Section 20.3. We also assume that none of the points are on either line as shown
in Figure 20.4. The line Ly5 passing through the points of tangency between lines Ly and Ls
and the desired conic curve can be written in the form

Lis=ax+by—1=0

302 Chapter 20 Tangent Conics

L4
Ps Ls

Figure 20.4: Three points, two lines, no points on the lines.

assuming we can guarantee that L5 does not pass through the origin. The point P; is clearly
not on L4s because that would imply that the conic passes through three distinct, collinear
points, which clearly violates the validity conditions. Therefore, if we translate all five of the
original objects so that point P; is at the origin, we can guarantee that Ls5 does not pass
through the origin. Of course we need to perform the inverse translation on the resulting conic
curves to produce the solution for the geometry in its original position.

We now proceed with Lys = ax + by — 1 = 0, a line that does not pass through the origin.
Consider the pencil of quadratics parameterized by the variable k and represented by the
equation

Q= LyLs — kL35 = 0.

Solving this equation for k yields
1L
k=52
Lis

The right side of this equation is an expression in x and y involving the unknowns a and
b. The expression must produce the same value for k for any point (z,y) on the desired
quadratic. In particular, points P, P> and P; must all produce the same value for k. Using
the expression f[P,] to indicate the expression f evaluated at the point P,, we can write the
system of equations
LyLs
Li;

[P1] =

since all of these expressions must equal k. Rewriting these equations as a system of two
equations and cross-multiplying yields two quadratic equations in two unknowns, a and b,

(La[P))(Ls[P])(L35[P2)) = (LalP2))(Ls[Pa])(L35[P1])
(La[Pa])(Ls[Pa]) (L35 P1])

I
s
B
~
=
o
~
=
=N
o
&

20.6 Three Points, Two Tangent Lines 303

Solving these equations for a and b yields four pairs of solutions which can be substituted into

LiL,
k=—2(p
Lis 7]

producing four quadratics Q satisfying the stated conditions. The resulting quadratics may
be translated back to the original position of the defining objects by translating the origin
back to P;.

Example. Find the conics passing through (1,0), (0,—1), (1/v/2,—1//2) and
tangent to the lines x =1 and y = —1.

Solution. The function TangentConics2D[{pt, pt, pt, In, In}] returns a list of
conic curves passing through three points and tangent to two lines. The points
and lines may be listed in any order.

In[11]: objs = {Poi nt 2D[{1, 0}], Poi nt2D[{0, -1}],
Poi nt 2D[{1/Sqrt [2], -1/Sart [2]1}],
Li ne2D[0, 1, -1], Line2D[1, O, 11};
crvs = Tangent Coni cs2D[obj s] // N

out[11] {Circle2D[{0, 0}, 1.7,
El |i pse2D[{0. 135729, -1.32236}, 2.57181, 0.262711, 1.12421],
El | i pse2D[{0. 600884, -0.600884}, 2.259, 0.150221, 0.785398],
El li pse2D[{1. 32236, -0.135729}, 2.57181, 0.262711, 0.446587]}

In[12]: Map[Sketch2D[{objs, #},
Pl ot Range -> {{-2, 4}, {-4, 2}}1&
crvsl;

2 2
o p o
: 1|
-3 -3
-4 -4

-1012 3 4 -1012 34

304 Chapter 20 Tangent Conics

Figure 20.5: Three points, two lines, one point on a line.

2 2
: 7 : _
-1 l//'/' -1 /0//‘/
-2 / -2

-3 -3

-4 -4

-1012 34 -1012 3 4

One Point on Tangent Line

We now consider the case where one of the three points is on one of the two tangent lines.
Assume that point P; is on line L and points P, and Ps are on neither line L, or L4 as shown
in Figure 20.5. Also, we assume the points and lines satisfy the validity conditions stated in
Section 20.3. We form the pencil of quadratics

Q=L1Los+kLi2Ls

where Li2, L13 and Log are the lines passing through points P, and P, P, and P53 and P»
and Ps, respectively. We now apply the tangency condition by using Equation (20.2) with @
and line L4 to form a quadratic equation in the variable k. Solving the equation for k£ gives
the two quadratics passing through the points and tangent to the lines.

Example. Find the conic curves passing through the points (0,1), (—=3,0) and
(0, —1) and tangent to the lines y =1 and x — 2y — 3 = 0.

20.6 Three Points, Two Tangent Lines 305

Figure 20.6: Three points, two lines, two points on the lines.

Solution. The function TangentConics2D[{pt, pt, pt, In, In}] returns a list of

conic curves passing through three points and tangent to two lines. The points
and lines may be listed in any order.

In[13]: objs = {Poi nt 2D[{0, 1}], Poi nt2D[{-3, 0}], Poi nt 2D[{0, -1}],
Li ne2D[O, 1, -1], Line2D[1, -2, -3]1};
crvs = Tangent Coni cs2D[obj s] // N

out(13] {Ellipse2D[{-2.54874, -1.26827}, 3.8739, 1.32515, 0.530218],
El i pse2D[{-0. 267309, -0.00955005}, 2.7504, 1.00402, 0.0412054]}

In[14]: Sketch2D[{objs, crvs}i;

1 y

0)Y

: v

-2
-3

-6 -4 -2 0 2 4

Two Points on Tangent Lines

Let P, be a point on line Ly, P;3 be a point on line L3, and P, a point not on either line as
shown in Figure 20.6 and assume that these points and lines satisfy the validity conditions

306 Chapter 20 Tangent Conics

stated in Section 20.3. We form the pencil of quadratics
Q=IL1L3+kLi; =0

where L3 is the line passing through points P; and P;. We now apply Equation (20.1)
establishing the condition that P, must be on @ and, therefore, the coordinates (z3,y2) must
satisfy (). We can solve this linear equation for k and determine the coefficients of the quadratic
@ satisfying the stated conditions.

Example. Find the conic curve passing through the points (2,1), (—2,1) and
(0,2) and tangent to the lines t — 3y +1=0and 2z +y + 3 = 0.

Solution. The function TangentConics2D[{pt, pt, pt, In, In}] returns a list of
conic curves passing through three points and tangent to two lines. The points
and lines may be listed in any order.

In[15]: objs = {Poi nt2D[{2, 1}], Point2D[{-2, 1}], Poi nt2D[{0, 2}1,
Li ne2D[1, -3, 1], Line2D[2, 1, 31};
crvs = Tangent Coni cs2D[obj s] // N

out[15] {Ellipse2D[(0. 463576, 1.37086}, 2.50231, 0.689197, 0.122489]}

In(16]: Sketch2D[{objs, crvs}];

4

o

P OFP NW

Notice that a ConicArc2D object is a special case of this construction where the start and
end points are the points P; and P3 and the apex point defines the lines Ly and Ls.

20.7 Conics by Reciprocal Polars

In this section we will introduce the concept of reciprocal polars, and a technique that will
allow us to solve tangent conic problems involving more than two tangent lines. Proofs of all
the concepts involved in these techniques are beyond the scope of this book, but applying the
techniques to solve tangent conic problems is easily grasped.

20.7 Conics by Reciprocal Polars 307

Let C be a circle in the plane and P a point. The reciprocal of P with respect to C' is
simply the polar line of P with respect to C. Similarly, let L be a line. The reciprocal of L
with respect to C' is the pole point of L with respect to C. It is noteworthy that the center
point of the circle has no reciprocal, and any line passing through the center of the circle has
no reciprocal.

If we have any figure consisting of any number of points and straight lines, and we take the
polars of those points and the poles of the lines, with respect to a circle C, we obtain another
figure which is called the polar reciprocal of the former with respect to the auziliary circle C.
When a point in one figure and a line in the reciprocal figure are pole and polar with respect
to the auxiliary circle, C, the point and line are said to correspond to one another.

An important theorem from the analytic geometry of conics states that taking the recip-
rocal of all the points of a conic (with respect to some auxiliary circle C' will produce an
envelope of lines tangent to another conic @)'. Furthermore, any line tangent to @ will corre-
spond to a point P’ on @', and any line L’ tangent to @’ will correspond to a point P on Q
(always using C as the auxiliary circle).

We use this theorem as follows to find conics tangent to three, four or five lines and passing
through a corresponding number of points so the total number of conditions equals five. First
we apply an arbitrary translation to the objects to insure that none of the points lie at the
origin and that none of the lines pass through the origin. We now take the reciprocal of the
points or lines with respect to a unit circle centered at the origin, thereby producing a new
figure of corresponding lines and points. Note that if there are three or more lines in the
original figure, there will be two or fewer lines in its reciprocal.

We now apply the techniques developed in the previous sections of this chapter to find
the quadratics(s) satisfying the conditions imposed by the elements in the reciprocal figure.
Finally, we find the reciprocal of the resulting quadratic with respect to the auxiliary circle
yielding the sought-after quadratics in the original figure. If the equation of the quadratic in
the reciprocal figure is

Q =ax’ +bay+cy’? +dr+ey+f=0
then its equation in the original figure is given by
Q' = (def — €2)2? + (2de — 4bf)zy + (daf — d*)y*+
(4ed — 2be)x + (4ae — 2db)y + (dac — b?) = 0.

The validity of this relationship is demonstrated in the exploration recquad.nb. The rela-
tionship between @ and @’ is only valid when the auxiliary circle is a unit circle at the origin
(2 +y?=1).

Two Points, Three Tangent Lines

Example. Find the conic curves passing through the points (3, —1) and (1,0) and
tangent to the lines 4z —y—3 =0,z +2y—3 =0and y = —2.

308 Chapter 20 Tangent Conics

Solution. The function TangentConics2D [{pt, pt, In, In, In}] returns a list of
conic curves passing through two points and tangent to three lines. The points
and lines may be listed in any order. If neither point is on any of the lines, there
are at most four real conic curves; if one of the points is on one of the lines, then
there are at most two real conic curves; if two of the points are on the tangent
lines, then there is at most one real conic curve.

In[17]: objs = {Point2D[{3, -1}], Poi nt2D[{1, 0}], Line2D[4, -1, -3],
Li ne2D[1, 2, -3], Line2D[O0, 1, 2]1};
crvs = Tangent Coni cs2D[obj s] // N

out[17] {Ellipse2D
El li pse2D
El'lipse2D
El I'i pse2D

(1.79784, -0.811805}, 1.30361, 1.13329, 0.587329],
(2.03133, -0.577222}, 1.71297, 0.620762, 2.21117],
(3.64793, -0.854517}, 3.04088, 0.374464, 2. 77469],
(3.77722, -0.99446}, 3.18508, 0.250467, 2.82987]}

In[18]: Sketch2D[{objs, crvs},
Cur veLengt h2D -> 20,
Pl ot Range -> {{-1, 8}, {-4, 2}}1;

One Point, Four Tangent Lines

Example. Find the conic curves passing through the point (—1,1) and tangent
to the lines4de —y—3=0,2+2y—3=0,z=—-3 and y = —2.

Solution. The function TangentConics2D[{pt, in, In, In, In}] returns a list of
conic curves passing through a point and tangent to four lines. The points and
lines may be listed in any order. If the point is not on any of the lines, there will
be at most two real conic curves; if the point is on one of the lines, then there will
be at most one real conic curve.

20.7 Conics by Reciprocal Polars 309

In[19]: objs = {Point2D[{-1, 1}], Line2D[4, -1, -3],
Li ne2D[1, 2, -3], Line2D[1, 0, 3], Line2D[O, 1, 2]1};
crvs = Tangent Coni cs2D[obj s] // N
out[19] {Ellipse2D[{-1.35291, 0.441105}, 2.88243, 0.602889, 2.14575],
El | i pse2D[{-1. 05825, -0.344658}, 2.29656, 1.11191, 0.656401]}

In[20]: Sketch2D[{crvs, objs}, PlotRange -> {{-4, 2}, {-3, 3}}1;

3
2
1

-3-2-101 2

Five Tangent Lines

Example. Find the conic curve tangent to the five lines z — 2y +3 =0, z = 3,
2z — 3y —2 =0, y =2 and x = —2. Plot the lines and the conic curve.

Solution. The function TangentConics2D[{ln, In, In, In, In}] returns a list of
at most one conic curve tangent to five lines.

In[21]: objs = {Line2D[1, -2, 3], Line2D[1, 0, -3],
Li ne2D[2, -3, -2], Line2D[O, 1, -2], Line2D[1, 0, 2]};
crvs = Tangent Coni cs2D[obj s] // N

out [21] {Ellipse2D[{0.5, 0.833333}, 2.64903, 0.770563, 0.352906]}

In[22]: Sketch2D[{objs, crvs}, PlotRange -> {{-4, 4}, {-2, 3}}1;

3

2 —
1 //
0 ——

-1

-2

-3-2-10 1 2 3 4

310 Chapter 20 Tangent Conics

20.8 Explorations

RECIPROCALS OF POINTS AND LINES. ..ot recptln.nb

Show that the polar reciprocal of Ajz+B1y+C; = 0 in the auxiliary conic C' = 22 +y?> =1
is the point (—A;/C1,—B;1/C1), assuming that the line does not pass through the origin. Also,
show that the line z +y — 1 = 0 is the polar reciprocal of the point (x,y) with respect to C.

RECIPROCAL OF A CIRCLE. « .\ttt ittt et ettt et e ettt e e e reccir.nb

Given a circle O = (z — h)? + (y — k)? = r? show that its polar reciprocal in the auxiliary
conic #2 + y? = 1 is given by the quadratic

Q= (r* — h?)z? — 2hkay + (r* — k*)y* + 2hx + 2ky — 1 = 0.

Furthermore, show that @ is an ellipse, if the origin (0, 0) is inside C; a parabola, if the origin
is on C'; and a hyperbola, if the origin is outside C.

RECIPROCAL OF A QUADRATIC. ...\ttt e et e e e e ae e recquad.nb

Given a general quadratic Q = ax? + bxy + cy? + dx + ey + f = 0 show that the reciprocal
of @ is the quadratic

(def — e?)a® + (2de — 4bf)xy + (daf — d?)y>+
(4ed — 2be)x + (4ae — 2bd)y + (4ac — b?) =0

when the auxiliary conic is C' = 22 +y% = 1.

PARABOLAS THROUGH FOUR POINTS. ... pbé4pts.nb

Describe a method for finding the two parabolas passing through four points. Show that
the technique produces the correct results for the points (2,1), (-=1,1), (=2,—1) and (4, —3)
by plotting the parabolas and the four points.

EQUILATERAL HYPERBOLAS. ...\ttt ittt i hyp4pts.nb

Describe a method for finding the equilateral hyperbola(s) passing through four points.
Show that the technique produces the correct results for the points (2,1), (—=1,1), (=2,-1)
and (4, —3) by plotting the hyperbola(s) and the four points.

Chapter 21

Biarcs

In this chapter we will demonstrate some techniques for adding new functions to Descarta2D.
To make the demonstration realistic, we will introduce the mathematics for a new type of
tangent circle construction called a biarc. Biarcs are used in some graphical computer systems
to connect a set of data points with smoothly joined arcs. The mathematics of biarcs is by
itself interesting and will serve as a good example of extending the capabilities of Descarta2D.

21.1 Biarc Carrier Circles

A biarc is a composite curve consisting of two circular arcs, placed end to end with continuity
of slope at the join point. The two circles underlying the arc are called the biarc carrier
circles. The carrier circles may be internally or externally tangent to each other, and the
point of tangency that joins the two arcs is called the knot point of the biarc. Referring
to Figure 21.1, suppose we wish to construct a smooth curve between points Py (xl,yl) and
Pg(xg, Y2) such that the tangents to the curve at P; and P are the unit vectors Tl(ul, v1)
and Tg(ug, va). Pi, Pa, Ty and Ty are called the biarc configuration parameters.
The geometric condition that two circles are tangent can always be expressed as

sum or difference of radii = distance between the centers (21.1)

according to the kind of contact, external (sum of radii) or internal (difference of radii).

We take positive values of 71 and r3 to indicate that the center points of the carrier circles,
Cy and Cy, are offset in the direction of T} and T}, respectively. Tl(v1,u1) and Th(—va, usg)
are unit vectors constructed by rotating tangent vectors Ty and Th 90° counter-clockwise.
Suppose we now wish to form an expression for the left-hand side of Equation (21.1). It can
be shown that the expressions (11 +72)? and (r1 —r3)? represent all cases for the sum (squared)
and difference (squared) of the biarc radii for all combinations of positive or negative r; and
ro for both internally and externally tangent carrier circles.

We introduce a radius sign constant, s,, which may take on the values +1, in order to

311

312 Chapter 21 Biarcs

Figure 21.1: Biarc configuration parameters.

accommodate internally or externally tangent carrier circles in the same equation,
(sum or difference of radii)? = (11 + s,72)°. (21.2)

Note that it makes no difference whether we associate s, with 71 or ro, since after squaring
and applying s? = 1, the relationship is symmetric,

2 2 2.2 2 2
(r1 + spro)” = 1] + 28,1172 + S35 = 17 + 28,1172 + 15.
The carrier circle center points, C; and Cs, may be written as

Ci = (z1—wry,y+wir) (21.3)

Cy = (w2 —varg,ys + uars).

Combining Equations (21.2) and (21.3) as suggested by Equation (21.1), the sum or difference
of the radii (squared) equals the distance (squared) between Cy and Cs, yields

(r1 4 8,72)% = (w2 — varg) — (21 — v171))* + ((y2 + u2re) — (y1 +wir1))?. (21.4)
When simplifying Equation (21.4), note that the relationships u? +v? =1and ui +0v3 =1

can be used, since 77 and T5 are defined as unit vectors. Rearranging Equation (21.4) and
using the following substitutions

fo = wmuz+viv
fi = —vi(ze—z1)+ui(y2 —y1)
fo = —va(za — 1) +ua(y2 — y1)

& = (z2—21)*+ (y2 — 1)

21.1 Biarc Carrier Circles 313

produces the equation
2

r1ra(sr + fo) + fir1 — fara = % (21.5)

which establishes the general relationship between the radii, 1 and 72, of the carrier circles.
Constants fo, f1, fo and d are referred to as the biarc defining constants. Geometrically, fo
is the cosine of the angle between the tangent vectors, f1 is the (signed) distance from P, to
the line defined by 77 and Py, fo is the (signed) distance from P; to the line defined by P»
and Ty and d2 is the distance (squared) between points P; and P,. Note that these defining
constants depend only on the relative position of the defining geometry and are independent
of the choice of coordinate axes.

Radii Ratio

If a relationship between the carrier circle radii, 71 and ro, is specified, then Equation (21.5)
can be solved for the radii. We choose to specify the biarc radii ratio, kK = r1/re, as the
defining relationship. Substituting r; = k7o into Equation (21.5) produces the equation

2
k(s + fo)rs + (kfi — fo)rs = %. (21.6)

Solving Equation (21.6) by using the quadratic formula yields

(fo— 6f1) £/ (f2 — Kf1)? 4 26d% (s, + fo)

ry = (s + fo) (21.7)
R (f2— 6f1) £/ (f2 — £f1)? + 26d% (s, + fo)
b 2(s, + Jo) '

In the special case where the tangent vectors are in the same direction, the denominator
(sr + fo) will equal zero, and the quadratic equation degenerates and the solution of the
resulting linear equation is

kd? d?

“3h g M T wh)

Thus, by specifying a biarc radii ratio, k, and applying Equation (21.7) or (21.8) we
may calculate values for r; and ro. Equation (21.3) allows us to calculate the corresponding
coordinates of the carrier circle centers, C; and Cs. In certain configurations only one arc is
needed to satisfy the position and tangent constraints. In this case, the equations will produce
centers and radii for two identical circles.

T (21.8)

Number of Solutions

Given a specific pair of points, P; and P, and tangent vectors, 77 and T, we now consider
how many different carrier circle pairs exist for a given radii ratio, x. The solutions may be
enumerated as follows:

314 Chapter 21 Biarcs

e Equations (21.7) or (21.8) may produce negative values for r1 or ro. The sign indicates
the directions the center points C7 and C5 should be offset from P; and P, respectively.
As a result, both k¥ and —x may produce valid biarcs with a specified radii ratio.

e The radius sign constant, s,, may take on two different values, +1.

e The quadratic formula yields two different solutions due to the sign preceding the radical
sign as shown in Equation (21.7).

Therefore, as many as 2 x 2 X 2 = 8 unique carrier circle pairs may exist for a given biarc
configuration and radii ratio.

21.2 Knot Point

Suppose we wish to compute the coordinates of the knot point, Py(zo,yo), which is the point
of tangency between the two carrier circles. The coordinates of the knot point can be found
by intersecting the two circles and taking advantage of the fact that they intersect in a single
point yielding

(hl + hg)dQ — (hl — hQ)R

zg = B (21.9)
. (kl + kg)dQ — (k?l — kg)R
Yo = 502
where
d?> = (h1—ho)*+ (k1 — ko)? and
R = 7% —r2

While it is a simple matter to compute the knot point once we have the two carrier circles,
we might instead want to specify the position of the knot point. We will show in this section
that the knot point cannot be selected arbitrarily, but must lie on one of two specific circles,
called the knot circles. The following theorem and corollary from elementary geometry (which
are stated without proof) will be central to exploring the nature of the knot circles.

Theorem. Angles at the circumference of a circle subtended by the same arc are
equal.

Corollary. Given two fixed points P; and P, and a variable point @), the locus of
Q@ is a circle if ZPyQP; is a constant.

Consider two internally tangent carrier circles centered at Cy(rq,0) and Ca(r2,0) and with
radii 7y and 7o, respectively, as shown in Figure 21.2. By construction the two circles are
internally tangent at the origin. Pick two arbitrary points P; and P, on the circles with
coordinates

Py(ry + 71 cosy,r18in6y) and Pa(rq + 72 cosfa, 72 sin 6s).

21.2 Knot Point 315

Ly

Figure 21.2: Knot point angles.

We will show that the angle o = ZPyOP, is a constant angle for all such points P, and P
when the angle w is constant, and, having established this fact, we will apply the corollary
stated above to establish that the knot point must be on one of two circles.

The slopes of lines OP; and OP,, m; and ms, are given by

r1sin 6 sin 6

my = ! o ! :tan(%f)l)
r1 + 71 cos by 1+ cos 6
r9 sin 6 sin @

me = 2 2 = 2 —tan(%f)g)

r9 + 79 COS O3 14 cosfy
and the angle, o, between OP; and OP is

mo —miy

tan « _—
1+mime

tan (%92) — tan (%91)
1+ tan (%91) tan (%92)
= tan (%(92 —6))
1 —cos(f2 — 61)
1+ cos(f2 — 61)°

316 Chapter 21 Biarcs

Figure 21.3: Knot circles.

The angle w between the two tangent lines L; and Lo is given by

LLy— /11 = w(orm—w)
(024 %) —(01+%) = wlorm—w)
O —0; = w(orm—w).

Notice that since w is a constant, by definition, for any given biarc configuration, 5 — 0, is
also a constant. Since « is a function of 62 — 07 it must also be a constant. Now applying
the corollary, the knot point must be on one of two circles corresponding to the two constant
values of a. Similar proofs hold for other geometric configurations and also for externally
tangent circles.

21.3 Knot Circles

In the previous section it was established that all the valid knot points for a given biarc con-
figuration must lie on either of two circles. These two circles can be constructed geometrically
by considering the limiting cases of the carrier circle radii, ;1 and 79, as shown in Figure 21.3.
First, notice that the tangency points P; and P> must be on the knot circles because they
correspond to the knot point in the trivial cases when r; = 0 and ro = 0. Now imagine a
circle anchored at Pj, tangent to line L, and increasing in radius from zero. At some value
of r1, the circle will become tangent to line Lo at the point labeled Pj (or Py, if the circle is
on the opposite side of L1). At this value of r1, ro will be infinite and the second biarc circle
will become a line. The three points P, P, and P; determine the first knot circle, and P,
P,, and P/’ determine the second knot circle.

Since the construction is symmetrical, we could have increased the radius of the second
carrier circle, rq, from zero and found points P and P4’ which are on the same two knot circles

21.4 Biarc Programming Examples 317

as those defined by Pj and P}'.

The center points of the knot circles can be constructed by intersecting the perpendicular
bisector of P, P, with the angle bisectors of lines L; and Ls. Using simple trigonometric
relationships it can be shown that the radii of the two knot circles, ' and r”, are given by

I d " d
" 2 cos (%w) and 7 = ZSin(%w)

where d is the distance between P, and P, and w is the angle between L; and L.

21.4 Biarc Programming Examples

Descarta2D does not provide built-in functions for computing biarcs directly, so we will use
the facilities available in Descarta2D along with the programming capabilities provided by
Mathematica to demonstrate how new functions can be added to Descarta2D. In order to
keep the examples simple, we will ignore special cases and possible error conditions. Better
implementations would check for special cases and report errors in the input arguments when
such errors are detected.

Knot Circles

The first example illustrates a Mathematica function that will return a list of two knot circles
given a biarc configuration (tangent points and tangent lines). For simplicity we will use a
triangle to define the biarc configuration with the implicit understanding that the first and
third vertices of the triangle, V1 and V3, are the tangent points, P; and P», and sides V1 V5 and
V5 V3 of the triangle are the tangent lines, L1 and Lo. Using a triangle as an input parameter
has the added advantage that many invalid cases are avoided because they would involve
invalid triangles.

In[1]: (*1%) KnotCircles2D[t1: Triangle2D[pl: {x1_, y1_},
(*2%) pA: {XA_, YA },
(*3%) p2: {x2_, y2_3}1]1 : =
(*4%) Modul e[{pt1, pt2},
(#5%) ptl="Point2D[t1, Inscribed2Dj;
(x6%) pt2 = Point 2D[Poi nt 2D[pA], Poi nt 2D[p1],
(%7%) -Di stance2D[p2, pAl]l;
(*8%) Map[Circl e2D[Poi nt 2D[pl], Poi nt 2D[p2], #]1&,
(%9%) {ptl, pt2}]11;

Lines 1, 2 and 3 define a Mathematica function called KnotCircles2D that takes one para-
meter that is required to pattern match a Descarta2D triangle object. Line 4 opens a Module
statement that defines two local variables pt1 and pt2. Line 5 constructs a point at the center
of a circle inscribed in the triangle. Line 6 constructs a point offset from the apex point, pA,
to the tangency point, p1, a negative distance defined by p2 and pA. Lines 8 and 9 construct
two circles from the two tangency points and a third point, pt1 or pt2.

318 Chapter 21 Biarcs

Example. Construct the two knot circles associated with the triangle whose
vertices are (0,0), (2,1) and (3,0). Plot the geometric objects.

Solution. The function KnotCircles2D [{riangle], defined above, returns a list of
two knot circles associated with a triangle.

In[2]: t1=Triangl e2D[pl = Poi nt 2D[{0, 0}1,
p2 = Poi nt 2D[{2, 1}],
p3 = Poi nt 2D[{3, 0}]11;
kc =KnotCircles2D[t1] // N

outr2] {Circle2D[{1.5, -2.08114}, 2.56537], Gircle2D[{1.5, 1.08114}, 1.84902]}

n[3]: Sketch2D[{pl, p2, p3, t1, kc, Point2D[t1, Inscribed2D]}];

. DescartazD Hint. In the KnotCircles2D function whose implementation is
@ shown above, the third point on the second knot circle is constructed following
the technique described earlier in the chapter. However, the third point of the

first knot circle is constructed as the center of the circle inscribed in the triangle.

The exploration knotin.nb at the end of the chapter shows that this point is
actually on the first knot circle. Using this point has the added advantage that

it avoids an error condition that would otherwise occur when P; and P> are
equidistant from the third point of the triangle (an isosceles biarc configuration).

Arc Construction

In this section we will implement functions for constructing bulge factor arcs given defining
points and tangent vectors. These will be used later to construct biarcs. First, we define a
utility function, Cross2D, that computes a vector cross-product in two dimensions.

In[4]: Cross2D[{ul_, v1_ 3}, {u2_, v2_}]:=ul*v2-u2x*vl;

21.4 Biarc Programming Examples 319

Now we define an arc construction function that takes the arc’s start and end points, Py
and P;, as input, plus a point associated with the start point indicating the direction of the
tangent to the arc at the start point. The justification for this function is provided in the
exploration arcentry.nb.

In[5]: Arc2D[{Poi nt 2D[p0: {x0_, yO_}], Point2D[p: {X_, Y_3}1},
Poi nt 2D[pl: {x1_, y1_}1]1:=
Modul e[{v0 = p - p0, chd =pl-p0, s, c},
s = Cross2D[v0, chd];
c = Dot [v0, chd];
Arc2D[p0, pl, s/ (c+Sqrt[c"r2+s"2])]11;

The next arc construction function is similar to the previous one, except the point indi-
cating the tangent direction is associated with the end point of the arc. The justification for
this function is provided in the exploration arcexit.nb.

In[6]: Arc2D[Poi nt 2D[p0: {x0_, y0_}],
{Poi nt 2D[pl: {x1_, y1_}], Point2D[p: {X_, Y_}1}]1:=
Modul e[{vl =p -pl, chd =pl-po0, s, Cc},
s = Cross2D[chd, v1];
c = Dot [chd, v1];
Arc2D[p0, pl, s/ (c+Sqrt[c”r2+s"2])]1;

Knot Points

Now that we have functions for computing knot circles and constructing arcs involving tangent
vectors, it is fairly easy to construct biarcs. Consider the following Mathematica function:

In[7]: (*1%) Biarc2D[t1: Triangl e2D[p0: {x0_, yO_},
(*2%) pA: {XA_, YA },
(#3%) pl: {x1_, y1_}I1,
(%4%) pt K: Point2D[{xk_, yk_3}1]1 : =
(*5%) {Arc2D[{Poi nt 2D[p0], Poi nt 2D[pA]}, ptK],
(#6%) Arc2D[{Poi nt 2D[p1], Poi nt 2D[pAl}, ptKl};

The function Biarc2D takes two arguments, a Descarta2D triangle object defining the biarc
configuration (lines 1-3), and a Descarta2D point object defining the knot point (line 4).
The function Arc2D [{point, point}, point], defined in the previous section, is used twice to
actually construct the biarc which is returned as a list of two arcs (lines 5-6).

Example. Construct the biarc associated with the triangle whose vertices are

(0,0), (2,1) and (3,0) and a knot point on the first knot circle at parameter value
/2. Plot the geometric objects.

320 Chapter 21 Biarcs

Solution. The function Biarc2D [¢{riangle, point] described above returns a list
of two arcs (a biarc) given a triangle that defines the biarc configuration and the
knot point.

In[8]: t1=Triangl e2D[pl = Poi nt 2D[{0, 0}1,
p2 = Poi nt 2D[{2, 1}],
p3 = Poi nt 2D[{3, 0}]1;
kc =KnotGircles2D[t1] // N
bi 1 =Biarc2D[t1, pk = Point2D[kc[[1]][Pi /2]]1] //N

out[8] (Arc2D[{1.5, 0.484234), (0, 0}, 0.075838],
Arc2D[{3., 0}, {1.5, 0.484234}, 0.241083])}

In[9]: Sketch2D[{pl, p2, p3, t1, pk, bil}];
1F

coe oo
oON B O ©

AN Descarta2zD Hint. The Biarc2D function does not check to insure that the
knot point provided is a valid knot point. It will erroneously return two arcs that
are not tangent to each other if it is called with a point not on one of the knot
circles. Other errors will occur if the knot point coincides with one of the triangle
vertices.

It would be convenient if the biarc construction function computed the knot point internally
as shown in the following Mathematica function:

In[10]: (*1) Biarc2D[t1: Triangl e2D[p0: {x0_, y0_},
(%2%) pA: {xA_, YA },
(%3%) pl: {x1_, y1_}1,
(*dx) knot G rcl eNunber _I nt eger,
(%5%) knot Poi nt Par anet er _?1sScal ar2D] : =
(+6%) Modul e[{kc, ptK},
(*7%) kc =KnotCircles2D[t1][[knotCircl eNunber]];
(*8x) pt K = Poi nt 2D[kc [knot Poi nt Par ameter]] // N,
(¥9%) Biarc2D[t1, ptK]];

This Biarc2D function takes three arguments, the first being a triangle defining the biarc
configuration, the second an integer equal to 1 or 2 specifying which biarc circle the knot
point should be on, and the third an angle (in radians) specifying the parameter location on
the knot circle for the desired knot point. Lines 1-5 define the function arguments, line 7
computes the knot circle, line 8 computes the knot point, and line 9 computes the biarc.

21.4 Biarc Programming Examples 321

Example. Construct the biarc associated with the triangle whose vertices are
(0,0), (2,1) and (3,0) and a knot point on the first knot circle at parameter value
/2.

Solution. The function
Biarc2D[triangle, knotCircleNumber, knotCircleParameter]

as implemented above returns the required biarc.

In[11]: t1 =Triangl e2D[pl = Poi nt 2D[{0, 0}],
p2 = Poi nt 2D[{2, 1}],
p3 = Poi nt 2D[{3, 0}]1;
bil=Biarc2D[tl, 1, Pi /2] //N

out[11] {Arc2D[{1.5, 0.484234}, {0, 0}, 0.075838],
Arc2D[(3., 0}, {1.5, 0.484234}, 0.241083])}

The Biarc2D functions implemented above are restrictive in the sense that the tangent
vectors always point toward the apex point of the triangle and no provision is available to
allow either (or both) of the tangent vectors to point away from the apex. In order to overcome
this restriction we will implement a function that takes two line segments to define the biarc
configuration. The line segments will define a position (the start point of the line segment)
and a direction (from the start point towards the end point).

In[12]: (*1%) Bi arc2D[Segnent 2D[p0: {x0_, yO_}, dO: {uO_, vO_}],
(*2%) Segnent 2D[pl: {x1_, y1_}, dl: {ul_, v1_}],
(*3%) pt K: Poi nt2D[{xk_, yk_3}1] : =
(*4%) {Arc2D[{Poi nt 2D[p0], Poi nt 2D[d0]}, ptK],
(*5%) Arc2D[ptK, {Point2D[pl], Point2D[d1]}1};

In[13]: (*1%) Bi arc2D[LO: Segnent 2D[p0: {xO0_, yO_3}, dO: {u0_, vO_}],
(%2%) L1: Segnment 2D[pl: {x1_, y1_ 3}, di1: {ul_, vi_}1,
(*3%) knot Gi r cl eNunber _I nt eger,
(*4%) knot Gi rcl ePar aneter _?1sScal ar2D] : =
(x5%) Modul e[{ptA, t1, kc, ptK},
(%x6%) pt A = Poi nt 2D[Li ne2D[LO], Li ne2D[L1]];
(%7 %) t1 =Triangl e2D[p0, Coordi nat es2D[pt A], pl];
(*8x) kc = Knot G rcl es2D[t 1] [[knot Ci rcl eNunber]7;
(*9%) pt K = Poi nt 2D[kc [knot G rcl ePar aneter]1];
(¥10%) Biarc2D[LO, L1, ptK] 1;

These Biarc2D functions are parallel implementations of the previous two, except two line
segments are used to define the biarc configuration instead of a triangle.

322 Chapter 21 Biarcs

Example. Given a biarc configuration defined by the line segments from (0, 0) to

(—3,2) and from (3,0) to (4, —2) construct a set of biarcs whose knot points are
on knot circle 1 at parameter values 7/3, 7/2 and 27/3.

Solution. Use the function Biarc2D whose implementation is provided above.
In[14]: 1 sO = Segnment 2D[{0, 0}, {-3, 2}] // N

| s1 = Segrment 2D[{3, 0}, {4, -2}] // N

bi 1= Map[(Biarc2D[ls0, Is1, 1, #] //N)& {Pi /6, Pi /2, 5Pi /6}];

In[15]: Map[(Sketch2D[{l sO, | s1, #}1;)& bil];

4 4 4
3 3 3
2 2 2
1 1 1
0 0 0
1901232 Yioi123a Yioi23a

Building on these basic Mathematica programs for computing biarcs, more elaborate con-
struction functions could be provided. For example, we might write a function that attempts
to automatically select the knot point based on some minimization criteria; or we might at-
tempt to construct biarcs that have no reversal of curvature at the knot point (i.e. the carrier
circles are internally tangent to each other). Another interesting exercise is to devise a strategy
for connecting a predefined set of points with a smooth, piecewise curve consisting of biarcs.

21.5 Explorations

INCENTER ON KNOT CIRCLE. ...t vtittttt i knotin.nb

Show that the incenter of a triangle (the center point of the circle inscribed in the triangle)
is on one of the knot circles for the biarc configuration defined by the triangle.

Part VI

Reference

Chapter 22

Technical Notes

This chapter provides an overview of how Descarta2D is implemented using Mathematica.
Descarta2D is an object-oriented application, which means that it provides a collection of
objects (e.g. points, lines, etc.) and a set of methods that compute on these objects. The pro-
grams that comprise Descarta2D are organized into a small number of Mathematica packages
that specify the behavior of the objects.

22.1 Computation Levels

Mathematica provides support for both symbolic and numerical computations. Descarta2D
takes advantage of these capabilities to provide the following four levels of computation:

Symbolic. At the symbolic level, sizes, angles and coefficients are expressed as variables and
general formulas may be derived.

Analytic. At the analytic level variables are replaced with exact numerical quantities that
are not approximated by floating point numbers. Mathematical functions such as square
roots and trigonometric functions are carried without evaluation.

Numerical. At the numerical level numbers and functions are replaced with floating point
representations that are approximations carried to any number of decimal places in
Mathematica. Often, the accuracy is determined by the floating point hardware available
in the computer and is sufficient for such computations.

Approximation. At the approximation level iterative algorithms are used to converge to
an approximation of a value. Generally, the tolerance of the approximation can be
controlled to approach the floating point precision of the computer hardware or better.

Depending on the complexity of the problem, Descarta2D often provides a choice of the level
of computation undertaken for a particular geometric investigation.

325

326 Chapter 22 Technical Notes

Table 22.1: Reserved names in Descarta2D (objects).

Arc2D Hyperbola2D Quadratic2D
Circle2D Line2D Segment2D
ConicArc2D Parabola2D Triangle2D
Ellipse2D Point2D

22.2 Names

In Mathematica symbolic names containing upper case letters are considered different than
names using corresponding lower case letters (i.e. Mathematica is case-sensitive with respect
to the interpretation of symbolic names). Mathematica uses the convention that system-
defined names always begin with upper case letters or the dollar sign symbol and recommends
that user-defined symbols begin with lower case letters to avoid naming conflicts. Descarta2D
follows the same naming conventions as Mathematica. Descarta2D symbolic names begin
with upper case letters; user symbolic names may contain upper case or lower case letters,
but, generally, the first letter is advised to be lower case to prevent conflicts with built-in
Mathematica functions and Descarta2D functions. In order to prevent conflicts with the names
of Descarta2D functions, this chapter provides suggestions for naming Descarta2D objects
to encourage consistency and clear understanding when using Descarta2D. Following these
conventions will avoid most naming conflicts.

All Descarta2D function names are fully spelled out English words and each name has
the ending 2D appended. If more than one word is used (for example, TangentConics2D, or
FocalLength2D), then the first letter of each word is upper case.

Descarta2D adheres to several syntactic conventions for consistency and ease of use. Func-
tions that return (construct) a Descarta2D object, such as Point2D, will always have the
form

objectNamelarg, , args, ...].

For example, Point2D [point, point] returns the midpoint of two given points. Functions that
return a list of objects are generally plural, such as Points2D, TangentLines2D and Foci2D.

If Descarta2D detects invalid input when constructing an object, it generally displays an
error message and returns the $Failed symbol. Descarta2D functions that return a list of
objects will generally return an empty list, instead of the $Failed symbol (indicating that no
objects can be constructed).

22.3 Descarta2D Objects

In Descarta2D an object is a textual representation of a mathematical concept. Each object is
represented using a Mathematica expression whose head is the name of the object and whose
parameters are the arguments of the expression. Table 22.1 is a list of the object names

22.3 Descarta2D Objects 327

object
—geometry
—coordinates {z, y}
—point Point2D [{z, y}]
—curve
—line Line2D[A, B, (]
—circle Circle2D[{h, k}, 7]
—parabola Parabola2D[{h, k}, f, 0] conic
—ellipse Ellipse2D[{h, k}, a, b, 6]
—hyperbola Hyperbola2D[{h, k}, a, b, 6]
—quadratic Quadratic2D[A, B, C, D, E, F]
—curve segment
—line segment Segment2D [{zo, Yo}, {1, y1}]
—arc Arc2D[{zo, Yo}, {1, 11}, Bl
Lconic arc ConicArc2D [{zo, Yo}, {za,yal}, {1, v1}, p]
—composite
Ltriangle Triangle2D[{z1, y1}, {z2, y2}, {x3, ys}]
—polynomial
Hlinear Line2D[a, b, c]
axr +by+c
—quadratic Quadratic2D[a, b, ¢, d, e, f]

ax® + by +cy®> +de +ey + f

Figure 22.1: Descarta2D object hierarchy.

328 Chapter 22 Technical Notes

Figure 22.2: Standard representation of an Arc2D.

built into Descarta2D. The objects are organized into a hierarchy as shown in Figure 22.1.
The hierarchy also includes meta-objects, objects that have no implementation, but serve to
organize the Descarta2D objects. Meta-objects are shown in italic font. The following sections
provide detailed descriptions of each object provided by Descarta2D. Each section provides the
name of the object, the syntax of the Mathematica expression for the object, names typically
used to refer to the object, a description of the object (using a mathematical equation when
appropriate) and restrictions on the arguments of the object. All objects have the restriction
that their arguments cannot involve complex numbers. The Line2D and Quadratic2D objects
are listed twice in Figure 22.1 because they can be interpreted to represent geometry or
polynomials.

Arc2D

Arc2D[{zo, yo}, {1, y1}, Bl is the standard representation of an arc in Descarta2D as illus-
trated in Figure 22.2. The first and second arguments are the coordinates of the start and
end points of the arc, respectively. The third argument is a positive scalar, B, representing
the bulge factor of the arc. The bulge factor is the ratio of the arc’s height, H, to half the
chord length, D/2; so B =2H/D. The arc is traversed counter-clockwise from Py to P;.

In the argument sequence of a function an arc is shown as arc, as in Radius2D[arc].
arc[0] gives the coordinates of the start point, arc[1] gives the coordinates of the end point
and Bulge2D [arc] gives the bulge factor. Suggested symbolic names for an Arc2D include the
series: (al, a2, ...), (A1, A2, ...) and (arcl, arc2, ...).

The parametric equations of an Arc2D using parameter ¢ are

2(t) = h+ (20— h)cos(Bt) — (yo — k) sin(B)

22.3 Descarta2D Objects 329

—
X

Figure 22.3: Standard representation of a Circle2D.

y(t) = k+ (zo — h)sin(Bt) + (yo — k) cos(5t)

where (h, k) is the center point of the arc, and § is the angular span of the arc. Both the
center point and the angular span are functions of the defining points and the bulge factor
as described in the “Arcs” chapter. Values of ¢ in the range 0 < t < 1 generate coordinates
on the complete span of the arc. Arc2D[{zo, yo}, {1, y1}, Bl [t] returns the coordinates
of a point on an arc at parameter ¢. The expression Arc2D [{zo, yo}, {z1, y1}, Bl [{t1, t2}]
when used in a plotting command, such as Sketch2D, will cause the portion of the arc between
parameters t; and ¢y to be plotted.

Circle2D

Circle2D[{h, k}, 71 is the standard representation of a circle in Descarta2D as illustrated in
Figure 22.3. The center of the circle is given as a coordinate list, {4, k}, and the radius is the
positive scalar, r. The equation of the circle is

(@ =)+ (y — k)* =12,

In the argument sequence of a function, a Circle2D is shown as circle or cir, as in
Radius2D[circle] or Radius2D[cir]. The function Coordinates2D [circle] gives the center
point coordinates of a circle and Radius2D [circle] gives the radius, r. Suggested symbolic
names for a Circle2D include the series: (c1, c2,...), (C1, C2, ...) and (cirl, cir2, ...).

The parametric equations of a Circle2D using parameter 6 are

z(0) = h+rcosd
y(@) = k+rsind.

Values of 0 in the range 0 < 6 < 27 generate coordinates on the complete circumference of the
circle. Circle2D[{h, k}, 7] [A] returns the coordinates of the point on a circle at parameter

330 Chapter 22 Technical Notes

l——— X———

l— S5

Figure 22.4: Standard representation of a ConicArc2D.

. The expression Circle2D[{h, k}, r]1 [0]1 [{61, 02}] when used in a plotting command, such
as Sketch2D, will cause the arc of the circle between parameters 61 and 6> to be plotted.

Conic Arc

ConicArc2D [{zo, Yo}, {za, ya}, {z1, 11}, p] is the standard representation of a conic arc in
Descarta2D as illustrated in Figure 22.4. The first and third arguments are the coordinates of
the start and end points of the conic arc, respectively. The second argument is the coordinates
of the apex point of the conic arc (the apex point is the intersection point of the tangent lines
at the start and end points). The fourth argument, p, is a scalar representing the projective
discriminant of the conic arc. Values of p in the range 0 < p < 1/2 are elliptical arcs; values
in the range 1/2 < p < 1 are hyperbolic arcs; and the value 1/2 is a parabolic arc.

In an argument sequence, a ConicArc2D is shown as cnarc, as in Rho2D[cnarc]. The
function Coordinates2D [cnarc, Apex2D] returns the coordinates of the apex point of a conic
arc and Rho2D [cnarc] gives the value of p. ConicArc2D[{zo, Yo}, {za, ya}, {z1, 11}, p] [{]
with ¢t = 0 gives the coordinates of the start point and with ¢ = 1 gives the coordinates of the
end point. Suggested symbolic names for a ConicArc2D include the series: (cal, ca2, ...),
(CA1, CA2, ...) and (cnarcl, cnarc2, ...).

The parametric equations of a ConicArc2D using parameter ¢ are

bo(1 — p)xo + bipra + ba(1 — p)ay
bo(1 — p) +bip+b2(1 — p)

bo(1 — p)yo + bipya +ba(1 — p)yr
bo(1— p) 4+ bip+ba(1 - p)

x(t) =

yt) =
where by = (1 —)2, by = 2t(1 —t) and by = t2. Values of ¢ in the range 0 < ¢ < 1 generate
coordinates on the complete span of the conic arc. The expression

ConicArc2D[{xo, vo}, {za, ya}, {z1, 11}, Pl [{t1, t2}]

when used in a plotting command, such as Sketch2D, will cause the portion of the conic arc
between parameters t; and to to be plotted.

22.3 Descarta2D Objects 331

vy

\ -
X

Figure 22.5: Standard representation of an E11ipse2D.

Coordinates

Coordinates {z, y} are used to represent an (z,y) position in DescartazD. In an argument
sequence coordinates are shown as coords such as Point2D [coords], or in explicit forms such
as {h, k} or {z, y} as in Point2D [{z, y}]. Suggested symbolic names for coordinates include
the series: (c1, c2,...), (C1,C2,...) and (coordsl, coords2, ...).

Ellipse2D

Ellipse2D[{h, k}, a, b, 0] is the standard representation of an ellipse in Descarta2D as il-
lustrated in Figure 22.5. The first argument, {h, k}, is a list of coordinates representing the
center of the ellipse. The second argument is a positive scalar, a, representing the length of
the semi-major axis. The third argument is a positive scalar, b, representing the length of the
semi-minor axis. In a valid ellipse, the length of the semi-major axis must be greater than
the length of the semi-minor axis, a > b. The fourth argument, 6, is the angle of rotation of
the ellipse measured from the +z-axis counter-clockwise to the major axis of the ellipse and
is normalized to the range 0 < 6 < w. The underlying equation of the (non-rotated) ellipse is

CEI e

1.

In an argument sequence, an ellipse is shown as ellipse, as in Angle2D [ellipse]. The func-
tion Coordinates2D [ellipse] returns the center point coordinates of an ellipse; the function

SemiMajorAxis2D [ellipse]

gives the length of the semi-major axis, a, and the function

332 Chapter 22 Technical Notes

Figure 22.6: Standard representation of a Hyperbola2D.

SemiMinorAxis2D [ellipse]

gives the length of the semi-minor axis, b; and Angle2D [ellipse] gives the angle of rotation,
. Suggested symbolic names for an E11ipse2D include the series: (el, e2, ...), (E1, E2, ...)
and (elll, ell2, ...).

The parametric equations of a (non-rotated) E11ipse2D using the parameter « are

z(a) = h+acosa
yla) = k+bsina.

Values of « in the range 0 < o < 27 generate coordinates on the complete circumference of the
ellipse. E11lipse2D[{h, k}, a, b, 6] [a] returns the coordinates of the point on an ellipse at
parameter «. The expression E1lipse2D[{h, k}, a, b, 01 [{a1, as}] when used in a plotting
command, such as Sketch2D, will cause an arc of the ellipse between parameters oy and as
to be plotted.

Hyperbola2D

Hyperbola2D[{h, k}, a, b, 6] is the standard representation of a hyperbola in Descarta2D as
illustrated in Figure 22.6. The first argument, {k, k}, is a list of coordinates representing the
center of the hyperbola. The second argument is a positive scalar, a, representing the length
of the semi-transverse axis. The third argument is a positive scalar, b, representing the length
of the semi-conjugate axis. The fourth argument, 6, is the angle of rotation of the hyperbola
measured from the +z-axis counter-clockwise to the transverse axis of the hyperbola and is
normalized to the range 0 < 6 < 7. The underlying equation of the (non-rotated) hyperbola

22.3 Descarta2D Objects 333

is
(z—h)? (y—Fk)? _
a? b2
In an argument sequence, a hyperbola is shown as hyperbola, as in Angle2D [hyperbola].
The function Coordinates2D [hyperbolal returns the center point coordinates of a hyperbola;
the function

1.

SemiTransverseAxis2D [hyperbolal
gives the length of the semi-transverse axis, a, and the function
SemiConjugateAxis2D [hyperbolal

gives the length of the semi-conjugate axis, b; and Angle2D [hyperbola] gives the angle of
rotation, §. Suggested symbolic names for a Hyperbola2D include the series: (h1, h2, ...),
(H1, H2, ...) and (hypl, hyp2, ...).

The parametric equations of a (non-rotated) Hyperbola2D using parameter ¢ are

x(t) = h+ acosh(st)
y(t) = k+ bsinh(st)

where s = Cosh_l(e) and e is the eccentricity of the hyperbola. Values of ¢ in the range
—00 < t < oo generate coordinates on the branch of the hyperbola opening to the right in the
non-rotated position. Hyperbola2D[{h, k}, a, b, 81 [¢] returns the coordinates of the point
on a hyperbola at parameter ¢t. The values ¢ = +1 generate coordinates at the ends of the
focal chord of the hyperbola. The expression Hyperbola2D[{h, k}, a, b, 01 [{t1, t2}] when
used in a plotting command, such as Sketch2D, will cause an arc of the hyperbola between
parameters t; and ts to be plotted. If t; < to, the arc will be on the right branch of the
(non-rotated) hyperbola; if 1 > tg, the arc will be on the left branch of the (non-rotated)
hyperbola.

Line2D

Line2D[A, B, (] is the standard representation of an infinite line Az + By + C = 0. At least
one of the first two coefficients, A or B, must be non-zero. The parametric equations of a line
using parameter t are

z(t) = ac+ bt and y(t) = bec — at
where

A B C

a= T b= NoEE:E and ¢ = Ny ERy:vh

The coordinates of the point on the line nearest the origin will be at parameter ¢ = 0 and
other coordinates, parameterized by distance ¢, —oo < t < oo, along the line are given by
Line2D[A, B, C1[#]. The expression Line2D[A, B, C1 [{¢1, t2}] when used in a plotting
command, such as Sketch2D, will cause a segment of the line between parameters t; and to
to be plotted.

334 Chapter 22 Technical Notes

Figure 22.7: Standard representation of a Parabola2D.

In an argument sequence, a Line2D object is shown as line or In, as in Angle2D [line] or
Angle2D[In]. Suggested symbolic names for a Line2D include the series: (11, 12, ...), (L1,
L2,...) and (1n1, 1n2, ...).

Parabola2D

Parabola2D[{h, k}, f, 0] is the standard representation of a parabola in Descarta2D as il-
lustrated in Figure 22.7. The first argument, {h, k}, is a list of coordinates representing the
vertex of the parabola. The second argument is a positive scalar, f, representing the focal
length of the parabola. The third argument, 6, is the angle of rotation of the parabola mea-
sured from the +x-axis counter-clockwise to the axis of the parabola and is normalized to the
range 0 < 0 < 27. The underlying equation of the (non-rotated) parabola is

(y — k) = 4f(z — h).

In an argument sequence, a parabola is shown as parabola, as in Angle2D [parabolal.
The function Coordinates2D [parabola] returns the vertex point coordinates of the parab-
ola; FocalLength2D [parabola] gives the focal length of the parabola; and Angle2D [parabolal
gives the angle of rotation, 6. Suggested symbolic names for a Parabola2D include the series:
(p1, p2, ...), (P1, P2, ...) and (pbl, pb2, ...).

The parametric equations of a Parabola2D using parameter ¢ are

z(t) = h+ ft* and y(t) =k + 2ft.

Values of ¢ in the range —oco < t < oo generate coordinates on the parabola opening to the
right in the non-rotated position. Parabola2D[{h, k}, f, 6] [t] returns the coordinates of the
point on a parabola at parameter t. The values ¢ = +1 generate coordinates at the ends of the

22.3 Descarta2D Objects 335

focal chord of the parabola. The expression Parabola2D[{h, k}, f, 61 [{t1, t2}] when used in
a plotting command, such as Sketch2D, will cause an arc of the parabola between parameters
t1 and t2 to be plotted.

Point2D

Point2D[{z, y}] (which is the same as Point2D [coords]) is the standard representation of a
point. The coordinates define the (x,y) position of the point. In an argument sequence, a
point is shown as point or pt, as in Coordinates2D [point] and Coordinates2D [pt]. Suggested
symbolic names for a Point2D include the series: (p1, p2, ...), (P1, P2, ...) and (pt1, pt2,

XCoordinate2D [point] and YCoordinate2D [point] return the x- and y-coordinate, re-
spectively, of a point. Coordinates2D [point] returns the (z,y) coordinates of a point as a
coordinate list.

Quadratic2D
Quadratic2D[A, B, C, D, E, F] is the standard representation of the quadratic

Az + Bay +Cy> + Dz + Ey+ F = 0.

At least one of the first five coefficients must be non-zero. In general, the quadratic will
represent a conic curve, but certain combinations of coefficients may represent degenerate
conics (lines and points) or no locus at all. In an argument sequence, a Quadratic2D is shown
as quad, as in Point2D[quad]. Suggested symbolic names for a Quadratic2D include the
series: (q1, 92, ...), (Q1, Q2, ...) and (quadl, quad2, ...). Descarta2D provides no parametric
representation for a quadratic (the specific conics have parametric representations).

Segment2D

The form Segment2D[{xo, yo}, {z1, y1}] is the standard representation of a line segment
in Descarta2D. The coordinates {xo, yo} and {z1, y1} are the start and end coordinates,
respectively, of the line segment.

In an argument sequence, a Segment?2D is shown as Inseg, as in Angle2D [Inseg]. Suggested
symbolic names for a Segment2D include the series: (11, 12, ...), (L1, L2, ...) and (1nsegl,
lnseg?2, ...).

The parametric equations of a Segment2D using parameter ¢ are

x(t) = xo+t(r1 — x0)
Yo +t(y1 — Yo)-

<

—~
~

~—

Values of t in the range 0 < 6 < 1 generate coordinates over the complete length of the
line segment. Segment2D[{zo, y0}, {z0, yo}]1 [t] returns the coordinates of the point on a
line segment at parameter ¢t. The parameter value t = 0 generates the coordinates of the
start point of the line segment and the value t = 1 generates the end point coordinates. The

336 Chapter 22 Technical Notes

y ‘ V3(X3, Y3)

Va(Xz, Y2)

Vi(Xa, Y1)

—
X

Figure 22.8: Standard representation of a Triangle2D.

expression Segment2D [{zo, o}, {1, y1}]1 [{t1, t2}] when used in a plotting command, such
as Sketch2D, will cause a portion of the line segment between parameters t; and to to be
plotted.

Triangle2D

Triangle2D[{x1, y1}, {z2, y2}, {z3, y3}]1, as illustrated in Figure 22.8, is the standard rep-
resentation of a triangle with vertex points (x1,y1), (z2,y2) and (z3,ys). The vertex points
cannot be coincident or collinear. Coordinates2D[t¢riangle, n] returns the coordinates of
vertex n of a triangle, n = 1,2, 3.

In an argument sequence a Triangle2D is shown as triangle, as in Area2D [triangle]. Sug-
gested symbolic names for a Triangle2D include the series: (t1, t2,...), (T1, T2, ...) and
(tril, tri2, ...).

Object Queries

Each object in Descarta2D responds to a set of special queries essential to the operation of
Descarta2D. These special queries are listed below:

IsDisplay2D returns True if the object can be displayed using the Sketch2D command.
Is2D returns True if the object’s head is in a given list.

IsValid2D returns True if the object is a Descarta2D object and each of its parameters is of
the proper type and form.

ObjectNames2D returns a list of strings that are the names of all Descarta2D objects.

22.4 Descarta2D Packages 337

Table 22.2: Reserved names in Descarta2D (packages).

D2DArc2D D2DHyperbola2D D2DQuadratic2D
D2DArcLength2D D2DIntersect2D D2DSegment2D
D2DArea2D D2DLine2D D2DSketch2D
D2DCircle2D D2DLoci2D D2DSolve2D
D2DConic2D D2DMaster2D D2DTangentCircles2D
D2DConicArc2D D2DMedial2D D2DTangentConics2D
D2DEllipse2D D2DNumbers2D D2DTangentLines2D
D2DEquations2D D2DParabola2D D2DTangentPoints2D
D2DExpressions2D D2DPencil2D D2DTransform2D
D2DGeometry2D D2DPoint2D D2DTriangle2D

If you add a new object to Descarta2D, the object will need to respond properly to these
queries if you desire that the object behave in an integrated manner. Refer to the source code
listings to determine how each of these queries can be implemented.

22.4 Descarta2D Packages

A relatively small number of Mathematica packages (*.m files) provide support for all the
Descarta2D functions. Your computer system must be set up to allow Mathematica to find
these files before you can use any of the Descarta2D functions. In order to set up Mathematica
to use the Descarta2D package files, you need copy the folder Descarta2D from the Descarta2D
CD-ROM onto your hard drive. Descarta2D must be copied into a folder that Mathematica
searches when loading packages. Typically, in a standard Mathematica installation, this will
be the folder

c:\Program Files\Wolfram Research\Mathematica\3.0\AddOns\Applications\

although this directory path may be different for your installation of Mathematica. The
master package file for Descarta2D will be loaded by issuing the command <<Descarta2D°.
After this command is entered, Mathematica will automatically find and load all the packages
as required to execute Descarta2D commands.

The package names are listed in Table 22.2. Each package defines symbols that are then
owned by the package. The definitions in each package provide either support for Descarta2D
objects (such as Point2D, Line2D, Circle2D, etc.) or functions (such as Radius2D [circle]
that returns the radius of a circle, or Line2D [point, point] that constructs a line between two
points).

338

Chapter 22 Technical Notes

Table 22.3: Reserved names in Descarta2D (general functions).

Angle2D
ArcLength2D
Area2D
Asymptotes2D
Bulge2D
Centroid2D
Circumference2D
Coordinates2D
Directrices2D
Distance2D
Eccentricity2D
Equation2D
FocalChords2D
FocalLength2D
Foci2D
Length2D
Loci2D

MediallLoci2D
Parameters2D
Perimeter2D
Points2D
Polynomial2D
PrimaryAngle2D
PrimaryAngleRange2D
Radius2D

Reflect2D
ReflectAngle2D
Rho2D

Rotate2D

Scale2D
SectorArea2D
SegmentArea2D
SemiConjugateAxis2D
SemiMajorAxis2D

MedialEquations2D SemiMinorAxis2D

SemiTransverseAxis2D
SimplifyCoefficients2D
Sketch2D

Slope2D
SolveTriangle2D
Span2D
TangentCircles2D
TangentConics2D
TangentEquation2D
TangentLines2D
TangentPoints2D
TangentQuadratics2D
TangentSegments2D
Translate2D
Vertices2D
XCoordinate2D
YCoordinate2D

22.5 Descarta2D Functions

Descarta2D provides geometric computing facilities by introducing a number of general func-
tions and queries whose names are listed in Table 22.3 and 22.4.

Some Descarta2D functions require keywords.

Table 22.5.

A complete list of keywords is listed in

There are a number of low-level functions provided by Descarta2D that are useful for
implementing new functions. These are listed in Table 22.6.

Table 22.4: Reserved names in Descarta2D (general queries).

IsCoincident2D IsConcurrent2D
IsCollinear2D Is0n2D
IsConcentric2D IsParallel2D

IsPerpendicular2D
IsTangent2D
IsTripleParallel2D

22.6 Descarta2D Documentation 339

Table 22.5: Reserved names in Descarta2D (keywords).

Apex2D Conjugate2D Parallel2D
Circumscribed2D Inscribed2D Pencil2D
Complement2D MaxSeconds2D Perpendicular2D

22.6 Descarta2D Documentation

This entire book, including the subject matter chapters, reference chapters and exploration
notebooks, is provided on the CD-ROM in two formats. The first format provided is Adobe’s
Portable Document Format (PDF) and is useful for passive reading and printing of typeset
renderings of the book identical to the printed version of the book. PDF files may be viewed
and printed using Adobe’s Acrobat Reader program that can be downloaded at no charge
from Abode’s web site, www.adobe.com. The PDF files can be read directly off the CD-ROM
or they can be copied into any convenient location on your disk drive.

The second format provided is Wolfram Research’s Mathematica notebook format. Note-
books can be viewed interactively using Mathematica itself, or in a passive manner using
Wolfram’s MathReader program. MathReader is available at no charge and can be down-
loaded from Wolfram’s web site, www.wolfram.com. Both Mathematica and MathReader can
print notebook files.

Assuming that the Descarta2D folder has been copied from the CD-ROM into the appropri-
ate Mathematica folder on your system, the documentation notebooks can be fully integrated
into the Mathematica Help Browser. This is accomplished by clicking the Mathematica Front
End menu item Help, Rebuild Help Index.... After the index has been rebuilt, all of the text
and documentation for the book will be available interactively in the Help Browser. The
material will be listed by clicking the AddOn button in the Help Browser and then selecting
the item named Descarta2D. Notebooks whose links are clicked in the Help Browser category
listing windows will be opened in the Help Browser; links clicked in the notebooks themselves

Table 22.6: Reserved names in Descarta2D (low-level functions).

AskCurvelLength2D IsDisplay2D IsZero2D
ChopImaginary2D IsNegative2D IsZeroOrNegative2D
CurveLength2D IsNumeric2D MakePrimitives2D
CurvelLimits2D IsReal2D ObjectNames2D
D2DPath2D IsScalar2D SetDisplay2D

Is2D IsScalarPair2D Solve2D

IsApproximate2D IsTinyImaginary2D
IsComplex2D IsValid2D

340 Chapter 22 Technical Notes

will be opened at live notebooks in the Front End.
For Windows systems, installation files for Adobe Arcrobat Reader and MathReader are
provided on the CD-ROM.

Chapter 23

Command Browser

This chapter is an alphabetical listing of all the commands provided by Descarta2D. The
syntax and usage of each command is described, as well as notes outlining special options
and defaults. Additionally, a cross-reference pointing to related commands is provided in each
section. Commands described as being low-level are used in the internal implementation of
DescartazD. Low-level commands may be used freely, but they are not generally mentioned in
the subject matter chapters of the book. Page numbers enclosed in square brackets indicate
the page in the package listings where the implementation of the command is found.

M Angle2D

Angle2D [line] computes the angle a line makes with the +x-axis, when measured
counter-clockwise from the +x-axis to the line. [460]

Angles in Descarta2D are always specified and returned in radians.
Angle2D[arc] computes the angular span of an arc. [389]

Angle2D[arc, t] computes the angle a radial diameter passing through the point
at parameter ¢ on the arc makes with the +x-axis. [389]

Angle2D[conic] returns the rotation angle of a conic curve. The conic may be an
ellipse [423], hyperbola [448] or parabola [481].

Angle?2D [line, line]l computes the angle measured counter-clockwise from the
first line to the second line. [460]

Angle2D[triangle, n] computes the vertex angle at vertex n of a triangle. [547]

See also: PrimaryAngle2D, PrimaryAngleRange2D, ReflectAngle2D.

W Apex2D

Apex2D is a keyword indicating the construction of the apex control point of a conic arc. [419]

341

342 Command Browser

See also: Point2D.

W Arc2D

Arc2D[{zo, Yo}, {z1, y1}, B] is the standard representation of an arc. The coordinates of
the start point are (zo,yo) and the coordinates of the end point are (z1,y1). The bulge
factor is the positive number B. The arc is traversed counter-clockwise from the start point
to the end point. [387]

The bulge factor, B, is the ratio of the arc’s height, h, to half the chord length,
d/2; so B =2h/d.
Arc2D[{zo, Yo}, {1, y1}, Bl [t] and arc[t] return the {z, y} coordinates of a

point at parameter ¢t on an arc. Parameter values in the range 0 < ¢ < 1 produce
coordinates covering the complete span of the arc. [388]

Arc2D[{zo, yo}, {1, y1}, Bl [{t1, t2}] produces graphics primitives for a
portion of an arc between parameters t; and to when plotted. [388]

Arc2D[arc, Complement2D] constructs the complement of an arc. [391]

Arc2D[point, r, {01, 02}]1 constructs an arc from the center point, radius and
span. The angles, #; and 63, are measured counter-clockwise from the
+z-axis. [392]

Arc2D [point, r, {point,, pointa}] constructs an arc from the center point, radius
and the start and end points of the span. The start/end points do not need to lie
on the arc, although they cannot be coincident with the center. [393]

Arc2D [point, point, point] constructs an arc passing through three points. The
first and third points define the span of the arc. [393]

Arc2D [{point, 8}, point] constructs an arc from a start point with entry angle
and an end point. [392]

See also: Bulge2D, Complement2D.

B ArcLength2D

ArcLength2D [curve, {t1, t2}] computes the arc length of a curve between two parameter
values.

The curve may be an arc [396], circle [396], ellipse [397], hyperbola [397], line [397],
line segment [397] or parabola [398].

N[ArcLength2D [cnarc, {t1, t2}1] numerically computes the arc length of a conic
arc between two parameter values. [396]

See also: Circumference2D, Length2D, Perimeter2D, Span2D.

W Area2D

Area2D [curve] computes the area associated with a curve.

Command Browser 343

The curve may be an arc, circle, conic arc, ellipse or triangle.
Area2D[arc] computes the area between an arc and its chord. [399]
Area2D [circle] computes the area of a circle. [400]

Area2D[cnarc] computes the area between a conic arc and its chord. [401]
Area2D[ellipse] computes the area of an ellipse. [401]

Area2D [triangle] computes the area of a triangle. [403]

See also: SectorArea2D, SegmentArea2D.

W AskCurveLength2D

AskCurveLength2D[] is a low-level function that returns the value of the CurveLength2D
option of the Sketch2D command. [513]

See also: CurveLength2D, Sketch2D.

B Asymptotes2D

Asymptotes2D [hyperbolal constructs a list containing the two asymptote lines of a
hyperbola. [413]

W Bulge2D

Bulge2D [arc] returns the bulge factor of an arc. [390]

See also: Arc2D.

B Centroid2D

Centroid?2D is a keyword indicating the construction of a triangle’s centroid point. [551]

See also: Point?2D.

B ChopImaginary2D

ChopImaginary2D [expr, tol] is a low-level function that removes insignificant imaginary
parts of complex numbers in an expression. The imaginary part is considered insignificant if
its absolute value is less than the tolerance. [477]

The tolerance, if omitted, defaults to 1071°.

B Circle2D

Circle2D[{h, k}, r] is the standard representation of a circle. The coordinates of the center
point of the circle are {h, k} and the radius is r. [405]

344 Command Browser

Circle2D[{h, k}, r1[0] and circle[#] return the {z, y} coordinates of a point at
parameter 6 on a circle. Parameter values in the range 0 < 6 < 27 produce
coordinates covering the complete circumference of the circle. [406]

Circle2D[{h, k}, 1 [{6:1, 02}]1 produces graphics primitives for the arc of the
circle between parameters 6; and 6 when plotted. [406]

Circle2D[arc] constructs the circle underlying an arc. [391]

Circle2D [circle, circle, k, Pencil2D] constructs a circle, parameterized by the
variable k, that represents the family (pencil) of circles passing through the
intersection points of the two given circles. The family of circles is valid even if
the two circles do not intersect as they will share a common radical axis. [486]

Circle2D[Inseq] constructs the circle whose diameter chord is a given line
segment. [509]

Circle2D[point, r] constructs the circle centered at a point with a given
radius. [409]

Circle2D [point, point] constructs the circle given a center point and a point on
the circle. [409]

Circle2D [point, point, point] constructs a circle through three points. [410]

Circle2D[point, line] constructs a circle with a given center point and tangent
to a line. [409]

Circle2D[quad] constructs the circle associated with a quadratic. [409]

Circle2D[triangle, Circumscribed2D] constructs a circle circumscribed about a
triangle. [553]

Circle2D[triangle, Inscribed2D] constructs a circle inscribed inside a
triangle. [553]

See also: Inscribed2D, Circumscribed2D, Pencil2D, TangentCircles2D.

B Circumference2D

Circumference2D [circle] computes the circumference of a circle. [396]

Circumference [ellipse] computes the circumference of an ellipse. [397]

See also: ArcLength2D.

B Circumscribed2D

Circumscribed?2D is a keyword indicating a construction involving a triangle’s circumscribed
circle. [552]

See also: Circle2D, Point2D.

Command Browser 345

B Complement2D

Complement?2D is a keyword indicating the construction of an arc’s complement. [391]

See also: Arc2D.

B ConicArc2D

ConicArc2D[{zo, Yo}, {za,ya}, {1, y1}, p] is the standard representation of a conic arc.
The coordinates of the start point are {zg, yo}, the coordinates of the apex point are

{za, ya} and the coordinates of the end point are {x;, y1}. The projective discriminant is
p. [415]

ConicArc2D[{zo, yo}, {za, ya}, {z1, y1}, p1 [t] and cnarclt] return the {z, y}
coordinates of a point at parameter ¢ on a conic arc. Parameter values in the
range 0 < t < 1 produce coordinates covering the entire length of the conic

arc. [416]

ConicArc2D[{zo, Yo}, {za, ya}, {z1, y1}, p] [{t1, t2}] produces graphics
primitives representing the portion of the conic arc between parameters t; and to
when plotted. [416]

ConicArc2D[line, conic]l constructs a conic arc defined by a conic (circle, ellipse,
hyperbola or parabola) and a line containing the conic arc’s chord. [419]

B Conjugate2D

Conjugate2D is a keyword indicating the construction of a conjugate hyperbola. [450]

See also: Hyperbola2D.

B Coordinates2D

Coordinates2D [args..] returns the {z, y} coordinates of the point that would be returned
by the function Point2D [args..]. [490]

See also: Point2D, XCoordinate2D, YCoordinate2D.

B CurveLength2D

CurveLength?2D is an option for the Sketch2D command specifying the approximate length
that an unbounded curve should be rendered when plotted. [512]

The initial default, if not specified, is 10. The default can by changed using the
Mathematica SetOptions command.

See also: AskCurveLength2D, Sketch2D.

346 Command Browser

B CurvelLimits2D

CurveLimits2D [coords, curve] is a low-level function that computes a list of two parameter
values on a curve such that the point whose coordinates are given is a distance
CurveLength2D/2 from the points on the curve at the parameter values. [513]

See also: AskCurveLength2D, CurveLength2D, Sketch2D.

B Directrices2D

Directrices2D[conic] returns a list of the directrix line(s) of a conic curve.

The conic may be an ellipse [413], hyperbola [413] or parabola [413]. If the conic is
an ellipse or hyperbola there are two directrix lines in the list; if the conic is a
parabola there is one directrix line in the list.

M Distance2D

Distance2D [coords, coords] computes the distance between two positions given by
coordinates. [491]

Distance2D [point, point] computes the distance between two points. [491]
Distance2D [point, line] computes the distance between a point and a line. [460]
Distance2D [point, circle] computes the distance between a point and a

circle. [407]

B Eccentricity2D

Eccentricity2D[conic] computes the eccentricity of a conic.

The conic may be a ellipse [412], hyperbola [412] or parabola [412].

WmEllipse2D

Ellipse2D[{h, k}, a, b, 6] is the standard representation of an ellipse. The coordinates of
the center point are {h, k}, the length of the semi-major axis is a, the length of the
semi-minor axis is b and the angle of rotation, counter-clockwise with respect to the +z-axis,
is 6. [421]

Ellipse2D[{h, k}, a, b, 01 [01] and ellipse[61] return the {z, y} coordinates of
a point at parameter 1 on an ellipse. Parameter values in the range 0 < 61 < 27
produce coordinates covering the complete circumference of the ellipse. [422]
Ellipse2D[{h, k}, a, b, 61 [{61, 62}] produces graphics primitives on the
portion of the ellipse between parameter values 6; and 62 when plotted. [422]

Ellipse2D[point, line, e] constructs an ellipse defined by a focus point, directrix
line and eccentricity. [426]

Command Browser 347

Ellipse2D[point, point, €] constructs an ellipse from two focus points and the
eccentricity. [426]

Ellipse2D[{point, point}, €] constructs an ellipse from two vertex points and
the eccentricity. [425]

B Equation2D

Equation2D [line, {z, y}] returns the equation Az + By 4+ C == 0, which is the equation of
the line. [428]

Equation2D[quad, {z, y}] returns Ax? + Bxy + Cy* + Dz + Ey + F == 0,
which is the equation of the quadratic. [428]

See also: Polynomial2D.

B FocalChords2D

FocalChords2D [conic] returns a list containing the focal chords of a conic curve (line
segments).

The conic may be an ellipse [414], hyperbola [414] or parabola [414]. If the conic is
an ellipse or hyperbola the list contains two focal chords (line segments); if the
conic is a parabola the list contains a single focal chord (line segment).

B FocallLength2D

FocalLength2D [parabolal returns the focal length of a parabola. [481]

See also: Parabola?2D.

WM Foci2D

Foci2D[conic] returns a list containing the focus point(s) of a conic.

The conic may be an ellipse [412], hyperbola [412] or parabola [412]. If the conic is
an ellipse or hyperbola the list contains two focus points; if the conic is a
parabola the list contains a single focus point.

W Hyperbola2D

Hyperbola2D[{h, k}, a, b, 0] is the standard representation of a hyperbola. The
coordinates of the center point are {h, k}, the length of the semi-transverse axis is a, the
length of the semi-conjugate axis is b and the angle of rotation, counter-clockwise with
respect to the +z-axis, is 6. [445]

Hyperbola2D[{h, k}, a, b, 01 [t] and hyperbola[t] return the {z, y} coordinates
of a point at parameter ¢ on the primary branch of a hyperbola. Parameter
values in the range —oo < t < 400 cover the complete hyperbola branch. The
primary branch opens about the +x-axis when the angle of rotation is zero. [446]

348 Command Browser

Hyperbola2D[{h, k}, a, b, 0, Truel [¢] returns the {z, y} coordinates of a point
at parameter ¢ on the non-primary (reflected) branch of a hyperbola (used only
for graphics rendering). [446]

Hyperbola2D[{h, k}, a, b, 01 [{t1, t2}] produces graphics primitives for a
portion of the hyperbola between parameters values ¢; and to when plotting. If
t1 <ty the parameters represent a portion of the primary branch of the
hyperbola; if ¢; > to the parameters represent a portion of the other branch. [446]

Hyperbola2D [hyperbola, Conjugate2D] constructs the conjugate of a
hyperbola. [450]

Hyperbola2D [point, line, €] constructs a hyperbola defined by a focus point,
directrix line and eccentricity. [451]

Hyperbola2D [point, point, €] constructs a hyperbola from two focus points and
the eccentricity. [450]

Hyperbola2D [{point, point}, €] constructs a hyperbola from two vertex points
and the eccentricity. [450]

See also: Conjugate2D.

W Inscribed2D

Inscribed2D is a keyword indicating a construction involving a triangle’s inscribed
circle. [552]

See also: Circle2D, Point2D.

W Is2D

Is2D [object, objHeadList] is a low-level function that returns True if the object is a valid
Descarta2D object and its head is included in the head list; otherwise, returns False. [472]

W IsApproximate2D

IsApproximate2D[ezpr] is a low-level function that returns True if the expression contains
approximate real numbers; otherwise, returns False. [431]

The function will attempt to detect if the pending evaluation will eventually be
approximated using the N[ezpr] function. If this condition is detected the
function will also return True.

W IsCoincident2D

IsCoincident2D [0bj, 0bj] returns True if two objects are of the same type and are
coincident; otherwise, returns False. The objects may be circles, coordinates, lines, points
or quadratics. [439]

The function returns unevaluated if the two objects are of a different type.

Command Browser 349

IsCoincident2D [objList] returns True if any pair of objects in a list are of the
same type and are coincident; otherwise, returns False. [440]

W IsCollinear2D

IsCollinear2D [point, point, point] returns True if three points are collinear; otherwise,
returns False. [440]

IsCollinear2D [ptList] returns True if any triple of points in a list is collinear;
otherwise, returns False. [440]

W IsComplex2D

IsComplex2D [expr, tol] is a low-level function that returns True if the expression, when
evaluated, contains a complex number (a number is considered complex if the absolute value
of its imaginary part is greater than the tolerance); otherwise, returns False. [431]

The tolerance, if omitted, defaults to 10719.

IsComplex2D [exprList, tol] returns True if any expression in a list, when
evaluated, contains a complex number; otherwise, returns False. [432]

IsComplex2D [exprList, Or, tol] returns True if any expression in a list, when
evaluated, contains a complex number; otherwise, returns False. [432]

IsComplex2D [exprList, And, tol] returns True if all the expressions in a list,
when evaluated, contain complex numbers; otherwise, returns False. [432]

B IsConcentric2D

IsConcentric2D [circle, circle] returns True if two circles are concentric; otherwise, returns
False. [440]

IsConcentric2D [cirList] returns True if any pair of circles in a list are
concentric; otherwise, returns False. [440]

B IsConcurrent2D

IsConcurrent2D [line, line, line] returns True if three lines are concurrent (intersect in a
common point); otherwise, returns False. [441]

IsConcurrent2D [InList] returns True if any triple of lines in a list is concurrent;
otherwise, returns False. [441]

W IsDisplay2D

IsDisplay2D[object] is a low-level function that returns True if the object is a displayable
DescartazD object; otherwise, returns False. [512]

350 Command Browser

W IsNegative2D

IsNegative2D [expr, tol] is a low-level function that returns True if the expression, when
evaluated, is negative (a number is considered negative if it is less than zero and its absolute
value is greater than the tolerance); otherwise, returns False. [434]

The tolerance, if omitted, defaults to 10719,

IsNegative2D [exprList, toll returns True if any expression in a list, when
evaluated, is negative; otherwise, returns False. [434]

IsNegative2D [exprList, Or, toll returns True if any expression in a list, when
evaluated, is negative; otherwise, returns False. [434]

IsNegative2D [exprList, And, tol] returns True if all the expressions in a list,
when evaluated, are negative; otherwise, returns False. [434]

See also: IsZero2D, IsZeroOrNegative2D.

B IsNumeric2D

IsNumeric2D [expr, tol] is a low-level function that returns True if all the atoms in an
expression can be evaluated to real numbers (a complex number is considered real if the
absolute value of its imaginary part is less than the tolerance); otherwise, returns False. [432]

The tolerance, if omitted, defaults to 10710,

IsNumeric2D [expr, funcName, tol] returns True if all the atoms in an
expression can be evaluated to real numbers; otherwise, returns False and
displays a message stating that the function, funcName, requires numerical
arguments. This form is a low-level function and is intended to be used for
argument checking. [432]

W IsOn2D

Is0n2D [point, curve] returns True if a point is on a curve; otherwise, returns False.

The curve may be a line [441], circle [441] or quadratic [441].

Is0n2D [point, Quadratic2D [conic]l] returns True if a point is on a conic;
otherwise, returns False. The conic may be a circle, ellipse, hyperbola or
parabola.

W IsParallel2D

IsParallel2D[line, line] returns True if two lines are parallel; otherwise, returns
False. [442]

IsParallel2D[InList] returns True if any pair of lines in a list is parallel;
otherwise, returns False. [442]

Command Browser 351

See also: IsTripleParallel2D.

W IsPerpendicular2D

IsPerpendicular2D [line, line] returns True if two lines are perpendicular; otherwise,
returns False. [442]

IsPerpendicular2D[InList] returns True if any pair of lines in a list is
perpendicular; otherwise, returns False. [443]

W IsReal2D

IsReal2D[expr, tol]l is a low-level function that returns True if the expression, when
evaluated, is a real number (a complex number is considered real if the absolute value of its
imaginary part is less than the tolerance); otherwise, returns False. [433]

The tolerance, if omitted, defaults to 1071,

W IsScalar2D

IsScalar2D[expr] is a low-level function that returns True if the expression appears to be a
scalar quantity—that is, it cannot be recognized as a list, a complex number or a DescartazD
object; otherwise, returns False. [433]

This function is used by Descarta2D for argument checking.

See also: IsScalarPair2D.

W IsScalarPair2D

IsScalarPair2D [{expr, expr}] is a low-level function that returns True if both expressions
appear to be scalar quantities—that is, they cannot be recognized as lists, complex numbers
or Descarta2D objects; otherwise, returns False. [434]

This function is used by Descarta2D for argument checking.

See also: IsScalar?2D.

W IsTangent2D

IsTangent2D [line, circle] returns True if a line is tangent to a circle; otherwise, returns
False. [443]

IsTangent2D [line, quad] returns True if a line is tangent to a quadratic;
otherwise, returns False. [443]

IsTangent2D [line, Quadratic2D [conic]] returns True if a line is tangent to a
conic; otherwise, returns False. The conic may be a circle, ellipse, hyperbola or
parabola. [443]

352 Command Browser

IsTangent?2D [circle, circle] returns True if two circles are tangent to each other;
otherwise, returns False. [443]

B IsTinyImaginary2D

IsTinyImaginary2D [expr, tol] is a low-level function that returns True if any complex
number in an expression has a tiny imaginary part (the imaginary part is considered tiny if
its absolute value is less than the tolerance); otherwise, returns False. [434]

The tolerance, if omitted, defaults to 10710,

B IsTripleParallel2D

IsTripleParallel2D[line, line, line] returns True if three lines are mutually parallel;
otherwise, returns False. [442]

IsTripleParallel2D [inList] returns True if any triple of lines in a list is
mutually parallel; otherwise, returns False. [442]

See also: IsParallel?2D.

W IsValid2D

IsValid2D [object] is a low-level function that returns True if the object is syntactically
valid; otherwise, returns False. [472]

The object may be an arc [389], circle [406], conic arc [417], ellipse [423],
hyperbola [447], line [459], line segment [506], parabola [481], point [490],
quadratic [498] or triangle [546].

W IsZero2D

IsZero2D[expr, tol] is a low-level function that returns True if the expression, when
evaluated, is zero (a number is considered zero if its absolute value is less than the
tolerance); otherwise, returns False. [435]

The tolerance, if omitted, defaults to 1071°.

IsZero2D [exprList, tol]l returns True if any expression in a list, when evaluated,
is zero; otherwise, returns False. [435]

IsZero2D[exprList, Or, tol]l returns True if any expression in a list, when
evaluated, is zero; otherwise, returns False. [435]

IsZero2D [exprList, And, tol] returns True if all the expressions in a list, when
evaluated, are zero; otherwise, returns False. [435]

See also: IsNegative2D, IsZeroOrNegative2D.

Command Browser 353

W IsZeroOrNegative2D

IsZeroOrNegative2D [expr, tol] returns True if the expression, when evaluated, is zero or
negative; otherwise, returns False. [435]

The tolerance, if omitted, defaults to 1071°.

IsZeroOrNegative2D [exprList, tol] returns True if any expression in a list,
when evaluated, is zero or negative; otherwise, returns False. [436]

IsZeroOrNegative2D [exprList, Or, tol] returns True if any expression in a list,
when evaluated, is zero or negative; otherwise, returns False. [436]

IsZeroOrNegative2D [exprList, And, tol] returns True if all the expressions in a
list, when evaluated, are zero or negative; otherwise, returns False. [436]

See also: IsNegative2D, IsZero2D.

W Length2D

Length2D [Inseg] computes the length of a line segment. [507]

See also: ArcLength2D.

B Line2D

Line2D[A, B, (] is the standard representation of the line Az + By + C' = 0. [458]

Line2D[A, B, C1[{] and line[t] return the {z, y} coordinates of a point at
parameter ¢ on a line. Parameter values in the range —oco < t < 400 produce
coordinates covering the complete line. [458]

Line2D[A, B, C][{t1, t2}] produces graphics primitives for the line segment
between parameters ¢; and to when plotting. [458]

Line2D [circle, circle] constructs the radical axis line of two circles. [408]

Line2D[coords, coords] constructs a line through two positions specified by
{z, y} coordinates. [462]

Line2D [ellipse] constructs a line which contains the major axis of an ellipse. [425]

Line2D[egn, {z, y}] constructs a line from the equation
Az + By + C == 0. [458]

Line2D [hyperbola] constructs a line which contains the transverse axis of a
hyperbola. [449]

Line2D [line] constructs a line with normalized coefficients. [461]

Line2D[line, d] constructs a line offset a distance d from a given line. The
distance may be positive or negative producing one of two possible offsets. [462]

354 Command Browser

Line2D [line, line, k, Pencil2D] constructs a family of lines (pencil),
parameterized by k, passing through the intersection point of two given
lines. [485]

Line2D[Inseg] constructs a line containing a line segment. [508]

Line2D[Inseg, Perpendicular2D] constructs a line that is the perpendicular
bisector of a line segment. [508]

Line2D [parabola]l constructs a line which contains the axis of a parabola. [483]

Line2D [point, curvel constructs the polar (line) of a curve given the pole
(point). If the pole (point) is on the curve, then the polar (line) is the tangent to
the curve at the pole (point). The curve may be a circle [408], ellipse [425],
hyperbola [450], parabola [483] or quadratic [463].

Line2D [point, k, Pencil2D] constructs a family of lines (pencil), parameterized
by k, passing through a point. [485]

Line2D [point, line] constructs a line through a point perpendicular to a
line. [463]

Line2D [point, line, Perpendicular2D] also constructs a line through a point
perpendicular to a line. [463]

Line2D [point, line, Parallel2D] constructs a line through a point parallel to a
line. [463]

Line2D [point, m] constructs a line with slope m passing through a point. [462]
Line2D[point, Infinity] constructs a vertical line through a point. [462]
Line2D [point, point] constructs a line through two points. [462]

Line2D [point, point, Perpendicular2D] constructs a line equidistant from two
points. This line is the perpendicular bisector of the line segment defined by the
two points. [463]

Line2D [poly, {z, y}] constructs a line from the polynomial Az + By + C. [458]

Line2D[triangle, n1, ne] constructs a line containing vertices ny and no of a
triangle. [552]

See also: Parallel2D, Pencil2D, Perpendicular2D.

W Loci2D

Loci2D[quad] returns a list of objects represented by a quadratic. The list may contain a
conic, one or two lines, a point or it may be empty. [465]

Loci2D[cnarc] returns a list containing the curve underlying a conic arc. [419]

Loci2D[point, length, €] returns a list containing the conic defined by the vertex
equation parameters. The point is the vertex point, the length is the focal length
and the constant, e, is the eccentricity. The conic is constructed in standard
position. [468]

Command Browser 355

Loci2D[point, length, e, 6] returns a list containing the conic defined by the
vertex equation parameters. The point is the vertex point, the length is the focal
length, the constant, e, is the eccentricity and 6 is the angle of rotation. [468]
Loci2D[point, line, €] returns a list containing the conic defined by a focus
point, directrix line and eccentricity. [468]

W MakePrimitives2D

MakePrimitives2D [curve, {t1, t2}] is a low-level function that returns a list of
Mathematica graphics primitives approximating a curve between two parameter values. [513]

The curve may be an arc, circle, conic arc, ellipse, hyperbola, line, line segment
or parabola.

B MaxSeconds2D

MaxSeconds2D is a keyword indicating the maximum number of seconds allowed for solving
equations. [516]

See also: Solve?2D.

B MedialEquations2D

MedialEquations2D[{obj, obj}] returns a list of lines or quadratics equidistant from two
given objects. The given objects may be points, lines or circles. [473]

See also: MedialLoci?2D.

B Medialloci2D

MedialLoci2D[{0bj, obj}] returns a list of objects equidistant from two given objects. The
given objects may be points, lines or circles. [474]

See also: MedialEquations2D.

B ObjectNames2D

ObjectNames2D[] returns a list of strings which are the names of all the Descarta2D
objects. [472]

W Parabola2D

Parabola2D[{h, k}, f, 0] is the standard representation of a parabola. The coordinates of
the vertex point are {h, k}, the focal length is f and the angle of rotation, counter-clockwise
with respect to the +z-axis, is 6. [479]

Parabola2D[{h, k}, f, 01 [¢] and parabolalt] return the {z, y} coordinates of a
point at parameter ¢t on a parabola. Parameter values in the range
—00 < t < 400 produce coordinates covering the complete parabola. [480]

356 Command Browser

Parabola2D[{h, k}, f, 01 [{t1, t2}]1 produces graphics primitives for the portion
of the parabola between parameters ¢; and t2 when plotting. [480]

Parabola2D [point, line] constructs a parabola defined by a focus point and a
directrix line. [483]

W Parallel2D

Parallel2D is a keyword indicating a parallel construction. [463]

See also: Line2D, TangentLines2D.

B Parameters2D

Parameters2D [line, curve] computes a list of the two parameters where a line intersects a
curve.

The curve may be a circle [455], ellipse [455], hyperbola [455] or parabola [456].
The list of parameters is useful for computing areas and arc lengths defined by
the line and the curve.

See also: ArcLength2D, SectorArea2D, SegmentArea2D.

W Pencil2D

Pencil2D is a keyword indicating the construction of a pencil of curves. [485]

See also: Line2D, Circle2D, Quadratic2D.

B Perimeter2D

Perimeter2D [triangle] computes the perimeter of a triangle. [398]

See also: ArcLength2D.

W Perpendicular2D

Perpendicular2D is a keyword indicating a perpendicular construction. [463]

See also: Line2D, TangentLines2D.

B Point2D

Point2D[{z, y}] or Point2D [coords] is the standard representation of a point with
coordinates {z, y}. [489]

Point2D[z, y] constructs a point at coordinates (z,y). [492]
Point2D[arc] constructs the center point of an arc. [391]

Point2D [circle] constructs the center point of a circle. [408]

Command Browser 357

Point2D [cnarc] constructs the center point of the conic underlying a conic
arc. [419]

Point2D[cnarc, Apex2D] constructs the apex control point of a conic arc. [419]

Point2D [conic] constructs the center point of a central conic. The conic may be
a circle [408], ellipse [424] or hyperbola [449)].

Point2D [curve[#]] constructs a point at a parameter value on a curve.

Point2D[line, curvel constructs the pole (point) of a curve given the polar
(line). If the polar (line) is tangent to the curve, then the pole (point) is the
point of tangency. The curve may be a circle [408], ellipse [425], hyperbola [449],
parabola [482] or quadratic [494].

Point2D[line, line] constructs the intersection point of two lines. [494]
Point2D[Inseg] constructs the midpoint of a line segment. [508]

Point2D [parabolal constructs the vertex point of a parabola. [482]

Point2D [point, line] constructs a point by projecting a point onto a line. [493]

Point2D [point, line, d] constructs a point by offsetting a point a distance, d, in
the direction of a line. The distance may be positive or negative resulting in one
of two possible offset points. [493]

Point2D [point, line, {u, v}] constructs the point with coordinates {u, v} in the
coordinate system defined by a point and a line. The line defines the y-axis and
the point is on the +x-axis. [494]

Point2D [point, point] constructs the midpoint of two points. [493]

Point2D [point, point, d] constructs a point by offsetting a point a distance, d, in
the direction of a second point. If the distance is negative, the point is offset in
the opposite direction. [493]

Point2D [point, point, r1, r2] constructs a point dividing the segment between
two points into the ratio r1/rs. [493)]

Point2D [quad] constructs the center point of a quadratic, assuming the
quadratic is a central conic. [494]

Point2D [triangle, Centroid2D] constructs a point at the centroid of a
triangle. [551]

Point2D [triangle, Circumscribed2D] constructs the center point of a circle
circumscribed about a triangle. [552]

Point2D [triangle, Inscribed2D] constructs the center point of a circle inscribed
inside a triangle. [552]

Point2D [triangle, n] constructs a point at vertex n of a triangle. [552]

See also: Apex2D, Centroid2D, Circumscribed2D, Inscribed2D.

358 Command Browser

B Points2D

Points2D [curve, curvel] constructs a list containing the intersection points of two
curves. [453]

The curves may be lines, circles, ellipses, hyperbolas, parabolas or quadratics.

B Polynomial2D

Polynomial2D [line, {z, y}] returns the polynomial Az + By + C, which is the polynomial
of the line. [428]

Polynomial2D[quad, {z, y}]1 returns Az? + Bxy + Cy? + Dx + Ey + F, which is
the polynomial of the quadratic. [428]

See also: Equation2D.

B PrimaryAngle2D

PrimaryAngle2D[#] returns a primary angle in the range 0 < ¢ < 27 where
¢ =Mod [0, 27]. [478]

PrimaryAngle2D[f, 27] returns a primary angle in the range 0 < ¢ < 27 where
¢ is given by Mod [0, 27]. [478]

PrimaryAngle2D[f, 7] returns a primary angle in the range 0 < ¢ < m where ¢
is given by Mod[6, m]. [478]

See also: PrimaryAngleRange2D.

B PrimaryAngleRange2D

PrimaryAngleRange2D [{f;, 02}] returns a list of two primary angles, {¢;1, ¢2}, such that
0< ¢ <2mand ¢1 < ¢ < ((;51 + 271’). [478]

PrimaryAngleRange2D [arc] returns a list of two primary angles, {¢1, ¢2}, which
are the spanning angles of the arc. [390]

See also: PrimaryAngle?2D.

W Quadratic2D

Quadratic2D[A4, B, C, D, E, F] is the standard representation of the quadratic given by
A2® + Bay + Cy* + Da + Ey + F = 0. [497]

Quadratic2D [cnarc] constructs the quadratic underlying a conic arc. [416]

Quadratic2D [conic] constructs the quadratic associated with a conic. The conic
may be a circle [405], ellipse [422], hyperbola [446] or parabola [480].

Quadratic2D [coords] constructs the quadratic representing a position specified
by coordinates (a circle of zero radius). [500]

Command Browser 359

Quadratic2D[egn, {z, y}] constructs a quadratic from an equation given in the
form Ax? + Bxy + Cy? + Dx + Ey + F == 0. [500]

Quadratic2D [line, line] constructs the quadratic representing the product of
two lines. [502]

Quadratic2D[{line, line}, {line, line}, k, Pencil2D] constructs a family of
quadratics, parameterized by k, passing through the intersection points of four
lines taken in pairs. [486]

Quadratic2D[line, line, line, line, line] constructs the quadratic tangent to five
lines. [501]

Quadratic2D [point] constructs the quadratic representing a point (a circle of
zero radius). [491]

Quadratic2D [point, length, €] constructs the quadratic defined by the vertex
equation parameters. The point is the vertex point, the length is the focal length
and the constant, e, is the eccentricity. The quadratic is constructed in standard
position. [502]

Quadratic2D [point, length, e, 6] constructs the quadratic defined by the vertex
equation parameters. The point is the vertex point, the length is the focal length,
the constant, e, is the eccentricity and 6 is the angle of rotation. [502]

Quadratic2D [point, line, e] constructs the quadratic defined by a focus point,
directrix line and eccentricity. [502]

Quadratic2D [point, point, point] constructs the quadratic representing the
circle passing through three points. [501]

Quadratic2D [point, point, point, point, k, Pencil2D] constructs a family of
quadratics, parameterized by k, passing through four points. [487]

Quadratic2D [point, point, point, point, point] constructs a quadratic passing
through five points. [501]

Quadratic2D[poly, {z, y}] constructs a quadratic from the polynomial given in
the form Az? + Bxy + Cy? + Dz + Ey + F. [500]

Quadratic2D[quad] constructs a quadratic with normalized coefficients. [500]

Quadratic2D[quad, quad, k, Pencil2D] constructs a family (pencil) of
quadratics, parameterized by k, and passing through the intersection points of
two quadratics. [486]

See also: Pencil?2D.

B Radius2D

Radius2D [circle] returns the radius of a circle. [407]

Radius2D [arc] returns the radius of an arc. [390]

See also: Arc2D, Circle2D.

360 Command Browser

B Reflect2D

Reflect2D [object, line] reflects an object in a line.

The object may be an arc [390], circle [407], conic arc [418], coordinates [540],
ellipse [424], hyperbola [448], line [461], line segment [507], parabola [481],
point [492] or triangle [550].

Reflect2D[objList, line] reflects a list of objects in a line, returning a list of
objects. [540]

Reflect2D[egn, {z, y}, line] reflects an equation in a line. [540]

The equation may be linear, Ax + By + C == 0, or quadratic,
Ax? + By + Cy? + Dz + Ey + F == 0. [540]

See also: ReflectAngle2D, Rotate2D, Scale2D, Translate2D.

B ReflectAngle2D

ReflectAngle2D[6, line]l computes the reflection of an angle in a line. [540]

If a line L makes an angle 6 with the +z-axis and line L’ is the reflection of L in
the given line (the second argument to the function), then the function computes
the angle @' that L’ makes with the +z-axis.

See also: Reflect?2D.

W Rho2D

Rho2D [cnarc] returns the projective discriminant of a conic arc. [417]

See also: ConicArc2D.

M Rotate2D

Rotate2D [object, 8, coords] rotates an object by an angle 6 (in radians) about a position
whose coordinates are given. If the coordinates are omitted, the default is the origin.

The object may be an arc [389], circle [407], conic arc [418], coordinates [541],
ellipse [424], hyperbola [448], line [461], line segment [507], parabola [482] or
triangle [551].

Rotate2D [objList, 6, coords] rotates a list of objects. [541]

Rotate2D[egn, {z, y}, 0, coords] rotates an equation by an angle 6 (in radians)
about a position whose coordinates are given. [541]

The equation may be linear, Ax + By + C' == 0, or quadratic,
Az? + Bxy + Cy?> 4+ Dz + Ey + F == 0. [541]

See also: Reflect2D, Scale2D, Translate2D.

Command Browser 361

W Scale2D

Scale2D [object, s, coords] scales an object from a position given as coordinates. If the
coordinates are omitted, the default is the origin. [541]

The object may be an arc [391], circle [407], conic arc [418], coordinates [542],
ellipse [424], hyperbola [449], line [461], line segment [507], parabola [482] or
triangle [551].

Scale2D[objList, s, coords] scales a list of objects from a position whose
coordinates are given. [542]

Scale2D[egn, {z, y}, s, coords] scales an equation from a position. [542]

The equation may be linear, Ax + By + C == 0, or quadratic,
Ax? + Bxy + Cy*> + Dz + Ey + F == 0. [542]

See also: Reflect2D, Rotate2D, Translate2D.

B SectorArea2D

SectorArea2D [curve, {t1, t2}] computes the area of a sector of a curve between two
parameters.

The curve may be a circle [400], ellipse [401] or hyperbola [402] (the sector is
defined from the center point of the curve to the two points defined by the
parameters on the curve).

See also: Area2D, SegmentArea2D.

B Segment2D

Segment2D [{zo, Yo}, {1, y1}] is the standard representation of a line segment. The
coordinates of the start point are {zg, yo} and the coordinates of the end point are

{J)l N yl}- [505]

Segment2D [{zo, Yo}, {1, y1}1[#] and Inseg[t] return the {z, y} coordinates of
a point at parameter ¢ on a line segment. Parameter values in the range
0 <t <1 produce coordinates covering the entire length of the line segment. [505]

Segment2D[A, B, C][{t1, t2}]1 produces graphics primitives for the line segment
between parameters ¢; and t2 when plotting. [506]

Segment 2D [point, point] constructs a line segment between two points. [508]

Segment?2D [triangle, ny, no] constructs a line segment between vertices n; and
ng of a triangle. [552]

B SegmentArea2D

SegmentArea2D [curve, {t1, t2}] computes the area of a segment of a curve between two
parameters.

362 Command Browser

The curve may be a circle [400], ellipse [401], hyperbola [402] or parabola [402]
(the segment is the area between the curve and the chord defined by the two
parameters).

See also: Area2D, SectorArea2D.

M SemiConjugateAxis2D

SemiConjugateAxis2D [hyperbola] returns the length of the semi-conjugate axis of a
hyperbola. [448]

See also: Hyperbola2D, SemiTransverseAxis2D.

B SemiMajorAxis2D

SemiMajorAxis2D [ellipse] returns the length of the semi-major axis of an ellipse. [423]

See also: E11lipse2D, SemiMinorAxis2D.

B SemiMinorAxis2D

SemiMinorAxis2D [ellipse] returns the length of the semi-minor axis of an ellipse. [423]

See also: E1lipse2D, SemiMajorAxis2D.

B SemiTransverseAxis2D

SemiTransverseAxis2D [hyperbolal returns the length of the semi-transverse axis of a
hyperbola. [448]

See also: Hyperbola2D, SemiConjugateAxis2D.

W SetDisplay2D

SetDisplay2D [objPatt, objPrim] is a low-level function that specifies the graphics
primitives to use when plotting a given object pattern. [513]

B SimplifyCoefficients2D

SimplifyCoefficients2D [coefList] is a low-level function that returns a list of coefficients
with common factors removed. [427]

Simplify [line] and FullSimplify [line] use SimplifyCoefficients2D to
simplify the coefficients of a line.

Simplify[quad] and FullSimplify[quad] use SimplifyCoefficients2D to
simplify the coefficients of a quadratic.

W Sketch2D

Sketch2D [objList, opts] produces a plot of the objects in a list. [513]

Command Browser 363

The list of objects may be nested. Any of the options for the Mathematica
Graphics command may be specified.

Sketch2D [objList, CurveLength2D->n, opts] produces a plot of the objects in a
list, using a specified curve length for unbounded curves. [513]

See also: AskCurveLength2D, CurveLength2D.

W Slope2D

Slope2D [line] computes the slope of a line. [460]

Slope2D [Inseg] computes the slope of a line segment. [507]

W Solve2D

Solve2D [egnlList, varList] is a low-level function that solves a list of equations for a list of
variables and returns a list of rules representing the solutions. [516]

Solve2D [egnlList, varList, MaxSeconds2D->n] solves a list of equations for a list
of variables with a time limit of n seconds. [516]

See also: MaxSeconds2D.

B SolveTriangle2D

SolveTriangle2D[{{s1, s2, s3}, {a1, a2, as}}] computes a triangle configuration from
three sides and/or angles. Unspecified arguments should be Null. [548]

SolveTriangle2D[{{s1, s2, s3}, {a1, a2, as}}, Truel computes a triangle
configuration from three sides and/or angles, returning an alternate solution, if
one exists. [548]

The configuration is returned in the form {{s1, sa2, s3}, {a1, a2, as}}.

See also: Triangle2D.

W Span2D

Span2D [arc] computes the arc length of the complete span of an arc. [395]

N[Span2D [cnarc]] numerically computes the arc length of the complete span of a
conic arc. [396]

See also: ArcLength2D.

B TangentCircles2D

TangentCircles2D [{pt| In| cir, pt|In| cir, pt|in| cir}] constructs a list of circles tangent
to three objects (points, lines or circles). [522]

364 Command Browser

For brevity of expression a circle is said to be tangent to a point if the point is on
the circle.

TangentCircles2D [{pt]| In| cir}, pt] constructs a list of circles tangent to an
object (point, line or circle) with a given center point. [521]

TangentCircles2D[{pt|in| cir}, In| cir, r] constructs a list of circles tangent to
an object (point, line or circle), whose center is on a line or circle, with a given
radius. [521]

TangentCircles2D [{pt]| In| cir, pt|in| cir}, r] constructs a list of circles
tangent to two objects (points, lines or circles), with a given radius. [522]

TangentCircles2D [{pt| In| cir, pt|in| cir}, In| cir] constructs a list of circles
tangent to two objects (points, lines or circles), with center on a given line or
circle. [521]

See also: Circle?2D.

B TangentConics2D

TangentConics2D[{pt| in, pt| In, pt|in, pt|in, pt|in}] constructs a list of conics tangent
to five objects (points or lines). [526]

The expressions in the resulting conics can be very complicated and are usually
practical only if evaluated numerically.

See also: TangentQuadratics2D.

B TangentEquation2D

TangentEquation2D [line, quad] returns an equation involving the coefficients of a line and
a quadratic that constrains the two curves to be tangent. [532]

B TangentLines2D

TangentLines2D [curve, curvel] constructs a list of lines tangent to two curves. [533]

The curves may be circles, ellipses, hyperbolas, parabolas or quadratics.

TangentLines2D [line, curve] constructs a list of lines parallel to a line and
tangent to a curve. [532]

TangentLines2D[line, curve, Parallel2D] also constructs a list of lines parallel
to a line and tangent to a curve. [532]

TangentLines2D [line, curve, Perpendicular2D] also constructs a list of lines
perpendicular to a line and tangent to a curve. [532]

TangentLines2D [point, curve] constructs a list of lines from a point and tangent
to a curve. [532]

See also: Parallel2D, Perpendicular2D, TangentSegments2D.

Command Browser 365

B TangentPoints2D

TangentPoints2D [point, curve] constructs a list of points that are the points of tangency of
lines from a point to a curve. [537]

The curve may be a circle, ellipse, hyperbola, parabola or quadratic.

B TangentQuadratics2D

TangentQuadratics2D [{pt| In, pt| In, pt|in, pt|in, pt|in}] constructs a list of quadratics
tangent to five objects (points or lines). [526]

The expressions in the resulting quadratics can be very complicated and are
usually practical only if evaluated numerically.

See also: TangentConics2D.

W TangentSegments2D

TangentSegments2D [curve, curve] constructs a list of line segments tangent to two
curves. [534]

The curves may be circles, ellipses, hyperbolas, parabolas or quadratics.

See also: TangentLines2D.

B Translate2D

Translate2D [object, {u, v}] translates an object delta distance.

The object may be an arc [391], circle [408], conic arc [418], coordinates [542],
ellipse [424], hyperbola [449], line [461], line segment [508], parabola [482],
quadratic [499] or triangle [551].

Translate2D [objList, {u, v}] translates a list of objects. [543]
Translate2D[egn, {z, y}, {u, v}] translates an equation delta distance. [543]

The equation may be linear, Az + By + C == 0, or quadratic,
Ax? + Bxy + Cy? + Dx + Ey + F == 0. [543]

See also: Reflect2D, Rotate2D, Scale2D.

B Triangle2D

Triangle2D[{x1, y1}, {z2, y2}, {z3, y3}] is the standard representation of a triangle
defined by three vertex coordinates. [546]

Triangle2D[{s1, s2, s3}] constructs a triangle from three side lengths. The first
vertex of the triangle will be the origin and the second vertex will be on the
+z-axis. [554]

366 Command Browser

Triangle2D[{{s1, s2, s3}, {a1, az, as}}] constructs a triangle from three sides
and/or angles. Unspecified arguments should be Null. The first vertex of the
triangle will be the origin and the second vertex will be on the +x-axis. [554]

Triangle2D[{{s1, s2, s3}, {a1, aa, as}}, Truel constructs a triangle from three
sides and/or angles, returning an alternate solution, if one exists. [554]

Triangle?2D [line, line, line] constructs a triangle whose sides are specified by
three lines. [553]

Triangle2D [point, point, point] constructs a triangle whose vertices are
specified by three points. [553]

See also: SolveTriangle2D.

W Vertices2D

Vertices2D[conic] returns a list containing the vertex point(s) of a conic curve.

The conic may be an ellipse [412], hyperbola [413] or parabola [413]. If the conic is
an ellipse or hyperbola the list contains two vertex points; if the conic is a
parabola the list contains a single vertex point.

B XCoordinate2D

XCoordinate2D [point] returns the z-coordinate of a point. [491]

XCoordinate2D [coords] returns the z-coordinate of a location. [491]

See also: Coordinates2D, Point2D, YCoordinate2D.

B YCoordinate2D

YCoordinate2D [point] returns the y-coordinate of a point. [491]

YCoordinate2D [coords] returns the y-coordinate of a location. [491]

See also: Coordinates2D, Point2D, XCoordinate2D.

Chapter 24

Error Messages

This chapter is a listing of all the error messages that can be generated by Descarta2D during
computations. Mathematica may generate additional error messages. The messages are listed
alphabetically by message name. The number in square brackets indicates the page where the
error is defined in the packages.

Arc2D

ArcoD: 1 COLLIMEAT .ottt [393]
No arc exists; the given points {ptl, pla, ptg} are collinear.

When specifying an arc through three points, the points cannot be collinear. Descarta2D will
return the $Failed symbol if it detects that the three specified points lie on a line.

ArcoD: tiMAginaryt e [388]
An invalid arc of the form arc; has been detected; the arguments cannot
be imaginary.

The arguments of an arc cannot involve imaginary numbers. Descarta2D will return the
$Failed symbol whenever the arguments of an object are determined to be invalid.

AT oD : tAnvVaALid. . ottt e e [389]
An invalid arc of the form arc has been detected; the bulge factor must

be positive and the defining points must be distinct.

The bounding points of an arc cannot be coincident and the bulge factor must be positive.
Descarta2D will return the $Failed symbol whenever the arguments of an object are deter-
mined to be invalid.

367

368 Error Messages

Arc2D::invalidCoincident........ouiuiiii i [392]
The defining points are coincident; an arc cannot be constructed.

The defining points of an arc must be distinct. Descarta2D will return the $Failed symbol if
coincident points are detected.

Arc2D: :invalidCoOLlLlimearu ettt [393]
The three defining points are collinear; an arc cannot be constructed.

An arc cannot be constructed through three collinear points. Descarta2D will return the
$Failed symbol if collinear points are detected.

Arc2D::invalidEntryAngle..........ooiiininini i [392]
The entry angle of the arc is invalid; the entry angle cannot be an

integer multiple of Pi radians.

The entry angle of an arc cannot be an integer multiple of 7 radians. Descarta2D will return
the $Failed symbol if invalid entry angle is detected.

Arc2D: :invalidRadiusttt [392]

The radius, r, of the arc is invalid; the radius must be positive.

The radius of an arc must be positive. Descarta2D will return the $Failed symbol if a non-
positive radius is detected.

Arc2D: :invalidSPam.t e [392]

The angular span of the arc is invalid; the span cannot be an integer
multiple of 2Pi radianms.

The angular span of an arc cannot be a multiple of 27 radians. The $Failed symbol will be
returned when an invalid span is specified.

Circle2D

Circle2D: :CoinCIdent . ..uuui [409]

The points {ptl,ptg} are coincident; no valid circle exists.

Error Messages 369

When specifying a circle by two points, the points cannot be coincident. Descarta2D will
return the $Failed symbol if two coincident points are specified.

Circle2D: :COLLameaT .. ittt ettt e e e e [410]
The points {ptl,ptg,ptg} are collinear; no valid circle exists.

When specifying a circle through three points, the points cannot be collinear. Descarta2D will
return the $Failed symbol if it detects that the three specified points lie on a line.

Circle2D: tiMAGIMATY ...ttt ettt et e [406]
An invalid circle of the form cir; has been detected; the arguments cannot

be imaginary.

The arguments defining a circle cannot be imaginary numbers. Descarta2D will return the
$Failed symbol if the arguments of an object involve imaginary numbers.

Circle2D: :invalid......oouininiii i [406]
An invalid circle of the form cir; has been detected; the radius must be

positive.

When defining a circle the radius must be a positive number. Descarta2D will return the
$Failed symbol whenever the arguments to an object are determined to be invalid.

CiTCle2D: tmOCITCLe e ettt ittt ettt et e e e e e e [409]
The curve represented by quad; is not a circle.

Descarta2D has detected that the curve represented by a Quadratic2D is not a circle. The
$Failed symbol will be returned.

(OB o =321) R [409]
pt; is on Iny; no valid circle exists.

When specifying a circle tangent to a line with a given center point, the point cannot be on the
line. If Descarta2D detects that the point lies on the line, it will return the $Failed symbol.

CArcle2D: tTaGAUS o v ittt ettt et et [409]
The radius argument, r, is invalid; the radius must be positive.

When specifying a circle by center point and radius, the radius must be positive. Descarta2D
will return the $Failed symbol if a non-positive radius is specified during a circle construction.

370 Error Messages

ConicArc2D

ConiCATrC2D: 1COIEET ..ottt [419]

The chord defined by In; passes through the center of cru;; a conic arc
cannot be constructed.

The chord of a conic arc cannot pass through the center of a central conic because this
configuration is invalid. If the line defining the chord passes through the center of the conic,
then the $Failed symbol will be returned.

ConicArc2D: tiMAGIMATY o\ttt ittt ettt ettt e e e e [416]

An invalid conic arc of the form cnarc; has been detected; the arguments
cannot be imaginary.

The arguments defining a conic arc cannot be imaginary. If Descarta2D detects an invalid
object the $Failed symbol will be returned.

ConicArc2D: inOCROTA . .. ottt [419]

No chord exists between In; and crv;; a conic arc cannot be constructed.

When constructing a conic arc from a line and a conic curve, the line must intersect the conic
in two points that form the chord of the conic arc. If the intersection consists of less than two
points, or it is on opposite branches of a hyperbola, then the $Failed symbol will be returned.

COnICATC2D: 1 POIMES ..ttt [417]

An invalid conic arc of the form cnarc; has been detected; the control
points cannot be collinear.

The three control points defining a conic arc cannot be collinear. Descarta2D will return the
$Failed symbol whenever the arguments to an object are determined to be invalid.

ConicArC2D: iThO ..o (417

An invalid conic arc of the form cnarc; has been detected; the value of
rho must be in the range O<rho<1.

The value of p determines the shape and type of the conic arc. When 0 < p < 1/2 an elliptic
conic arc is created, when p = 1/2 a parabolic conic arc is created and when 1/2<p <1 a
hyperbolic conic arc is created. Descarta2D will return the $Failed symbol whenever the
arguments to an object are determined to be invalid.

Error Messages 371

D2DExpressions2D

D2DExpressions2D:badTolouiuiuuiiiii i [431]
The tolerance tol is not a valid tolerance specification; the default

tolerance, 10710, will be used.

Tolerance values used to query expressions must be numbers greater than or equal to zero.

D2DMaster$2D

D2DMaster$2D: :10adedttt e [469]
The package ‘D2DMaster2D’ has already been loaded.

The package D2DMaster2D.m defines the symbol names associated with each Descarta2D pack-
age so that it can be loaded automatically when referenced. This file only needs to be loaded
once; subsequent requests to load the file will be ignored and will cause no harm.

D2DMaster$2D: :noPathot [469]
The path to ’D2DMaster2D.m’ cannot be found; unable to initialize

Descarta2D.

The package D2DMaster2D.m defines the symbol names associated with each Descarta2D pack-
age so that it can be loaded automatically when referenced. This error indicates that the
software has not been installed correctly.

D2DMaster$2D: : tooManyPathisttt e [469]
More than one path to ’D2DMaster2D.m’ was found; using path-name.

The package D2DMaster2D.m defines the symbol names associated with each Descarta2D pack-

age so that they can be loaded automatically when referenced. This error indicates that the

software has found more than one copy of this file and may suggest that the software has not
been installed correctly.

Directrices2D

Directrices2D: :CATCULATttt [413]

The ellipse ellipse; is circular; it has no (finite) directrix lines.

An ellipse whose semi-major and semi-minor axes are equal in length has no (finite) directrix
lines. Descarta2D will return an empty list.

372 Error Messages

Ellipse2D

E11ipse2D: tAMaGIiMATY . o\ttt ittt et et et e e e [422]

An invalid ellipse of the form ellipse; has been detected; the arguments of
an ellipse cannot involve imaginary numbers.

When constructing an ellipse Descarta2D verifies that none of the arguments involve imaginary
numbers. Descarta2D will return the $Failed symbol whenever the arguments to an object
are determined to be invalid.

E11ipse2D: :invalid......oouinininititit ittt [423]

An invalid ellipse of the form ellipse; has been detected; the length of
both the semi-major and semi-minor axes must be positive.

When constructing an ellipse Descarta2D verifies that both the semi-major and semi-minor
axes have positive lengths. Descarta2D will return the $Failed symbol whenever the argu-
ments to an object are determined to be invalid.

E11ipse2D: tinvdef [425]

The defining geometry or eccentricity is invalid; the eccentricity of an
ellipse must be in the range 0<e<1l, the foci and vertices cannot be
coincident, and the focus cannot lie on the directrix.

An invalid ellipse was specified and Descarta2D will return the $Failed symbol.

Hyperbola2D

Hyperbola2D: t AMagilaryunun ettt et e ettt e e e e e [447]

An invalid hyperbola of the form hyp; has been detected; the arguments
cannot be imaginary.

When constructing a hyperbola the arguments cannot be imaginary. If imaginary arguments
are detected Descarta2D will return the $Failed symbol.

Hyperbola2D: :invalid.......o.ouununininititiitt e [447]

An invalid hyperbola of the form hyp; has been detected; the lengths of
the semi-transverse and semi-conjugate axes must be positive.

Error Messages 373

When constructing a hyperbola the lengths of both the semi-transverse and the semi-conjugate
axes must be positive. Descarta2D will return the $Failed symbol whenever the arguments
to an object are determined to be invalid.

Hyperbola2D: :invdefottt [450]

The defining geometry or eccentricity is invalid; the eccentricity of a
hyperbola must be greater than 1, the foci and vertices cannot be coincident
and the focus cannot lie on the directrix.

An invalid hyperbola was specified and Descarta2D will return the $Failed symbol.

IsNumeric2D

IsNUMEeTic2D :nOtNUMETIC .\t ettt ettt e ettt et e et et et et e [432]
The funcName function requires numerical arguments; symbolic arguments

are not allowed.

Some Descarta2D functions require that their arguments be numeric. These functions will not
allow symbolic arguments.

Line2D

LAine 2D : 1 COMCOIME T A C ottt ettt et et et e et e e e e [408]
The circles {cirl s cirg} are concentric; no radical axis exists.
When specifying the two circles for the construction of a radical axis, the two circles cannot

be concentric. If Descarta2D detects that concentric circles have been specified in the radical
axis construction, it will return the $Failed symbol.

Line2D: tAMAEIMATY .ttt ettt ettt et et e e e e e [459]
An invalid line of the form In; has been detected; the arguments cannot

be imaginary.

The arguments defining a line cannot be imaginary. If Descarta2D detects that an object is
invalid the $Failed symbol will be returned.

Line2D: tinvalad [459]

An invalid line of the form [n; has been detected; at least one of the
first two coefficients must be non-zero.

374 Error Messages

When defining a line at least one of the first two coefficients, A or B, must be non-zero.
Descarta2D will return the $Failed symbol whenever the arguments to an object are deter-
mined to be invalid.

Line 2D tMOPOL AT . o ittt [463]

Since pt; is at the center of the conic, no polar line exists.

When creating the polar line of a quadratic with respect to a point, Descarta2D verifies that
the point is not coincident with the center of the conic curve represented by the quadratic.
If the point is at the center of the conic represented by the quadratic Descarta2D returns the
$Failed symbol.

Line2D: tIOPOLY ...ttt ettt e e e [458]
The expression exrpr cannot be recognized as a linear polynomial or

equation in variables z and y.

When converting a polynomial or equation to a line, the expression representing the line
must be recognizable as a linear polynomial or equation. If the expression is not recognizable
Descarta2D returns the $Failed symbol.

Line2D: :8ameCOOTdS ... ottt ettt [462]
The coordinates {z1, y1} and {z2, y2} are coincident; no valid line can be

constructed.

When creating a line through a pair of coordinates or a pair of points, the positions cannot
be coincident. Descarta2D will return the $Failed symbol if it detects the coordinates are
coincident.

Loci2D

o Yo 2] R o =3 X v o= [465]
The quadratic is a central conic, but its type cannot be determined.

Due to the nature of the coefficients of the quadratic, the specific conic type cannot be deter-
mined; an empty list will be returned.

IR oh 2] D IEEECYof o o1 v o3 A v 2P [468]

The eccentricity, e, is invalid; the eccentricity must be positive.

Error Messages 375

The eccentricity of a conic must be positive; the $Failed symbol will be returned.
JIeYoh 240 RS o) e Yo b = 1A [465]

The quadratic has no real locus.

The equation represented by the quadratic has no real points; an empty list will be returned.

MedialEquations2D

MedialEquations2D: :COINCIAEIE o\t tn ettt ettt e [473]
The objects {objl, Objg} are coincident; no finite number of medial curves

exist.

When two objects are identical the medial points include all the points in the plane and no
unique curve locus exists. When this situation occurs Descarta2D will return an empty list
indicating that no unique curves satisfy the geometric constraints specified.

Parabola2D

Parabola2D: i AMAZINATY c.outttt ettt et ettt e e e [480]

An invalid parabola of the form parabola; has been detected; the arguments
cannot be imaginary.

The arguments of a parabola cannot be imaginary. Descarta2D will return the $Failed symbol
whenever the arguments to an object are determined to be invalid.

Parabola2D: :invalid..........iuiuiniuiii [480]
An invalid parabola of the form parabola; has been detected; the focal

length cannot be zero.

The focal length, f, of a parabola cannot be zero. Descarta2D will return the $Failed symbol
whenever the arguments to an object are determined to be invalid.

Parabola2D: tAnVPTLIL. . o . ettt ettt e e [483]
The focus pt; is on the directrix In;; no valid parabola can be

constructed.

The focus point of a parabola cannot be on the directrix line. Descarta2D returns the $Failed
symbol when it detects an invalid construction.

376 Error Messages

Parameters2D

Parameters2D: :noChordo.iuiuiiiiii [455]
No chord exists between In; and crusg.

The Parameters2D function requires that the defining line intersect the curve in two points.
If the line does not intersect the chord, Descarta2D will return the $Failed symbol.

Point2D

Point2D::coincident.ot [494]
No unique intersection point exists; lines Iny and Iny are coincident.

Coincident lines cannot be intersected. Descarta2D will return the $Failed symbol if it detects
an attempt to intersect coincident lines.

Point2D: tiMAGINATY ...ttt ittt [490]
An invalid point of the form pi; has been detected; the coordinates of a

point cannot be imaginary.

The coordinates of a point cannot be imaginary. If Descarta2D detects an invalid object the
$Failed symbol will be returned.

POint2D: tMODIT .ottt [493]
Points {pt1, pt2} are coincident and do not define a valid direction.

When defining a point that is offset in a direction specified by two points, the direction points
cannot be coincident. Descarta2D returns the $Failed symbol if the two points are coincident.

POAnt 2D tOP 0L . oottt [494]
Since In; passes through the center of the conic, no pole point exists.
When creating the pole point of a quadratic with respect to a line, Descarta2D verifies that

the line does not pass through the center of the conic curve represented by the quadratic. If
the line does pass through the center Descarta2D returns the $Failed symbol.

Point2D: iMORATIO ..ttt [493]

The sum of the ratio numbers {7“1, 7“2} cannot be zero.

Error Messages 377

When defining a point that divides a segment into a given ratio, the ratio numbers r; and
ro cannot sum to zero. Descarta2D will return the $Failed symbol if the ratio numbers are
invalid.

Point2D: tnotCentral ..ottt ettt [494]

quad is not a central conic; it has no center point.

The quadratic is not a central conic and has no center point. Descarta2D will return the
$Failed symbol.

Point2D: :notCentrallt [419]
The conic underlying cnarc is not a central conic; it has no center

point.

The conic underlying a conic arc is not a central conic and has no center point. Descarta2D
will return the $Failed symbol.

Point2D: :parallel oo ..ttt e e e e e e [494]
No intersection point exists; lines In; and Ilny are parallel.

Parallel lines cannot be intersected. Descarta2D will return the $Failed symbol if its detects
an attempt to intersect parallel lines.

Quadratic2D

Quadratic2D::coincident..........iiiuiiii [487]
Two or more of the points are coincident; no valid quadratic pencil

exists.

When constructing a quadratic pencil from four points, no pair of points may be coincident.
The $Failed symbol with be returned if any pair of points is detected to be coincident.

Quadratic2D: :eCcCentriCity ... o.iuiui i [502]
The eccentricity e is invalid; the eccentricity must be positive.

When defining a quadratic using a point, a line and an eccentricity, Descarta2D will report an
error if the eccentricity is not positive and return the $Failed symbol.

378 Error Messages

Quadratic2D: iiMAgInaryo.uii it e [461]

An invalid quadratic of the form quad; has been detected; the arguments
cannot be imaginary.

The arguments defining a quadratic cannot be imaginary. If Descarta2D detects that an object
is invalid the $Failed symbol will be returned.

Quadratic2D: tAnvalidou ittt e [498]

An invalid quadratic of the form quad; has been detected; at least one of
the first five coefficients must be non-zero.

At least one of the first five coefficients of a quadratic must be non-zero. The $Failed symbol
is returned whenever the arguments to an object are determined to be invalid.

Quadratic2D: tinvVECC......o.iu [499]

A negative eccentricity, erpr;, is invalid; no valid quadratic can be
constructed.

The eccentricity of a conic must be non-negative. Descarta2D will return the $Failed symbol
if an invalid eccentricity is specified.

QUAdratic2D: tdmVL eI . oottt et e e [499]

A non-positive focal chord length, expr;, is invalid; no valid quadratic
can be constructed.

The length of a conic’s focal chord must be positive. Descarta2D will return the $Failed
symbol if an invalid length is specified.

QUadratic2D: tMOPOLYttt e [500]

The expression expr cannot be recognized as a quadratic polynomial or
equation in variables z and y.

When converting a polynomial or equation to a quadratic, the expression representing the
quadratic must be recognizable as a quadratic polynomial or equation. If the expression is
not recognizable Descarta2D returns the $Failed symbol.

Error Messages 379

Segment2D

Segment2D: tAMAGINATY . .\ttt e ettt et ettt e [506]

An invalid line segment of the form Insegy has been detected; the
arguments cannot be imaginary.

A line segment with imaginary arguments has been detected. Descarta2D will return the
$Failed symbol whenever the arguments to an object are determined to be invalid.

Segment2D: :invalid......o.uui e [506]
An invalid line segment of the form Inseg; has been detected; the defining

coordinates cannot be coincident.

In order to be valid, a line segment must have two distinct end points, they cannot be coin-
cident. Descarta2D will return the $Failed symbol whenever the arguments to an object are
determined to be invalid.

Sketch2D

Sketch2D: :invalidLength.........oiiuiii [512]

Setting CurvelLength2D— n; is invalid; ‘CurveLength2D’ must be positive;
the current value of CurvelLength2D— ns will be retained.

When using the Mathematica SetOptions command, any attempt to set the CurveLength2D
parameter of the Sketch2D function to a non-positive value will be rejected. The current value
of the CurveLength2D parameter will be retained.

SKETCR2D: 100D .. eet ettt ettt e e [513]
No valid objects to sketch.

If there are no valid geometric objects in the list of objects to sketch, Descarta2D will output
the Sketch2D: :no0bj message to indicate no graphical output will be plotted.

Sketch2D: 1nOtREALttt [513]
n object(s) cannot be sketched.
When plotting objects using the Sketch2D command, Descarta2D will count the number of

objects that have symbolic arguments. Such objects cannot be plotted and will not be included
in the graphics that are displayed.

380 Error Messages

Solve2D

Solve2D: :infindteo [516]

An infinite number of solutions exist; only independent solutions will be
returned.

When solving a system of equations some solutions may exist in which the solutions are
interrelated functions of each other. Such solutions will not be returned.

S01ve2D: :invalidTimeo.iutitit ittt e [516]

Option MaxSeconds2D->n; is invalid; ’MaxSeconds2D’ must be positive; the
current value of MaxSeconds2D->n, will be retained.

When setting the MaxSeconds2D option of the Solve2D command, the option value must be
positive.

SOLVE2D: tBAME ...ttt [516]

The equations could not be solved in MaxSeconds2D->n;, an empty list of
solutions will be returned; using approximate numbers may produce a more
complete list of solutioms.

Some equations are too complex to be solved in the time allowed by the Descarta2D Solve2D
command. An empty list of solutions will be returned if the maximum time elapses before a
solution is found. To increase the maximum time allowed use the SetOptions command. For
example,

SetOptions[Solve2D, MaxSeconds2D->60].

will set the time limit to 60 seconds.

SolveTriangle2D

SolveTriangle2D: :aMbIiGUOWS ..ttt ettt ettt e et et e et [550]

Two valid solutions exist for this configuration; set the alternate
solution option to logical to compute the other configuration.

When computing a triangle configuration, Descarta2D will display this warning if more than
one solution is valid. The logical will either be True or False indicating the setting required
to produce the alternate configuration.

Error Messages 381

SolveTriangle2D: :angleSOnlyo.tuunurtn ettt ettt [549]

The triangle configuration is under-constrained; a valid configuration
with the triangle’s perimeter arbitrarily set to 1 will be computed.

When computing a triangle configuration consisting of angles only, Descarta2D will display
this warning to indicate that the length of the sides are arbitrarily set, being correct for the
given angles.

SolveTriangle2D: :COMSEIAIIL ..o\ttt ittt ittt e e e e [548]

The triangle configuration is under-constrained; three constraints are
expected.

At least three parameters are needed to compute a triangle configuration. Descarta2D will
return $Failed if a configuration is under-constrained.

SolveTriangle2D: :invVCOMLIg .. o.uti ittt [547]

The configuration of sides and/or angles specified is invalid; no
triangle can be constructed.

An invalid triangle configuration has been specified. Descarta2D will return $Failed.

TangentConics2D

TangentConics2D: :COINCIdentouiuiuii e [523]

Two or more of the defining points or lines are coincident; no proper
conic can be constructed.

When constructing a tangent conic from defining points, all of the points must be unique; if
any of the points are coincident, Descarta2D will return an empty list.

TangentConics2D: :COLLIMEAT ..ttt ittt et e e e e [523]

Three or more of the defining points are collinear; no proper conic can
be constructed.

When constructing a tangent conic from defining points, no triple of three points may be
collinear; if any triple is collinear Descarta2D will return an empty list.

382 Error Messages

TangentConics2D: : COMCULTEIE ..o\ttt ittt ettt e e [523]

Three or more of the tangent lines are concurrent; no proper conic can be
constructed.

When constructing a tangent conic from defining lines, no triple of lines can be concurrent
(meet in a point); if any triple is concurrent Descarta2D will return an empty list.

TangentConics2D: :1inesSTRTU ... oottt ettt e [523]

One of the points is on more than one of the tangent lines; no proper
conic can be constructed.

When constructing a tangent conic from points and lines, each point is allowed to be on at
most one of the tangent lines; if any point is on more than one line, Descarta2D will return
an empty list.

TangentConics2D::parallelu.iuiuinitiiiti e [523]

Three or more of the defining lines are parallel; no proper conic can be
constructed.

When constructing a tangent conic from defining lines, no triple of lines can be parallel; if any
triple is parallel Descarta2D will return an empty list.

TangentConics2D: :poIntSOnttt [523]

Two or more of the points are on a tangent line; no proper conic can be
constructed.

When constructing a tangent conic from points and lines, each line can have at most one point
on it; if any line has more than one point one it, Descarta2D will return an empty list.

Transform2D

Transform2D: :invalidScale [542]
The scale factor s is invalid; the scale factor must be positive.

The scale factor, s, for a scaling transformation must be positive. Descarta2D will return the
$Failed symbol if a non-positive scale factor is specified.

Error Messages 383

Triangle2D

Triangle2D: iIMAZINATY c.outnt ettt et ettt et e e e [546]

An invalid triangle of the form triangle; has been detected; the arguments
cannot be imaginary.

The arguments of a triangle cannot be imaginary. Descarta2D will return the $Failed symbol
whenever the arguments to an object are determined to be invalid.

Triangle2D: :invalid........u.iuinin ittt e [546]

An invalid triangle of the form triangle; has been detected; the vertex
points cannot be collinear.

The vertex points of a triangle cannot be collinear. Descarta2D will return the $Failed symbol
whenever the arguments to an object are determined to be invalid.

Triangle2D: iDOTTIAIELE ..t u ettt ettt ettt et e e e e e e e e [553]

Two of the lines {ini, lns, Ing} are parallel, or the three are concurrent;
no triangle exists.

When defining a triangle by three lines, the lines must intersect in three distinct points. If any
pair of lines are parallel, or the three lines are concurrent, Descarta2D will return the $Failed
symbol.

Part VII

Packages

D2DArc2D

The package D2DArc2D implements the Arc2D object.

Initialization
Begi nPackage["D2DArc2D ", {"D2DCircle2D ", "D2DExpressions2D ",
" D2DGeonetry2D ", "D2DLine2D' ", "D2DWVaster2D ", "D2DNunbers2D ",
"D2DPoi nt 2D ", "D2DSket ch2D ", "D2DTransfornmD "}];

D2DAr ¢2D: : usage=
"D2DArc2D is a package that inplenents the Arc2D object.";

Arc2D: : usage=
"Arc2D {x0,y0},{x1,y1},B] is the standard formof an arc with start
poi nt (x0,y0), end point (x1,yl) and positive bulge factor 'B .";

Bul ge2D: : usage=
"Bul ge2Df arc] returns the bulge factor of an arc.";

Conpl erent 2D: : usage=
"Conpl ement2D is a keyword required in Arc2Dfarc, Conpl enent2D].";

Begi n["‘ Private' "];

Description

Representation

Arc2D[{zo, Yo}, {z1, y1}, Bl M Standard representation of an arc in Descarta2D. The first
argument is a list of coordinates representing the start point of the arc. The second argument
is a list of coordinates representing the end point of the arc. The third argument is a scalar
representing the bulge factor of the arc, B > 0. The arc is traversed counter-clockwise from
Py to P,. The bulge factor is the ratio of the arc’s height, h, to half the chord length, d/2; so
B =2h/d.

387

388 D2DArc2D - Description

Evaluation

Arc2D[{zo, yo}, {z1, y1}, Bl [{] M Evaluates an arc at a parameter value, ¢, and returns a
list of coordinates {z, y}. Parameters in the range 0 < t < 1 cover the complete span of the
arc.

Arc2D {x0_,y0_},{x1_,yl1 },B][t_7?IsScalar2D :=
Modul e[{arc, h, k, bet a},
ar c=Ar c2D[{x0, y0}, {x1, y1}, B];
{h, k} =Coor di nat es2Df ar c] ;
bet a=Angl e2D] arc] ;
{h+(x0-h)*Cos[beta*t]-(y0-k)*Sin[beta*t],
k+(x0-h) *Si n[bet a*t] +(y0- k) *Cos[beta*t] }];

Graphics

Provides graphics primitives for an arc by extending the Mathematica Display command.
Executed when the package is loaded.

Set Di spl ay2D]
Arc2D[{x0_,y0_},{x1_,y1 },B_]J[{t1_7?IsScal ar2D,t2_?lsScal ar2D}],
Circl e[Coordi nat es2D[Arc2D {x0, y0}, {x1,y1}, B]],
Radi us2D[Arc2D] { x0, y0}, {x1, y1}, B]],
Pri mar yAngl eRange2D {
Angl e2D[Arc2Df { x0, y0}, {x1, y1}, B], t1],
Angl e2D] Arc2D[{x0, yO}, {x1,y1},B],t2]}]] 1;

Set Di spl ay2Df
Arc2D[{x0_,y0 },{x1_,y1 },B],
Circl e[Coor di nat es2D] Ar c20f { x0, y0}, {x1, y1},B]],
Radi us2D[Arc2D[{ x0, y0}, {x1,y1}, B]],
Pri mar yAngl eRange2D] Ar c2Df { x0, y0}, {x1,y1},B]]1]]

Validation

Arc2D[{zg, Yo}, {z1, y1}, B] M Detects an arc with imaginary arguments and returns the
$Failed symbol. If the imaginary parts are insignificant, they are removed.

Arc2D: : i magi nary=
"An invalid arc of the form’'Arc2D ‘1, *2', “3']" has been detected,
the argunents cannot be inmaginary.";

Arc2Df{x0_,y0 },{x1_,y1 },B] :=
(Arc2D @@ Chopl magi nary2D[Arc$2D[{ x0, y0}, {x1,y1},B]]) /;
(Freed {x0,y0,x1,y1, B}, Pattern] &&
I sTi nyl magi nary2D[{ x0, y0, x1,y1,B}]);

Arc2D[{x0_,y0 },{x1 _,y1 },B] :=
(Message[Arc2D: : i magi nary, {x0, y0}, {x1,y1}, B] ; $Fai l ed) /;
(Freed {x0,y0,x1,y1,B}, Pattern] &&
| sConpl ex2D[{x0, y0, x1,y1, B}, 0]);

D2DArc2D - Scalars 389

Arc2D[{zo, yo}, {x1, v1}, Bl W Detects an arc with a negative bulge factor and returns an
arc with the defining points interchanged and the positive bulge factor.

Arc2D {x0_,y0_},{x1_,yl1 },B ?IsNegative2D :=
Arc2D {x1, y1}, {x0, y0}, - B];

Arc2D[{zo, yo}, {z1, y1}, Bl M Detects an arc with a zero bulge factor and returns the
$Failed symbol.
Arc2D: :invalid=
"An invalid arc of the form’Arc2D[‘1', ‘2', ‘3']’ has been detected,

the bul ge factor nmust be positive and the defining points nust be
distinct.";

Arc2D{x0_,y0_},{x1_,y1 },B] :=
(Message[Arc2D: :invalid, {x0,y0}, {x1,yl}, B]; $Failed) /;
(Freeq {x0,y0,x1,y1, B}, Pattern] &&
| sZero2D[B, 0]) ;

Arc2D[{zg, Yo}, {z1, y1}, Bl M Detects an arc whose defining points are coincident and
returns the $Failed symbol.
Arc2D[{x0_,y0_},{x1_,y1 },B] :=
(Message[Arc2D: :invalid, {x0,y0}, {x1,yl}, B]; $Failed) /;

(Freeq {x0,y0, x1,y1, B}, _Pattern] &&
| sZer 02D] Di st ance2D { x0, y0}, {x1,y1}1]1);

IsValid2D[arc] M Returns True for a syntactically valid arc.

I'sVal i d2D] Ar c2D] { x0_7?1 sScal ar 2D, y0_?I sScal ar 2D},
{x1_7?lsScal ar 2D, y1_?l sScal ar 2D},
B_?IsScal ar2D]] := True;

Scalars

Angular Span of an Arc

Angle2D[arc] M Computes the angular span of an arc. The result is returned in radians.

Angl e2D[Arc2D[{x0_,y0_},{x1_,y1 },B]] := 4*ArcTan[B];

Angle at Parameter on an Arc

Angle2D[arc, t] M Computes the angle between a line through the arc center parallel to
the 4z-axis and a line through a point at a parameter value, ¢, on the arc. For example,
Angle2D[arc, 0] gives the start angle, 61, and Angle2D[arc, 1] gives the end angle, 6s.

Angl e2D[A: Arc2D[{x0_,y0_},{x1_,yl1 },B],t_?IsScalar2D] :=
Modul e[{h, k, xt, yt},
{h, k} =Coor di nat es2D[A] ;
{xt,yt}=A[t];
ArcTan[xt-h,yt-k] 1;

390 D2DArc2D - Transformations

Bulge Factor of an Arc

Bulge2D[arc] M Returns the bulge factor of an arc.

Bul ge2D[Arc2D[{x0_,y0_},{x1_,y1_},B]] := B

Primary Angle Range

PrimaryAngleRange2D[arc] M Computes a list of two primary angles measured counter-
clockwise from the +z-axis to the defining points of an arc. The arc is traversed counter-
clockwise from the first angle to the second.

Pri mar yAngl eRange2D[A: Arc2D[{x0_,y0_},{x1_,yl1 },B]] :=
Modul e[{ h, k},
{h, k} =Coor di nat es2D[A] ;
Pri mar yAngl eRange2D{ { Ar cTan[x0- h, y0- k],
ArcTan[x1-h,y1-k]}] 1:

Radius of an Arc

Radius2D[arc] B Computes the radius of an arc.

Radi us2D{ Arc2D[{x0_,y0 },{x1_,y1 },B]]
Sqrt[(x0-x1)"~2+(y0-y1l)~2] *(B+1/B)/ 4;

Transformations

Reflect

Reflect2D[arc, line] M Reflects an arc in a line.

Refl ect 2D Arc2D{ {x0_,y0_},{x1_,y1 },B],L:Line2a_,b_,c_]] :=
Arc2D] Ref | ect 2D0] {x1, y1}, L], Refl ect 20 { x0, y0}, L], B] ;

Rotate

Rotate2D[arc, 0, coords] M Rotates an arc by an angle 6 about a position given by a coordi-
nate list. If the third argument is omitted, it defaults to the origin (see D2DTransform2D.nb).

Rot at e2D[Arc2D[{x0_,y0_},{x1_,yl1l },B], theta_?lsScal ar 2D,
{xc_?lsScal ar 2D, yc_?l sScal ar2D}] :=
Arc2D[Rot at e2D] { x0, y0}, t het a, { xc, yc}],
Rot at e2D{ { x1, y1}, thet a, {xc, yc}], B] ;

D2DArc2D - Construction 391

Scale

Scale2D[arc, s, coords] M Scales an arc from a position given by coordinates. If the position
is omitted, it defaults to the origin (see D2DTransform2D.nb).

Scal e2D[Arc2D{ {x0_,y0_},{x1_,y1_},B_],s_?lsScal ar 2D,
{xc_?lsScal ar 2D, yc_?l sScal ar2D}] :=
Arc20 Scal e2D { x0, y0}, s, {xc, yc}],
Scal e2Df {x1, y1}, s, {xc,yc}],B] /;
Not [| sZer oOr Negat i ve2D[s]] ;

Translate

Translate2D[arc, {u, v}] B Translates an arc delta distance.

Transl at e2Df Arc2D[{x0_,y0_},{x1_,y1 },B],
{u_7?IsScal ar 2D, v_?l sScal ar2D}] :=
Arc2D {x0+u, yO+v}, {x1+u, y1+v}, B];

Construction

Center Point of an Arc

Point2D[arc] M Constructs the center point of the arc.

Poi nt 2D[Arc2D[{x0_,y0_},{x1_,y1 },B]] :=
Modul e[{ K},
K=(1/B-B)/ 4;
Poi nt 2D[{ (x0+x1)/ 2+K*(y0-y1), (yO+yl)/2-K*(x0-x1)}] 1;

Circle from Arc

Circle2D[arc] M Constructs the circle associated with an arc.
Circle2D[A: Arc2D[{x0_,y0_},{x1_,y1 },B]] :=
Circl e2D Coor di nat es2D] A] , Radi us2D[Al] ;

Complement Arc

Arc2D[arc, Complement2D] M Constructs an arc that is the complement of a given arc.

Arc2D[Arc2D[{x0_,y0_},{x1_,yl1l },B_], Conpl emrent 2D0] :=
Arc20 {x1, y1}, {x0, y0}, 1/ B];

392 D2DArc2D - Construction

Arc from Center Point, Radius and Span

Arc2D [point, r, {61, 02}] B Constructs an arc from a center point, radius and angular span
range. The arc is defined counter-clockwise from the start point associated with 6, to the end
point associated with 65.

Arc2D: :i nval i dSpan=

"The angul ar span of the arc is invalid; the span cannot be an integer
nmul tiple of 2Pi radians.";

Arc2D: :inval i dRadi us=
"The radius, ‘1', of the arc is invalid; the radius nust be positive.";

Arc2D Point2Df c: {h_, k_}], r_?lsZeroOr Negative2D,
{t0_?IsScal ar2D,t1_?l sScal ar2D}] :=
(Message[Arc2D: :inval i dRadi us, r]; $Fai |l ed);

Arc2D Point2Df c: {h_, k_}], r_?lsScal ar 2D,
{t0_7?IsScal ar2D,t1_?l sScal ar2D}] :=
(Message[Arc2D: : i nval i dSpan] ; $Fai l ed) /;
I sZero2D[Di stance2D[Circle2Dc,r][t0],Crcle2Dc,r][t1]]];

Arc2D Point2D c: {h_, k_}], r_?lsScal ar 2D,
{t0_?IsScal ar2D,t1_?l sScal ar2D}] :=
Modul e[{ TO, T1, pO, p1, d, pm H, B},
{TO, T1} =Pri mar yAngl eRange2D[{t 0, t 1}] ;
p0=Circle2D[c,r][TO];
pl=Circle2Dc, r][T1];
d=Di st ance2D) pO0, p1];
pmeCircl e2D[c, r][(TO+T1)/2];
H=Di st ance2D{ (p0+pl)/2, pn;
B=2*H d;
Arc2D[p0, p1, B]];

Arc from Defining Points and Entry Angle

Arc2D [{point, 0}, point] M Constructs an arc from the start and end points and the angle
between the chord and the entry vector. The angle cannot be an integer multiple of 7 radians.
The angle is positive for counter-clockwise arcs and negative for clockwise arcs.

Arc2D: :inval i dEnt ryAngl e=

"The entry angle of the arc is invalid; the entry angle cannot be an
integer multiple of Pi radians.";

Arc2D: :inval i dCoi nci dent =
"The defining points are coincident; an arc cannot be constructed.";

D2DArc2D - Construction 393

Ar c2D[{ PO: Poi nt 20 p0: {x0_, y0_}], A _?I sScal ar 2D},
P1: Poi nt 2D[p1: {x1_,y1_}]] :=
Wi ch[

| sZer o2D] Pri maryAngl e2D{ A, Pi]],
Message[Arc2D: ;i nval i dEntryAngl e] ; $Fai | ed,

| sCoi nci dent 20[PO, P1],
Message[Arc2D: : i nval i dCoi nci dent] ; $Fai | ed,

True,
Arc2D[pO, p1, Tan[A 2]]];

Arc from Three Points

Arc2D [point, point, point] B Constructs an arc through three points. The first and the third
points are the start and end points of the arc, respectively, and the second point is a general
point on the arc. The private function Minor$2D is the 2D vector cross-product.

Arc2D: :invalidCollinear=
"The three defining points are collinear; an arc cannot be constructed.”

M nor$2D[{ul_,v1_},{u2_,v2_}] := ul*v2-u2*vl;

Ar c2D[PO: Poi nt 20] p0: {x0_, y0_}1,
Pon: Poi nt 20[pon: { xon_, yon_}],
P1: Poi nt 2D p1: {x1_,y1 }]] :=
Modul e[{s, c, B},
Whi ch[
I sCol | i near 20 PO, Pon, P1],
Message[Arc2D: :inval i dCol | i near] ; $Fai | ed,
True,
s=M nor $200 pon- p0, pl- pon];
c=Dot [pon- p0, pl-pon];
B=s/ (c+Sqrt[c”r2+s"2]);
Arc2D] po, p1, B]] 1;

Arc from Center, Radius and Ray End Points

Arc2D [point, r, {point, point}] M Constructs an arc given the center point, radius and ray
end points. The ray end points do not have to be on the arc, but they cannot be coincident
with the center point.

Arc2D P: Poi nt 2D { h_, k_}], r_?I sScal ar 2D,
{PO: Poi nt2D[{x0_,y0_}],Pl: Point2D[{x1_,y1 }1}] :=
Whi ch[
| sZer oOr Negative2Dr],
Message[Arc2D: ;i nval i dRadi us, r]; $Fai | ed,

I sCoi nci dent 2D P, PO] || | sCoincident2D[P, P1],
Message[Arc2D: ;i nval i dCoi nci dent] ; $Fai | ed,
True,

Arc2D[Poi nt2D[{ h, k}1, r,
{ArcTan[x0- h, yO-k], ArcTan[x1-h,y1-k]}] 1]

394 D2DArc2D - Epilogue

Epilogue

End[]; (* end of "*Private" *)
EndPackage[]; (* end of "D2DArc2D " *)

D2DArcLength2D

The package D2DArcLength2D provides functions for computing the arc length of Descarta2D
objects.

Initialization
Begi nPackage[" D2DAr cLengt h2D' ", {"D2DArc2D ", "D2DCircl e2D ",
" D2DConi cArc2D ", "D2DEl | i pse2D ", "D2DExpressions2D ", "D2DGeonetry2D ",
" D2DHyper bol a2D' ", "D2DLi ne2D' ", "D2DNunbers2D ", "D2DParabol a2D ",
" D2DSegnent 2D ", "D2DTri angl e2D "}];

D2DAr cLengt h2D: : usage=
"D2DAr cLengt h2D i s a package for computing the arc length of curves."”;

ArcLengt h2D: : usage=
"ArcLengt h2D[curve, {t0,t1}] conputes the arc length of a curve between
two paraneters.”;

Ci rcunf erence2D: : usage=
"Circunference2D[circle] conputes the circunference of a circle.
Circunference2D[el | i pse] conputes the circunference of an ellipse.";

Peri met er 2D: : usage=
"Perimeter2D[triangle] conputes the perineter of a triangle.";

Span2D: : usage=
"Span2Df arc] conputes the span (arc length) of an arc; N Span2D]cnarc]]
nunerically conputes the span (arc length) of a conic arc.";

Begin["' Private'"];

Arc Length

Arc

Span2D[arc] M Computes the arc length of a complete span of an arc.

395

396 D2DArcLength2D - Arc Length

Span2Df A: Arc2D[{x0_,y0_},{x1_,y1 },B]] :=
Modul e[{t het al, t het a2},
{thetal, theta2}=Pri mar yAngl eRange2D] A] ;
Radi us2D[A] *(t heta2-thetal)];

ArcLength2D[arc, {61, 62}1 W Computes the arc length of an arc between two parameters.

ArcLengt h2Df A: Arc2D[{x0_,y0_},{x1_,y1 },B],
{t1_7?lsScal ar2D,t2_?l sScal ar2D}] :=
Modul e[{T1, T2},
{T1, T2} =Pri mar yAngl eRange2D[{ Angl e2D[A, t 1], Angl e2D[A, t 2] }1;
Radi us2D[Al *(T2-T1)];

Circle
Circumference2D [circle] W Computes the circumference of a circle.

Circunference2D[Circle2D[{h_,k_},r_]] := 2*Pi*r;

ArcLength2D [circle, {61, 62}1 B Computes the arc length of a circle between two parameters.

ArcLength2D[Circle2D[{h_,k_},r_],{t1_?IsScal ar2D,t2_?lsScal ar2D}] :=
Modul e[{T1, T2},
{T1, T2} =Pri mar yAngl eRange2D[{t 1, t 2}];
r*(T2-T1) 1;

Conic Segment

Span2D[cnarc] //N B Computes the arc length of a complete span of a conic arc numerically.

N[Span2D[C1: Coni cArc2D {x0_, y0_}, {xA ,yA },{x1_,y1 },p_11] :=
NAr cLengt h$2D] C1, {0, 1}, $Machi nePreci sion] /;
I sNuneri c2D[C1, Span2D] ;

N[Span2D[C1: Coni cArc2D[{x0_,y0_},{xA ,yA },{x1_,y1 },p_]1,n_] :=
NAr cLengt h$2D[C1,{0, 1},n] /;
I sNuneri c2D[C1, Span2D] ;

ArcLength2D[cnarc, {61, 62}1 //N B Computes the arc length of a conic arc between two
parameters numerically.

N[Ar cLengt h2D[C1: Coni cArc2D[{x0_,y0_},{xA ,yA },{x1_,y1l },p_1],
{t1_7?IsScal ar2D,t2_?lsScal ar2D}]] :=
NAr cLengt h$2D[C1, {t 1, t 2}, $Machi nePr eci si on] /;
I sNuneri c2D[{Cl,t1,t2}, ArcLengt h2D] ;

N[Ar cLengt h2D[C1: Coni cArc2D[{x0_, y0_},{xA ,yA },{x1_,y1 },p_],
{t1_?IsScal ar2D,t2_?lsScal ar 2D}],
n_] :=
NAr cLengt h$2D[C1, {t1,t2},n] /;
I sNumeri c2D[{Cl,t1,t2}, ArcLengt h2D] ;

D2DArcLength2D - Arc Length 397

Ellipse
Circumference2D [ellipse] M Computes the circumference of an ellipse.

Circunference2D E1l: El l i pse2D[{h_,k_},a_,b_,theta_]] :=
ArcLengt h2D[E1, {0, 2Pi }];

ArcLength2D [ellipse, {01, 62}]1 M Computes the arc length of an ellipse between two para-
meters.

ArclLength2D[El | i pse2D[{h_,k_},a_,b_,theta_],
{t1 ?lIsScal ar2D,t2_?lsScal ar2D}] :=
Modul e[{T1, T2, L},
{T1, T2} =Pri mar yAngl eRange2D[{t 1, t 2}];
L=b*(EllipticE[T2, 1-a*2/b"2]-EllipticE[T1, 1-a"2/b"2]);
If[IsNegative2D[L],-L,L]];

Hyperbola

The private function ArcLengthHyperbola$2D [hyperbola, {0, t}]1 computes the arc length
of a hyperbola between parameter values 0 and ¢. The result may be positive or negative,
depending on the value given for .

Ar cLengt hHyper bol a$2D[Hyper bol a2D[{h_, k_},a_,b_,theta_],{0,t_}] :=
Re[-1*b*El lipticE[|*ArcCosh[Sqrt[a”2+b”"2]/a] *t, 1+a"2/ b"2]];

ArcLength2D [hyperbola, {01, 62}]1 W Computes the arc length of a hyperbola between two
parameters.

ArcLengt h2D H1: Hyper bol a2D0({h_,k_},a_,b_, theta
{t1_?lsScal ar2D, t 2_?l sScal ar 2D}]
Modul e[{ L},
L=Ar cLengt hHyper bol a$2D[H1, {0, t 2}] -
Ar cLengt hHyper bol a$2D[H1, {0, t 1}];
If[IsNegative2D[L],-L,L]];

Line
ArcLength2D [line, {t1, t2}1 M Computes the arc length of a line between two parameters.

ArcLength2D Line2D[a_,b_,c_],{t1_?IsScal ar2D, t2_?l sScal ar2D}] :=
Modul e[{ L},
L=t2-t1;
If[IsNegative2D[L],-L,L]];

Line Segment

ArcLength2D [inseg, {t1, t2}] M Computes the arc length of a line segment between two
parameters. The function Length2D [Inseg] computes the length of a complete line segment
(defined in package D2DSegment2D).

398 D2DArcLength2D - Epilogue

Ar cLengt h2DJ Segnent 200 {x0_, yO_}, {x1_,y1 }],
{t1_?lsScal ar2D, t2_?lsScal ar2D}] :=
Modul e[{L},
L=(t2-t1)*Sqrt[(x0-x1)"2+(y0-y1l)"2];
If[lsNegative2D[L],-L,L]];

Parabola

ArcLength2D [parabola, {t1, t2}] M Computes the arc length of a parabola between two
parameter values.

Ar cLengt h20] Par abol a2D{ {h_, k_},f_, t_J,
{t1 _?IsScal ar2D,t2_7?lsScal ar2D}] :=
Modul e[{S1=Sqrt[1+t 172], S2=Sqrt [1+t 2”°2] },
L=f*((S2*t2+Log[2*f"2(S2+t2)]) -
(S1*t 1+Log[2*f"2(S1+t1)]));
If[IsNegative2D[L],-L,L] T;

Triangle
Perimeter2D [triangle] M Computes the perimeter of a triangle.

Perimeter2D Triangl e2D[{x1_,y1 },{x2_,y2 },{x3_,y3_}]] :=
Sgrt[(x1-x2)"2+(yl-y2)"2] +
Sqrt[(x1-x3)"2+(yl-y3)"2] +
Sqrt[(x2-x3)"2+(y2-y3)"72];

Arc Length (Numerical)

Parametric Curves

The private function NArcLength$2D [curve, {1, t2}]1 numerically computes the arc length of
a parametric curve between two parameter values. The function uses numerical integration,
so the arguments of the function must be numerical. The third argument, n, specifies the
numerical precision.

NArcLengt h$2D[obj _, {t1_,t2_},n_] :=
Modul e[{t, Dx, Dy, L},
{Dx, Dy} =Map[D[#, 1] & obj [t]];
L=NI ntegrate[Sgrt[Dx"2+Dy"2], {t,t1,t2}, Wrki ngPrecision->n];
If[lsNegative2D[L],-L,L]];

Epilogue

End[]; (* end of "*Private" *)
EndPackage[]; (* end of "D2DArcLength2D " *)

D2DArea2D

The package D2DArea2D computes areas associated with Descarta2D objects.

Initialization
Begi nPackage[" D2DAr ea2D ", {"D2DArc2D ", "D2DCircl e2D ", "D2DConi cArc2D ",
"D2DEl | i pse2D ", "D2DExpressions2D ", "D2DCGeonetry2D ", "D2DHyperbol a2D' ",
"D2DLi ne2D' ", "D2DNunbers2D ", "D2DParabol a2D ", "D2DPoi nt 2D ",

"D2DTri angl e2D "}];

D2DAr ea2D: : usage=
"D2DArea2D is a package for conputing areas.";

Area2D: : usage=
" Area2D[obj ect] conputes the area of a closed object”;

Sect or Area2D: : usage=
"Sect or Area2D[obj ect, {t1,t2}] conputes the area of a sector of an
obj ect.";

Segment Ar ea2D: : usage=
" Segnent Area2D[obj ect, {t1,t2}] conputes the area of a segnent of an
obj ect.";

Begi n["‘ Private' "];

Areas Associated with an Arc

Area
Area2D[arc] M Computes the area between an arc and its chord.
Area2D[A Arc2D{ {x0_,y0_},{x1 _,y1 },B]] :=

Segnment Area2D[G rcl e2D[A], Pri mar yAngl eRange2D[Al] ;

399

400 D2DArea2D - Areas Associated with a Conic Arc

Areas Associated with a Circle

Area

Area2D[circle] M Computes the area of a circle.

Area2Df Circle2D[{h_,k_},r_]] := Pi*rn2z;

Sector Area

SectorArea2D[circle, {01, 62}1 M Computes the area of a circle sector defined by two
parameters.

SectorArea2D[Circle2D {h_,k_},r_],{t1_?lsScal ar2D,t2_7?IsScal ar2D}] :=
Modul e[{T1, T2},
{T1, T2} =Pri mar yAngl eRange2D[{t 1, t2}];
(T2-T1)*r~2/2 1;

Segment Area

SegmentArea2D [circle, {61, 62}] M Computes the area of a circle segment defined by two
parameters.

Segnent Area2D[Circle2D[{h_,k_},r_],{t1_?IsScal ar2D,t2_?l sScal ar2D}] :=
Modul e[{T1, T2, t het a},
{T1, T2} =Pri mar yAngl eRange2D[{t 1, t 2}];
t het a=T2-T1,;
r"2*(theta-Sin[thetal)/2];

Areas Associated with a Conic Arc

Area

Area2D[cnarc] M Computes the area between a conic arc and its chord for a conic arc in a
standard position. The first case is for parabolas; the second case is for ellipses and hyperbolas.

Area2D Coni cArc2D[{0,0},{a_,b_},{d_,0},p_1] :=
Modul e[{ A},
A=d*b/ 3;
If[IsNegative2D[A],-A A 1 /;
| sZer 02D p- 1/ 2] ;

Area2D Coni cArc2D[{0, 0},{al_,b1_},{d1_,0},p_]] :=
Modul e[{b, d, r},
b*d*p*(p*r+(- 1+p) *2*Log[(1-p)/ (p+r)])/(2*r"3) //.
{r->Sqrt[-1+2p], b->Sqrt[b1”2],d->Sqrt[d1”2]}] /;
Not [| sZer 02D p-1/2]1];

D2DArea2D - Areas Associated with an Ellipse 401

Area2D[cnarc] W Computes the area between a conic arc and its chord. Notice that the
z-coordinate of the apex point in standard position has no bearing on the area, and, therefore,
is not computed.

Area2D] Coni cArc2D[p0: {x0_, y0_}, pA: {xA ,yA },pl: {x1_,y1_},p_1] :=
Modul e[{a, b, d},
b=Di st ance2D] Poi nt 20 pA], Li ne2D] p0, p1]];
d=Di st ance2D] p0, p1];
Area2D Coni cArc2D[{0, 0},{a, b}, {d, 0},pl] 1:;

Areas Associated with an Ellipse

Area

Area2D[ellipse] B Computes the area of a complete ellipse.

Area2D El i pse2D[{h_,k_},a_,b_,alpha_]] := Pi*a*b;

Sector Area

SectorArea2D[ellipse, {0, 6}1 M Computes the area of an ellipse sector between parameter
values 0 and 6.

Sector Area2D[E1: El | i pse2D[{h_, k_},a_, b_,al pha_], {0,t_?lIsScal ar2D}] :=
Modul e[{ T=Pri mar yAngl e2D[t] },

Whi ch[
I sZero2D[T], Pi *a*b,
| sNegative2D Pi - T], Pi*a*b/2+Sector Area2D[E1, {0, T-Pi}],
Tr ue, a*b*(Pi-2*ArcSin[Cos[t]])/4] 1;

SectorArea2D[ellipse, {01, 62}]1 M Computes the area of an ellipse sector between two
parameter values.

Sector Area2D[E1: El l i pse2D[{h_,k_},a_,b_,al pha_],
{t1_?IsScal ar2D,t2_?l sScal ar2D}] : =
Modul e[{T1, T2},
{T1, T2} =Pri mar yAngl eRange2D[{t 1, t 2}];
Whi ch[
| sZero2D[2Pi - (T2-T1)],
Area2D E1],
| sNegat i ve2D 2Pi - T2] ,
Pi *a*b- Sect or Area2D E1, { T2- 2Pi , T1}],
True,
Sect or Area2D[E1, {0, T2}] - Sect or Area2D[E1, {0, T1}]] 1:

Segment Area

SegmentArea2D [ellipse, {61, 62}]1 M Computes the area of an ellipse segment between two
parameter values.

402 D2DArea2D - Areas Associated with a Parabola

Segment Area2D[E1: El | i pse2D{ {h_, k_},a_, b_, al pha_],
{t1 _?lIsScalar2D,t2_?lsScal ar2bD}] :=
Modul e[{T1, T2},
{T1, T2} =Pri mar yAngl eRange2D[{t 1, t 2}];
Sector Area2D[EL, {T1, T2}]-a*b*Sin[T2-T1]/2];

Areas Associated with a Hyperbola

Sector Area

SectorArea?2D [hyperbola, {t1, t2}] B Computes the area of a hyperbola sector between two
parameter values.

Sect or Ar ea2D] Hyper bol a2D{ {h_, k_},a_,b_,t_],
{t1_7?lsScal ar2D,t2_?1 sScal ar2D}] :=
Modul e[{ e, s, A},
e=Sqrt[anr2+b”2]/ a;
s=ArcCosh[e];
A=a*b*s*(t2-t1)/2;
If[IsNegative2D[A]l,-A Al 1;

Segment Area

SegmentArea2D [hyperbola, {t1, t2}] M Computes the area of a hyperbola segment between
two parameters.

Segnent Ar ea2D Hyper bol a2D{{h_,k_},a_,b_,t_],
{t1_7?IsScal ar2D,t2_?l sScal ar2D}] :=
Modul e[{e, s, T, A},
e=Sqrt[anr2+b”"2]/ a;
s=ArcCosh[e];
T=s*(t2-t1);
A=a*b*(Sinh[T]-T)/2;
If[l1sNegative2D[A],-A Al 1;

Areas Associated with a Parabola

Segment Area

SegmentArea2D [parabola, {t1, t2}]1 W Computes the area of a segment of a parabola between
two parameters.

Segment Ar ea2D Par abol a2D[{h_, k_},f_,theta_],
{t1_?lsScal ar2D, t2_?l sScal ar2D}] : =
Modul e[{ A},
A=fA2%(t2-11) "3/ 3;
If[IsNegative2D[A]l,-A Al 1;

D2DArea2D - Areas Associated with a Triangle 403

Areas Associated with a Triangle

Area

Area2D[triangle] m Computes the area of a triangle.

Area2D Tri angl e2D[{x1_,y1 },{x2_,y2_},{x3_,y3_}]] :=
Modul e[{ A},
A=Det [{{x1,y1, 1}, {x2,y2, 1}, {x3,y3,1}}]/2;
If[IsNegative2D[A],-A Al];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DArea2D " *)

D2DCircle2D

The package D2DCircle2D implements the Circle2D object.

Initialization
Begi nPackage["D2DCi rcl e2D' ", {"D2DExpressi ons2D' ", "D2DCeonetry2D ",
"D2DLi ne2D ", "D2Dwaster2D ", "D2DNumbers2D ", "D2DPoi nt2D ",
"D2DQuadr atic2D ", "D2DSketch2D ", "D2DTransfornkD "}];

D2DCi r cl e2D: : usage=
"D2DCircl e2D i s a package that inplenents the Crcle2D object.”;

Circl e2D: : usage=
"Circle2D[{h,k},r] is the standard formof a circle with radius 'r’
centered at {h,k}.";

Radi us2D: : usage=
"Radi us2D[circle] gives the radius of a circle.";

Begin["' Private'"];

Description

Representation

Circle2D[{h, k},] W Standard representation of a circle in Descarta2D. The center of the
circle is (h, k) and the radius is 7.

Equation

Quadratic2D[circle] B Constructs the quadratic representing the equation of a circle.

Quadratic2D[Gircle2D {h_,k_},r_]] :=
Quadratic2D[1,0, 1, -2*h, - 2*k, h"2+k"2-r"2] ;

405

4006 D2DCircle2D - Description

Evaluation

Circle2D[{h, k}, "1 [/]1 M Evaluates a parameter, 6, on a circle and returns a coordinate
list {z, y}. Parameters in the range 0 < § < 27 cover a complete circle.

Crcle2D{h_,k_},r_]J[t_?IsScalar2D] := {h+r*Cos[t],k+r*Sin[t]};

Graphics

Provides graphics primitives for a circle by extending the Mathematica Display command.
Executed when the package is loaded.

Set Di spl ay2D]
Crcle2D{h_,k_},r_][{t1_7IsScal ar2D,t2_?IsScal ar2D}],
Circle[{h,k}, r, PrimaryAngl eRange2D[{t1,t2}]] 1;

Set Di spl ay2Df
Grcle2D[{h_, k_},r_],
Circle[{h,k},r] 1;

Validation

Circle2D[{h, k}, r1 M Detects a circle with imaginary arguments and returns the $Failed
symbol. If the imaginary parts are insignificant, they are removed.

Circle2D: :imagi nary=
"An invalid circle of the form’Circle2D['1',°2']’' has been detected;
the argunments cannot be inmaginary.";

CGrcle2D{{h_ k_},r_] :=
(G rcle2D @ Chopl magi nary2D[G rcl e$20{ {h, k}, r]]) /;
(FreeQ {h,k,r}, _Pattern] && IsTinylmaginary2D[{h,k,r}]);

Grcle2D[{h_k_},r_] :=
(Message[Circl e2D: : i magi nary, {h,k},r]; $Failed) /;
(FreeQ {h,k,r}, _Pattern] &% IsConplex2D[{h,k,r},0]);

Circle2D[{h, k}, r] W Detects a circle whose radius is non-positive and returns the $Failed
symbol.
Grcle2D :invalid=

"An invalid circle of the form ' Circle2D[*1', ‘2']’" has been detected,
the radius nmust be positive.";

Crcle2D{h_,k },r_] :=

(Message[Circle2D: :invalid,{h,k},r];$Failed) /;
(Free {h,k,r}, _Pattern] && |sZeroOrNegative2D[r,0]);

IsValid2D[circle] M Verifies that a circle is syntactically valid.

IsValid2D[C rcl e2D[{h_?l sScal ar 2D, k_7?I sScal ar 2D}, r_?I sScal ar2D]] := True;

D2DCircle2D - Scalars 407

Scalars

Distance Point/Circle

Distance2D [point, circle] M Computes the distance between a point and a circle.

Di stance2D[Poi nt 2D[{x_,y_}],CGrcle2D[{h_,k_},r_]] :=
Sqrt[(D stance2D[{x, y},{h,k}]-r)"2];

Radius

Radius2D[circle] M Returns the radius of a circle.

Radius2D[Gircle2D[{h_,k_},r_1] :=r;

Transformations

Reflect

Reflect2D[circle, line] M Reflects a circle in a line.

Reflect2D[Circle2D[{h_,k_},r_],L:Line2D[a_,b_,c_]] :=
Circle2D[Refl ect2D[{h, k}, L], r];

Rotate

Rotate2D[circle, 8, coords] M Rotates a circle by an angle 6 about a position speci-
fied by a coordinate list. If the third argument is omitted, it defaults to the origin (see
D2DTransform2D.nb).

Rotate2D{ Gircle2D {h_,k_},r_],theta_7?I sScal ar 2D,
{x0_?1 sScal ar 2D, y0_?I sScal ar2D}] :=
Circl e2D[Rot at e2D { h, k}, t heta, {x0,y0}],r];

Scale

Scale2D[circle, s, coords] M Scales a circle from a coordinate position. If the position is
omitted, it defaults to the origin (see D2DTransform2D.nb).

Scal e2D[Gircle2D[{h_,k_},r_],s_?lsScal ar 2D,
{x0_7?IsScal ar 2D, y0_?| sScal ar2D}] :=
Circl e2Df Scal e2D[{ h, k}, s, {x0,y0}], s*r] /;
Not [| sZer oOr Negat i ve2D[s]] ;

408 D2DCircle2D - Line Construction

Translate

Translate2D [circle, {u, v}] M Translates a circle delta distance.

Translate2D[Crcle2D[{h_, k_},r_1],
{u_?lsScal ar 2D, v_?l sScal ar2D}] : =
Circle2D {h+u, k+v},r];

Point Construction

Center Point

Point2D[circle] M Constructs the center point of the circle.

Point2D[CGircle2D{h_,k_},r_]] := Point2D[{h, k}];

Pole Point

Point2D[line, circle] M Constructs a point that is the pole point of a line with respect to a
circle. If the line is tangent to the circle then the point is the tangency point.

Poi nt 2D[L1: Line2Dfal_,bl_,cl_],C2:Circle2D {h2_,k2_},r2_]] :=
Poi nt 2D[L1, Quadrati c2D[C2]];

Line Construction

Polar Line

Line2D [point, circle] M Constructs a line that is the polar line of a point with respect to a
circle. If the point is on the circle then the line is tangent to the circle.

Li ne2D[P1: Poi nt2D0[{x1_,y1 }],C2:Grcle2D {h2_,k2_},r2_]] :=
Li ne2D[P1, Quadrati c2D[C2]];
Radical Axis

Line2D [circle, circle] M Constructs a line that is the radical axis of two circles.

Li ne2D: : concentric=
"The circles {*1', *2'} are concentric; no radical axis exists.";

Line2D[Cl: Circle2D{h1_,k1 },r1],C2:Circle2D{h2_,k2_},r2_]] :=
I f[1sConcentric2D] C1, C2],
Message[Li ne2D: : concentric, Cl, C2] ; $Fai |l ed,
Li ne2D[2* (h2- h1), 2*(k2- k1), (h17r2- h272) +(k172-k272) +(r272-r172)]1];

D2DCircle2D - Circle Construction 409

Circle Construction

Circle from Quadratic Equation

Circle2D[quad] W Constructs a circle from a quadratic. The quadratic must be recognizable
as a circle.

Circle2D: :noCircle=
"The curve represented by ‘1° is not a circle.";

Circle2D Q Quadratic2da_,b_,c_,d_,e_,f_]] :=
Modul e[{ s},
If[1sZero2D {a-c, b}, And] && Not[|sZero2D[{a,c},O]],

s=(d"r2+en2-4*a*f)/ ar2;

1 f[1sZeroOr Negative2D s],
Message[Circl e2D: :noCircle, Q; $Fai | ed,
Circle2D[{-d/(2a),-e/(2a)},Sqart[s]/2]],

Message[Circl e2D::noCircle, Q; $Fail ed]];

Circle from Center Point and Radius

Circle2D[point, r] B Constructs a circle from a center point and radius.

Circl e2D: :radi us=
"The radius argunment, ‘1‘, is invalid; the radius nust be positive.";

Circle2D Point2D[{h_, k_}],r_?lsScal ar2D] :=
If[IsZeroOr Negative2D[r],
Message[Circl e2D: :radi us, r]; $Fai | ed,
Circle2D[{h,k}, r]];

Circle from Center Point and Point on Circle

Circle2D [point, point] M Constructs a circle from a center point and a point on the circle.

Circl e2D: : coi nci dent =
"The points {*1', ‘2'} are coincident; no valid circle exists.";

Crcle2D P1: Point2D {x1_,y1 }],P2: Point2D[{x2_,y2_}]] :=
I f[IsCoi nci dent 200 P1, P2] ,
Message[G rcl e2D: : coi nci dent, P1, P2] ; $Fai | ed,
Circle2D {x1,y1}, Sqrt[(x1-x2)"2+(yl-y2)~2]]11];

Circle from Center and Tangent Line

Circle2D[point, line] W Constructs a circle from a center point and a tangent line.

Crcle2D: :on=
‘1" ison ‘“2; novalid circle exists.";

Crcle2D[P1: Point2D0f {x1_,yl1 }],L2:Line2DfA2_,B2_,C2_]] :=
If[IsOn2D[P1, L2],
Message[Gircl e2D:: on, P1, L2] ; $Fai | ed,
Circle2D[{x1,yl}, Sqrt[(A2*x1+B2*y1+C2) "2/ (A2"2+B2"2)]11]11];

410 D2DCircle2D - Epilogue

Circle Through Three Points
Circle2D [point, point, point] M Constructs a circle through three points.

Circle2D: :collinear=
"The points {1, *2‘, *3'} are collinear; no valid circle exists."

Circle2D P1: Poi nt 2D {x1_,y1l }], P2: Point2D[{x2_,y2_}],
P3: Poi nt 2D[{x3_,y3_}]] :=
I f[IsCol linear2 P1, P2, P3],
Message[Circl e2D: : col | i near, P1, P2, P3] ; $Fai | ed,
Circl e2D] Quadratic20 P1, P2, P3]] 1;

Epilogue

End[]1; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DCircle2D " *)

D2DConic2D

The package D2DConic2D provides functions for constructing various points, lines and line
segments associated with conic curves.

Initialization
Begi nPackage[" D2DConi c2D' ", {"D2DCircle2D ", "D2DEllipse2D ",
" D2DExpr essi ons2D' ", "D2DHyper bol a2D' ", "D2DLi ne2D ", "D2DParabol a2D ",
"D2DPoi nt 2D ", "D2DSegnent 2D ", " D2DTransforn2D "}];

D2DConi ¢2D: : usage=
"D2DConi ¢2D i s a package for constructing geonetry associated with conic
curves.";

Asynpt ot es2D: : usage=
" Asynmpt ot es2D[hyper bol a] constructs a list containing the two asynptote
lines of a hyperbola.";

Directrices2D: : usage=
"Directrices2D[conic] constructs a list containing the directrix line(s)
of a conic curve (one for a parabola, two for ellipses and hyperbol as).";

Eccentricity2D: : usage=
"Eccentricity2D[conic] conputes the eccentricity of a conic curve
(parabol a, ellipse or hyperbola).";

Focal Chor ds2D: : usage=

"Focal Chords2D[conic] constructs a list containing the focal chords
(l'ine segnents) of a conic curve (one for a parabola, two for ellipses and
hyper bol as) . ";

Foci 2D: : usage=

"Foci 2D conic] constructs a list containing the focus point(s) of a
conic curve (one for a parabola, two for ellipses and hyperbol as).";
Vertices2D: : usage=

"Vertices2D[conic] contructs a list containing the vertex point(s) of a
conic curve (one for a parabola, two for ellipses and hyperbol as).";

Begi n["‘ Private' "];

411

412 D2DConic2D - Point Construction

Scalars

Eccentricity

Eccentricity2D[ellipse] B Computes the eccentricity of an ellipse.

Eccentricity2D El lipse2D[{h_,k_},a_,b_,theta_]] := Sgrt[a"2-b"2]/a;

Eccentricity2D [hyperbola] M Computes the eccentricity of a hyperbola.

Eccentricity2D Hyperbol a2D[{h_,k_},a_,b_,theta_]] := Sqrt[a”2+b"2]/a;

Eccentricity2D[parabola]l B Computes the eccentricity of a parabola (e = 1).

Eccentricity2D Parabol a2D{{h_, k_},f_,theta_]] := 1,

Point Construction

Focus Points

Foci2D[ellipse] m Constructs a list containing the two focus points of an ellipse.

Foci 2D[EL1: El | i pse2D[{h_,k_},a_,b_,theta_]] :=
Modul e[{e=Eccentri city2D] E1] },
{ Poi nt 20] Rot at e2Df { h+a*e, k},theta, {h, k}]],
Poi nt 20[Rot at e2D[{ h-a*e, k} ,theta, {h, k}]]}];

Foci2D [hyperbola]l M Constructs a list containing the two focus points of a hyperbola.
Foci 2D[H1: Hyperbol a2D[{h_,k_},a_,b_,theta_]J] :=
Modul e[{ e=Eccentricity2D[H1] },

{ Poi nt 2D[Rot at e2D[{ h+a*e, k},theta, {h, k}]1],
Poi nt 2D Rot at e2D[{ h-a*e, k}, theta, {h, k}]1]1}1];

Foci2D[parabola]l m Constructs a list containing the single focus point of a parabola.
Foci 2D[Par abol a2D{ {h_, k_},f_,theta_]] :=
{ Poi nt 2D[Rot at e2D[{ h+f, k}, theta, {h, k}]]};
Vertex Points

Vertices2D[ellipse] M Constructs a list containing the two vertex points of an ellipse.

Vertices2D[El | ipse2D[{h_,k_},a_,b_,theta_]] :=
{Poi nt 2D] Rot at e2D[{ h+a, k}, theta, {h, k}]],
Poi nt 2D[Rot at e2D[{ h-a, k}, theta, {h, k}]1};

D2DConic2D - Line Construction 413

Vertices2D [hyperbola] W Constructs a list containing the two vertex points of a hyperbola.

Vertices2D Hyperbol a2D{{h_,k_},a_,b_,theta_]] :=
{Poi nt 2D[Rot at e2D[{ h+a, k},theta, {h, k}]],
Poi nt 2D[Rot at e2D[{ h- a, k}, theta, {h, k}]1};

Vertices2D [parabola] W Constructs a list containing the single vertex point of a parabola.

Vertices2D Parabol a2D{ {h_, k_},f_,theta_]] := {Point2D[{h, k}]};

Line Construction

Asymptote Lines

Asymptotes2D [hyperbola]l M Constructs a list containing the two asymptote lines of a hyper-
bola.

Asynpt ot es2Df Hyperbol a2D{{h_,k_},a_,b_,theta_]] :=
{Rot at e2D[Li ne2D[b, a, -a*k-b*h],theta, {h, k}],
Rot at e2D[Li ne2D[b, -a, a*k-b*h],theta, {h, k}]};

Directrix Lines

Directrices2D[ellipse] M Constructs a list containing the two directrix lines of an ellipse.

Directrices2D: :circular=
"The ellipse ‘1" is circular; it has no (finite) directrix lines.";

Directrices2D ELl: El lipse2D[{h_,k_},a_,b_,theta_]] :=
Modul e[{e=Eccentricity2D E1]},
I1f[lIsZero2D €],
Message[Directrices2D::circul ar, E1];{},
{Rotate2D Li ne2D[1, 0, - (h+a/e)], theta, {h, k}],
Rot at e2D[Li ne2D[1,0, -(h-a/e)],theta,{h,k}]1}] 1;

Directrices2D [hyperbola] B Constructs a list containing the two directrix lines of a hyper-
bola.
Directrices2D HL: Hyperbol a2D{h_,k_},a_,b_,theta_]] :=
Modul e[{ e=Eccentricity2D H1] },

{Rot ate2D[Li ne2D[1,0, - (h+a/e)], theta, {h, k}],
Rot at e2D[Li ne2D[1,0, -(h-a/e)],theta,{h,k}1} 1;

Directrices2D [parabola] W Constructs a list containing the single directrix line of a parabola.

Directrices2D Parabol a2D[{h_, k_},f_,theta_]] :=
{Rot ate2D[Li ne2D[1, 0, - h+f],theta, {h, k}1};

414 D2DConic2D - Epilogue

Line Segment Construction

Focal Chords

FocalChords2D [ellipse] M Constructs a list containing two line segments that are the focal
chords of an ellipse.

Focal Chords2D E1: El l i pse2D{{h_,k_},a_,b_,theta_]] :=
Modul e[{e, 11,12},
e=Eccentricity2D E1];
| 1=Segnent 20 { h+a*e, k+b”*2/ a}, { h+a*e, k-b"2/ a}];
| 2=Segnent 2D[{ h- a*e, k+b"2/ a}, { h-a*e, k-b"2/ a}];
Map[Rot at e2Df #, theta, {h, k}]1& {1 1,12}] 1;

FocalChords2D [hyperbola] M Constructs a list containing two line segments that are the
focal chords of a hyperbola.

Focal Chords20 H1: Hyper bol a2D{ {h_, k_},a_,b_,theta_]] :=
Modul e[{e, 11,12},
e=Eccentricity2D Hl];
| 1=Segnent 20 { h+a*e, k+b”*2/ a}, { h+a*e, k-b"2/ a}];
| 2=Segnent 2D[{ h- a*e, k+b"2/ a}, { h-a*e, k-b"2/ a}];
Map[Rot at e2Df #, theta, {h, k}]1& {1 1,12}] 1;

FocalChords2D [parabola]l M Constructs a list containing one line segment that is the single
focal chord of the parabola.

Focal Chords20 Par abol a2D{ {h_, k_},f_,theta_]] :=
{ Rot at e2D Segnent 2D[{ h+f , k+2*f}, { h+f, k-2*f}], theta, {h, k}]};

Epilogue

End[]; (* end of "*Private" *)
EndPackage[]; (* end of "D2DConi c2D " *)

D2DConicArc2D

The package D2DConicArc2D implements the ConicArc2D object.

Initialization
Begi nPackage[" D2DConi cArc2D ", {"D2DCi rcl e2D' ", "D2DEl |ipse2D ",
"D2DEquat i ons2D' ", " D2DExpressi ons2D' ", "D2DCeonetry2D ",
" D2DHyper bol a2D' ", "D2DI ntersect2D ", "D2DLi ne2D'", "D2DLoci 2D ",
"D2DVBast er 2D ", " D2DNunber s2D' ", "D2DPar abol a2D ", "D2DPoi nt 2D ",
"D2DQuadratic2D ", "D2DSketch2D ", "D2DTransforn2D "}];

D2DConi cAr c2D: : usage=
" D2DConi cArc2D i s a package providing the conic arc object."”;

Apex2D: : usage=
"Apex2D is a keyword used in Point2D[cnarc, Apex2D] to construct the apex
control point of a conic arc.";

Coni cArc2D: : usage=

" Coni cArc2D[{ x0, y0}, { XA, yA}, {x1,y1},p] is the standard formof conic arc
with start point (x0,y0), end point (x1,yl), apex point (xA yA) and
projective discrimnant 'p’.";

Rho2D: : usage=
"Rho2D[cnarc] returns the rho value of a conic arc; O<rho<l/2 is an
ellipse; rho=1/2 is a parabola; 1/2<rho<l is a hyperbola.";

Begin["‘Private' "];

Description

Representation

ConicArc2D[{xo, Yo}, {xa, ya}, {z1, y1}, p1 M Standard representation of a conic arc in
Descarta2D. The first and third arguments are the coordinates of the start and end points
of the conic arc, respectively. The second argument is the coordinates of the apex point of
the conic arc (the apex point is the intersection of the start/end point tangents). The fourth
argument is a scalar representing the p value of the conic arc (0 < p < 1/2, ellipse; p = 1/2,
parabola; 1/2 < p < 1, hyperbola).

415

416 D2DConicArc2D - Description

Equation

Quadratic2D[cnarc] B Constructs a quadratic representing the equation of the curve asso-
ciated with a conic arc.

Quadrati c2D] Coni cArc2D[{x0_,y0_},{xA ,yA },{x1_,y1 },p_1] :=
Modul e[{eqn, a, b, k, x, y},
eqn=a*b==k*(1l-a-b)"2 /.
{k->(1-p) "2/ (4*p"2),
a->((y-yA)*(x1-xA) - (x-xA) *(yl-yA))/
((y0-yA) *(x1-xA) - (x0-xA) *(y1l-yA)),
b->((y-yA) *(Xx0-xA)- (x-xA)*(y0-yA))/
((y1-yA) *(x0-xA) - (x1-xA) *(y0-yA)) };
Quadratic2D eqn, {x,y}] 1;

Evaluation

ConicArc2D[{zo, yo}, {za, ya}, {1, 11}, p1[t]1 M Evaluates a conic arc at a parameter,
t, and returns a list of coordinates {z, y}. Parameter values in the range 0 < ¢ < 1 cover the
complete span of the conic arc.

Coni cArc2D p0: {x0_, y0_}, pA {xA ,yA },pl:{x1_,yl },p_][t_7?IsScalar2D :=
Modul e[{ b0, b1, b2},
b0=(1-t)"2; bl=2*t*(1-t); b2=t"2;
(bO*(1- p) * pO+b1* p* pA+b2* (1- p) *pl)/ (bO* (1- p) +b1*p+b2*(1-p))];

Graphics

Provides graphics primitives for a conic arc by extending the Mathematica Display command.
Executed when the package is loaded.

Set Di spl ay2Df
Coni cArc2D[{x0_, y0_}, {xA_,yA },
{x1_,y1 },p_][{t1_?lsScal ar2D,t2_7?IsScal ar2D}],
MakePrimtives2D
Coni cArc2D[{x0, yO}, {xA, yA}, {x1,y1},p],{t1,t2}] 1;

Set Di spl ay2Df
Coni cArc2D[{x0_, y0_},{xA ,yA },{x1_,yl1 },p_1,
MakePrim tives2D
Coni cArc2D] {x0, y0}, { XA yA}, {x1,y1},p], {0, 1}] 1;

Validation

ConicArc2D[{zo, Yo}, {za, ya}, {1, y1}, p] W Detects a conic arc with imaginary argu-
ments and returns the $Failed symbol. If the imaginary parts are insignificant, they are
removed.
Coni cArc2D: : i magi nary=
"An invalid conic arc of the form’ConicArc2D ‘1", ‘2, *3', “4']" has
been detected; the argunents cannot be imaginary.";

D2DConicArc2D - Scalars 417

Coni cArc2D[pO: {x0_,y0_}, pA {xA ,yA },pl:{x1_,yl },p_] :=
(Coni cArc2D @@ Chopl magi nar y2D[Coni cAr c$20 pO, pA, pl,p]]) /;
(FreeQ {pO, pA pl, p}, _Pattern] && IsTinylmagi nary2D {p0, pA pl,p}]);

Coni cArc2D p0: {x0_, y0_}, pA {xA ,yA },pl:{x1_,yl },p_] :=
(Message[Coni cArc2D: : i magi nary, p0, pA, pl, p]; $Failed) /;
(Freeq {pO, pA pl, p}, _Pattern] && IsConmpl ex2D {pO, pA, pl,p},0]);

ConicArc2D[{xo, yo}, {za, ya}, {1, y1}, p1 M Detects a conic arc with collinear control
points and returns the $Failed symbol.

Coni cAr c2D: : poi nt s=
"An invalid conic arc of the form’ConicArc2D['1', ‘2, *3, "4']" has
been detected; the control points cannot be collinear.";

Coni cArc2D p0: {x0_, y0_}, pA {xA ,yA },pl:{x1_,yl },p_] :=
(Message[Coni cAr c2D: : poi nts, p0, pA, pl, p]; $Fai l ed) /;
(Freeq {pO, pA pl, p}, _Pattern] &&
I sCol | i near 2D0] Poi nt 20[p0] , Poi nt 2D pA], Poi nt 20 p1]]);

ConicArc2D[{zo, Yo}, {za,ya}, {1, y1}, p1 M Detects a conic arc with an invalid p value
and returns the $Failed symbol.

Coni cArc2D: : rho=
"An invalid conic arc of the form’ConicArc2Df‘1", ‘2', *3', ‘4]’ has
been detected; the value of rho nmust be in the range O<rho<l.";

Coni cArc2D[pO: {x0_,y0_}, pA {xA ,yA },pl:{x1_,yl },p_] :=
(Message[Coni cArc2D: : r ho, p0, pA, pl, p] ; $Fai l ed) /;
(Freeq {pO, pA pl, p},_Pattern] &&
(1 sZeroOr Negative2D[p,0] || IsZeroOrNegative2D[1-p,0]));

IsValid2D[cnarc] B Verifies that a conic arc is syntactically valid.

I sVal i d2D(
Coni cArc2D[{ x0_?1 sScal ar 2D, y0_?I sScal ar 2D},
{xA_?l sScal ar 2D, yA ?l sScal ar 2D},
{x1_?1sScal ar 2D, y1_?l sScal ar 2D}, p_?l sScal ar2D]] := True;

Scalars

Rho

Rho2D [cnarc] M Returns the p value of a conic arc.

Rho2D{ Coni cArc2D[{x0_, y0_},{xA_,yA },{x1_,y1l },p_1]1 := p;

418 D2DConicArc2D - Transformations

Transformations

Reflect

Reflect2D[cnarc, line] M Reflects a conic arc in a line.

Ref | ect 2D Coni cArc2Df {x0_, y0_}, {xA ,yA },{x1_,y1 },p_],
L:Line2D[A2_,B2_,C2_]] :=
Coni cArc2D[Ref | ect 2D[{ x0, y0}, L],
Ref | ect 2D[{ XA, yA}, L],
Refl ect 2D[{x1, y1}, L], p];

Rotate

Rotate2D [cnarc, 6, coords] M Rotates a conic arc by an angle 8 about a position spec-
ified by a coordinate list. If the third argument is omitted, it defaults to the origin (see
D2DTransform2D.nb).

Rot at e2D[Coni cArc2D {x0_, yO_}, {xA ,yA },{x1_,y1 },p_].
t het a_?I sScal ar 2D,
{h_?IsScal ar 2D, k_?1 sScal ar2D}] :=
Coni cArc2D[Rot at e2D[{ x0, y0}, theta, {h, k}],
Rot at e2D[{ XA, yA}, theta, {h, k}],
Rot at e2D[{ x1, y1}, theta, {h, k}], p];

Scale

Scale2D[cnare, s, coords] M Scales a conic arc by a scale factor, s, from a position given by
coordinates. If the position is omitted, it defaults to the origin (see D2DTransform2D.nb).

Scal e2D[Coni cArc2D[{x0_,y0_}, {xA ,yA },{x1_,y1 },p_],
s_?l sScal ar 2D,
{h_?1sScal ar 2D, k_?l sScal ar2D}] :=
Coni cArc2D[Scal e2D[{x0, y0}, s, {h, k}],
Scal e2D[{ xA, YA}, s, {h, k}1,
Scal e2D {x1,y1},s,{h,k}],p] /;
Not [| sZer oOr Negat i ve2D[s]] ;

Translate

Translate2D[cnarc, {u, v}] W Translates a conic arc delta distance.

Transl at e2D Coni cArc2D[{x0_,y0_}, {xA ,yA },{x1_,y1 },p_],
{u_?lsScal ar 2D, v_?l sScal ar2D}] :=
Coni cArc2D { x0+u, yO+v}, { XA+u, yA+v}, {x1+u, y1+v}, p];

D2DConicArc2D - Construction 419

Construction

Apex Point

Point2D[cnarc, Apex2D] M Constructs the apex control point of a conic arc.

Poi nt 2D] Coni cAr c2D[{x0_, y0_}, {xA_,yA },{x1_,y1 },p_],
Apex2D] : = Point 2D[{ XA, YA}] ;

Center Point

Point2D[cnarc] M Constructs the center point of the central conic underlying a conic arc.

Poi nt 2D: : not Central 1=
"The conic underlying ‘1" is not a central conic; it has no center
point.";

Poi nt 2D C1: Coni cAr c2D p0: {x0_, yO_}, pA: {xA_,yA },pl:{x1_,yl },p_]1] :=
I f[1sZero2D p-1/2],
Message[Poi nt 2D: : not Central 1, C1] ; $Fai | ed,
Poi nt 2D[(- p2*pA+(p-1)"2*(p0+pl)/2)/ (1-2*p)] 1;

Conic from Conic Arc

Loci2D[cnarc] M Constructs a list containing the conic curve associated with a conic arc.

Loci 2D[C1: Coni cArc2D[{x0_, y0_},{xA ,yA },{x1_,y1 },p_]1] :=
Loci 2D[Quadrati c2D[C1]1];

Conic Arc from Conic

ConicArc2D[line, curve] M Constructs a conic arc from a portion of a conic curve defined
by a chordal line.

Coni cArc2D: : noChor d=
"No chord exists between ‘1° and ‘2'; a conic arc cannot be
constructed.";

Coni cArc2D: : center=
"The chord defined by ‘1' passes through the center of ‘2'; a conic arc
cannot be constructed.";

The private function FindRho$2D [curve, point, {point, point}] computes p for a conic arc
from the apex point and start/end points.

Fi ndRho$20[Par abol a2D[{h_, k_},f_,theta_],
Poi nt 2D[{ xA_, yA }1,
{Point2D[{x0_,y0_}],Point2D[{x1_,y1 }]1}] := 1/2;

420 D2DConicArc2D - Epilogue

Fi ndRho$2D[Circl e2D[{h_, k_},r_] |
Ellipse2D[{h_,k_},a ,b_,theta_] |
Hyper bol a2D{{h_, k_},a_,b_,theta_],
Poi nt 200 { xA_, YA }1,
{Poi nt2D[{x0_,y0_}],Point2D[{x1_,y1 }]1}] :=
Modul e[{xM yM,
{XxM yM ={x0+x1, yO+y1}/ 2;
I f[IsZero2D h-xM,
1/ (1+Sqrt[k-yAl/Sgrt[k-yM),
1/ (1+Sqrt[h-xAl/Sqgrt[h-xM)] //Sinmplify];

For central conics (circles, ellipses and hyperbolas) there is a restriction that the center point
cannot be on the line defining the chord of the conic arc.

Coni cArc2D[L1: Line2D[al_,bl_,c1_],
C2_/; 1s2D[C2,{Circle2D, El |ipse2D, Hyperbol a2D}]] : =
1 f[I sOn20 Poi nt 200 C2] , L1],
Message[Coni cArc2D:: center, L1, C2]; $Fai |l ed,
CnArc$2D[L1, C2, Poi nts20f L1, C2]]11;

Non-central conics (parabolas) have no restrictions on the position of the line defining the
chord of the conic arc.

Coni cArc2D[L1: Line2D[al_, bl_, cl1_], C2: Parabol a2D[{h_, k_},f_,theta_]] :=
CnArc$2D[L1, C2, Poi nts2D[L1, C2]] ;

Both end points of the chord of the conic arc must be on the same branch of a hyperbola.

CnArc$2D L1: Line2D[al_, bl_,cl_],
H2: Hyper bol a2D[{h_, k_},a_,b_,theta_],
{Point2D0 {x0_,y0_}], Point2D[{x1_,y1_}]}] :=
(Message[Coni cArc2D: : noChord, L1, H2] ; $Fai l ed) /;
I sNegat i ve2D[Pol ynomi al 2D[Quadr ati c2D[H2] , { xO+x1, yO+y1}/2]];

The private function CnArc$2D [line, curve, {point, point}] completes the computation of the
conic arc.
CnArc$2D L1: Line2D[al_, bl_,cl_], C2_,
P: { Poi nt 2D[{x0_, y0_}], Point2D[{x1_,y1 }]}] :=
Modul e[{pt},
pt =Poi nt 2D[L1, C2] ;
Coni cArc2D {x0, y0}, Coor di nat es2D[pt], {x1, y1}, Fi ndRho$2D[{ C2, pt, P]]];

No conic arc exists if the intersection of the line and the curve does not result in two points.

CnArc$2D[L1: Line2D[al_, bl_,cl1_],C2_,pts_] :=
(Message[Coni cArc2D: : noChord, L1, C2] ; $Fai | ed)
Epilogue

End[]; (* end of "*Private" *)
EndPackage[]; (* end of "D2DConi cArc2D " *)

D2DEllipse2D

The package D2DE11ipse2D implements the E11ipse2D object.

Initialization
Begi nPackage[" D2DEl | i pse2D *, { " D2DExpr essi ons2D' ", "D2DCGeonetry2D ",
"D2DLi ne2D' ", "D2Dwaster2D ", "D2DNunmbers2D ", "D2DPoint2D ",
"D2DQuadratic2D ", "D2DSegnent2D ", "D2DSketch2D ", "D2DTransforn2D "}];

D2DEl | i pse2D: : usage=
"D2DEl | i pse2D i s a package that inplenments the Ellipse2D object."”;

El | i pse2D: : usage=

"El'lipse2D[{{h,k},a,b,theta] is the standard formof an ellipse centered
at (h,k), sem-nmjor axis length 'a', sem -ninor axis length 'b’ and
rotation angle '"theta .";

Sem Maj or AXi s2D: : usage=
"Sem Maj or Axi s2D[el | i pse] returns the length of the senmi-major axis of
an ellipse.";

Sem M nor Axi s2D: : usage=
"Sem M nor Axi s2D[el | i pse] returns the length of the senmi-mnor axis of
an ellipse.";

Begi n["‘ Private' "];

Description

Representation

Ellipse2D[{h, k}, a, b, 61 M Standard representation of an ellipse in Descarta2D. The first
argument is a list of coordinates representing the center of the ellipse. The second and third
arguments are (positive) scalars representing the lengths of the semi-major and semi-minor
axes of the ellipse. The fourth argument is the counter-clockwise rotation angle (in radians)
of the ellipse about the center point.

421

422 D2DEllipse2D - Description

Equation

Quadratic2D[ellipse] W Constructs a quadratic representing the equation of an ellipse.

Quadrati c2D[El lipse2D[{h_,k_},a_,b_,theta_]] :=
Rot at e2D]
Quadratic2D[b”*2, 0, a2, - 2*b"2*h, - 2*an2*k, - a*2* b 2+b"2* h"2+an2*k 2] ,
theta,
{h, k};

Evaluation

Ellipse2D[{h, k}, a, b, 61[61] M Evaluates a position on an ellipse at parameter ¢, and
returns a list of coordinates {z, y}. Parameters in the range 0 < #; < 27 cover the entire
ellipse.

Ellipse2D[{h_,k_},a_,b_,theta_][t_7?IsScalar2D] :=
Rot at e2D[{ h+a*Cos[t], k+b*Sin[t]},theta, {h, k}];

Graphics

Provides the graphics primitives for an ellipse by extending the Mathematica Display com-
mand. Executed when the package is loaded.

Set Di spl ay2D]
Ellipse2D[{h_,k_},a_,b_,t_][{t1_?lsScal ar2D,t2_7?IsScal ar2D}],
MakePrimtives2D El lipse2D[{h, k},a, b, t],
Pri mar yAngl eRange2D[{t1,t2}]] 1;

Set Di spl ay2D]
El l'i pse2D[{h_, k _

ba,b,t_],
MakePrimtives2D El | i pse2D{{h,k},a, b, t],{0,2Pi }] 1;

Validation

Ellipse2D[{h, k}, a, b, 61 M Detects an ellipse with imaginary arguments and returns the
$Failed symbol. If the imaginary parts are insignificant, they are removed.

El I'i pse2D: : i nagi nary=
"An invalid ellipse of the form Ellipse2D[‘1, ‘2, 3", “4']" has been
detected; the argunents of an ellipse cannot involve inmaginary nunbers."”;

Ellipse2D[{h_,k_},a_,b_,theta_] :=
(El'li pse2D @@ Chopl magi nary2D[El | i pse$2D[{h, k}, a, b, theta]]) /;
(Freed {h,k,a,b,theta}, Pattern] && |sTinylmginary2D{h,k,a,b,theta}]);

Ellipse2D[{h_,k_},a_,b_,theta_] :=
(Message[El | i pse2D: : i magi nary, {h, k}, a, b,theta]; $Failed) /;
(Freed {h,k,a,b,theta}, Pattern] && |sConplex2D[{h,k, a, b,theta},0]);

D2DEllipse2D - Scalars 423

Ellipse2D[{h, k}, a, b, 61 M Detects an ellipse with invalid arguments and returns the
$Failed symbol.
El li pse2D: :invalid=
"An invalid ellipse of the form 'Ellipse2D‘1", ‘2, ‘3", “4']" has been
detected; the length of both the sem -major and seni-mnor axes nust be
positive.";
Ellipse2D{h_,k_},a_,b_,theta_] :=

(Message[El li pse2D::invalid,{h,k},a,b,theta]; $Failed) /;
(FreeQ {h,k,a, b,theta}, Pattern] && |sZeroO Negative2D[{a, b},0]);

Ellipse2D[{h, k}, a, b, 61 M Detects a y-axis ellipse and rotates it 7/2 radians.
Ellipse2D{h_,k_},a_,b_,theta_] :=

El li pse2D[{h, k}, b, a,theta+Pi/2] /;
(FreeQ {h,k,a, b,theta}, Pattern] && |sNegative2D a-b,0]);

Ellipse2D[{h, k}, a, b, 61 M Normalizes the rotation angle on all ellipses to the range
0<b<m.
Ellipse2D{h_,k_},a_,b_,theta_] :=

El i pse2D[{h, Kk}, a, b, Pri maryAngl e2D[theta, Pi]] /;
(FreeQ {h,k,a, b,theta}, Pattern] && (theta=!=PrimaryAngl e2D[theta,Pi]));

IsValid2D[ellipse] M Verifies that an ellipse is syntactically valid.
I'sVal i d2D] El | i pse2D { h_?I sScal ar 2D, k_?I sScal ar 2D},

a_7?l sScal ar 2D, b_?I sScal ar 2D,
theta_?l sScal ar2D]] := True;

Scalars

Angle of Rotation
Angle2D[ellipse] M Returns the rotation angle of an ellipse.

Angl e2D[El I i pse2D[{h_,k_},a_,b_,theta_]] := theta;

Semi-major Axis Length
SemiMajorAxis2D[ellipse] M Returns the length of the semi-major axis of an ellipse.

Sem Maj or Axi s2D[El | i pse2D[{h_,k_},a_,b_,theta_]] := a;

Semi-minor Axis Length
SemiMinorAxis2D [ellipse] M Returns the length of the semi-minor axis of an ellipse.

Sem M nor Axi s2D[El I i pse2D[{h_,k_},a_,b_,theta_]] := b;

424 D2DEllipse2D - Point Construction

Transformations

Reflect

Reflect2D[ellipse, line] M Reflects an ellipse in a line.

Refl ect2D[El | i pse2D[{h_,k_},a_,b_,theta_],L:Line2Dp_,q_,r_]] :=
El I'i pse2D Refl ect 20[{ h, k}, L], a, b, Ref | ect Angl e2D[t heta, L]];

Rotate

Rotate2D [ellipse, 0, coords] M Rotates an ellipse by an angle § about a position spec-
ified by a coordinate list. If the third argument is omitted, it defaults to the origin (see
D2DTransform2D.nb).

Rot at e2D[El | i pse2D[{h_,k_},a_, b_,theta_], al pha_?I sScal ar 2D,
{x0_?I sScal ar 2D, y0_?l sScal ar2D}] : =
El |i pse2D] Rot at e2D[{ h, k}, al pha, {x0, y0}], a, b, al pha+t het a] ;

Scale

Scale2D[ellipse, s, coords] M Scales an ellipse by a scale factor, s, from a position given by
coordinates. If the position is omitted, it defaults to the origin (see D2DTransform2D.nb).

Scal e2D[El I i pse2D[{h_,k_},a_,b_,theta_],s_7?l sScal ar 2D,
{x0_7?l sScal ar 2D, y0_?I sScal ar2D}] :=
El I'i pse2D] Scal e2D[{ h, k}, s, {x0,y0}], s*a, s*b, theta] /;
Not [| sZer oOr Negat i ve2D[s]] ;
Translate

Translate2D [ellipse, {u, v}] M Translates an ellipse delta distance.

Transl ate2D El | i pse2D[{h_,k_},a_,b_,theta],
{u_?lsScal ar 2D, v_?l sScal ar2D}] : =
El I'i pse2D[{ h+u, k+v}, a, b, t het a] ;

Point Construction

Center Point

Point2D[ellipse] M Constructs the center point of an ellipse.

Poi nt2D[El I i pse2D[{h_,k_},a ,b_,theta_]] := Point2D{h, k}];

D2DEllipse2D - Line Construction 425

Pole Point

Point2D [line, ellipse] M Constructs the pole point of a line with respect to an ellipse. If the
line is tangent to the ellipse then the point is the point of tangency.

Poi nt2D[L1: Line2Dfal_,bl_,cl_],E2:El lipse2D{h2_,k2_},a2_,b2_,theta2_]] :=
Poi nt 2D[L1, Quadrati c2D[E2]] ;

Line Construction

Axis Line

Line2D[ellipse] M Constructs a line containing the major axis of an ellipse.

Line2D[El I i pse2D[{h_,k_},a_,b_,theta_]] :=
Rot at e2D[Li ne2D[0, 1, - k], theta, {h, k}];

Polar Line

Line2D [point, ellipse] M Constructs the polar (line) of a pole (point) with respect to an
ellipse. If the point is on the ellipse then the line is tangent to the ellipse at the point.

Li ne2D[P1: Poi nt 2D {x1_,y1 }],E2: El li pse2D {h2_, k2_},a2_,b2_,theta2_]] :=
Li ne2D[P1, Quadrati c2D[E2]] ;

Ellipse Construction

Ellipse from Vertices and Eccentricity

Ellipse2D[{point, point}, e] M Constructs an ellipse from the vertices and eccentricity.

El | i pse2D: :i nvdef =

"The defining geonetry or eccentricity is invalid; the eccentricity of
an el lipse nust be in the range O<e<l, the foci and vertices cannot be
coi ncident, and the focus cannot lie on the directrix.";

Ellipse2D[{P1: Point2D[{x1_,y1 }], P2: Point2D[{x2_,y2_}]},e_?lsScalar2D] :=
Modul e[{a, b, h, k},
If[lIsZeroOr Negative2D {e, 1-e}, O] || IsCoincident2D P1, P2],
Message[El | i pse2D: : i nvdef]; $Fai | ed,
a=Di st ance2D(P1, P2]/ 2;
b=a*Sqrt[1-e”2];
{h, k}={(x1+x2)/2, (yl+y2)/2};
El I'i pse2D {h, k}, a, b, ArcTan[x2-x1,y2-y1]]] 1;

426 D2DEllipse2D - Epilogue

Ellipse from Foci and Eccentricity
Ellipse2D[point, point, e] M Constructs an ellipse from the foci and eccentricity.

El I'i pse2D[P1: Poi nt 20{ {x1_,y1_}], P2: Poi nt 2D[{x2_,y2_}],e_?lsScal ar2D] :=
Modul e[{ a, b, h, Kk},
If[IsZeroOrNegative2D[{e, 1-e},O] || |sCoincident2D P1, P2],
Message[El | i pse2D: : i nvdef]; $Fai | ed,
a=Di st ance2D[P1, P2]/ (2*e);
b=a*Sqrt[1-e”2];
{h, kK}={ (x1+x2)/2, (yl+y2)/ 2};
El i pse2D {h, k}, a, b, ArcTan[x2-x1,y2-y1]]1] 1;

Ellipse from Focus, Directrix and Eccentricity

Ellipse2D[point, line, e] M Constructs an ellipse from a focus point, directrix line and
eccentricity.

Ellipse2D[P1: Point2D[{x1_,y1 }],L2:Line2D[p_,q_,r_],e_?lsScal ar2D :=
Modul e[{d, s, a, b, h, k},
If[IsZeroOr Negative2D[{e, 1-e},O] || IsOn2D[P1, L2],
Message[El | i pse2D: :i nvdef]; $Fai | ed,
d=Di st ance2D[P1, L2] ;
s=(p*x1+q*yl+r)/(p"2+qt2);
a=d*e/ (1-e"2);
b=a*Sqrt[1-e"2];
{h, k}={x1,yl}+{p. q}*(a*s*e)/d;
Ell'i pse2D[{h, k},a, b, ArcTan[p,q]]]];:

Epilogue

End[1; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DElIlipse2D " *)

D2DEquations2D

The package D2DEquations2D provides functions for converting Mathematica equations and
polynomials into Descarta2D lines and quadratics, and vice versa.

Initialization

Begi nPackage[" D2DEquat i ons2D' ", {"D2DExpressi ons2D' ", "D2DLi ne2D ",
" D2DQuadr ati c2D "}7];

D2DEquat i ons2D: : usage=

"D2DEquati ons2D is a package that provides functions for converting
Mat hermat i ca pol ynomi al s and equations into lines and quadratics, and vice
versa.";

Equati on2D: : usage=

"Equation2D[line, {x,y}] forns a linear equation in tw unknowns, a*x +
b*y + ¢ == 0; Equation2D[quad, {x,y}] forms a quadratic equation in two
unknowns, a*x"2 + b*x*y + c*y”"2 + d*x + e*y + f == 0.";

Pol ynom al 2D: : usage=

"Pol ynomi al 2D[i ne, {x,y}] forms a linear polynomal in two unknowns,
a*x + b*y + c; Polynom al 2D0[quad, {x,y}] forns a quadratic polynom al in
two unknowns, a*x"2 + b*x*y + c*y”"2 + d*x + e*y + f.";

Si npli fyCoefficients2D: : usage=
"SinmplifyCoefficients2D coefList] returns a list of coefficients with
comon factors renoved.";

Begin["' Private'"];

Coefficients

Simplify Coefficients

SimplifyCoefficients2D[coefList] M Returns a list of coefficients with common factors
removed.

427

428 D2DEquations2D - Epilogue

Si mpl i fyCoefficients2D coef:{cl_?lsScal ar2D, c2__?lsScal ar2D}] :=
Modul e[{ gcd, coef 1},
gcd=Pol ynom al GCD[Sequence @@ Rati onalize[coef]];
I f[IsZero2D gcd], gcd=1];
coef 1=Map[Si npl i fy[#/ gcd] &, coef];
Map[| f [| sZer 02D Round[#] - #] , Round[#] , #] & coef1] 1];

Equations

Linear

Equation2D[line, {z, y}] M Forms ax + by + ¢ == 0 from a line.

Equation2D[Line2Dfa_,b_,c_],{x_?IsScal ar2D,y_?lsScal ar2D}] := a*x+b*y+c==0;

Quadratic
Equation2D[quad, {z, y}] W Forms ax? + bxy + cy® + dx + ey + f == 0 from a quadratic.

Equat i on2D[Quadratic2Dfa_,b_,c_,d_,e_,f_],{x_?IsScal ar2D, y_?l sScal ar2D}] :=
a*xM2+b*x*y+c*yr2+d* x+e*y+f ==0;

Polynomials

Linear

Polynomial2D[line, {z, y}] MW Forms ax + by + ¢ from a line.

Pol ynom al 2D[Li ne2Df a_, b_, c_],{x_?I sScal ar2D, y_?l sScal ar 2D}] := a*x+b*y+c;

Quadratic
Polynomial2D[quad, {z, y}] M Forms az? + bxy + cy® + dz + ey + f from a quadratic.

Pol ynoni al 2D{ Quadratic2Da_,b_,c_,d_,e_, f_],
{x_?lsScal ar 2D, y_?l sScal ar2D}] :=
a*xN2+b*x*y+cryr2+d* x+ery+f;

Epilogue

End[]; (* end of "*Private" *)
EndPackage[]; (* end of "D2DEquations2D " *)

D2DExpressions2D

The package D2DExpressions2D provides functions for querying Mathematica expressions.

Initialization
Begi nPackage[" D2DExpr essi ons2D' ", {"D2DWVaster2D ", "D2DNunbers2D "}];

D2DExpr essi ons2D: : usage=
" D2DExpr essions2D is a package for querying Mathematica expressions.";

| sAppr oxi mat e2D: : usage=

"1 sApproxi mat e2D[expr] returns 'True’ if the expression contains
approxi mate real nunbers, or if the evaluation will eventually be
approxi mated using the 'N function."”;

I sConpl ex2D: : usage=

"I sConpl ex2D[expr, (tol)] returns 'True' if the expression evaluates to a
conpl ex nunber; |sConplex2DList,(tol)] and IsConplex2D[List, O, (tol)]
return 'True’ if any expressions in the list evaluate to conpl ex nunbers;
| sConpl ex2D Li st, And, (tol)] returns 'True' if all the expressions in the
list evaluate to conplex nunbers; the default tolerance, if omtted, is
107 (-10).";

I sNegati ve2D: : usage=

"I sNegative2D[expr, (tol)] returns "True' if the expression is negative;
ot herwi se, returns ’'False’; |sNegative2D[List,(tol)] and
I sNegative2D[List,O,(tol)] return 'True' if any expressions in the |ist
are negative; |sNegative2D[List,And,(tol)] returns "True' if all the
expressions in the list are negative; the default tolerance, if onitted, is
10~ (-10).";

I sNumeri ¢2D: : usage=

"1 sNumeri c2D[expr, (tol)] returns 'True’ if the expression consists of
atoms that can be evaluated to real nunbers;
I sNuneri c2D expr, funcNane, (tol)] provides the sane function with a nmessage;
the default tolerance, if omtted, is 107(-10).";

| sReal 2D: : usage=

"l sReal 2D[expr, (tol)] returns 'True' if the expression is real-val ued;
otherwi se, returns 'False’; the default tolerance, if onitted, is
10n°(-10).";

429

430

D2DExpressions2D - Utilities

| sScal ar 2D: : usage=

"l sScal ar2D[expr] returns 'True’ if the expression appears to be a
scalar (not a List, object, or conplex nunber); otherw se, returns
"False’.";

| sScal ar Pai r 2D: : usage=

"1 sScal ar Pai r 2D { expr 1, expr2}] returns 'True’ if both expressions in a
l'ist appear to be a scalars (not a Lists, objects, or conplex nunbers);
otherwi se, returns 'False .";

1 sTi nyl magi nary2D: : usage=

"1 sTi nyl magi nary2D[expr, (tol)] returns 'True’ if any conplex nunbers in
the expression have tiny imaginary parts; the default tolerance, if
omtted, is 107(-10).";

| sZer 02D: : usage=

"I sZero2D expr, (tol)] returns 'True' if the expression is zero;
otherwi se, returns 'False'; IsZero2D[List,(tol)] and
I sZero2D[List, O, (tol)] return *True' if any expressions in the list are
zero; |sZero2D[List,And,(tol)] returns "True’ if all the expressions in the
list are zero; the default tolerance, if omtted, is 107(-10).";

| sZer oOr Negat i ve2D: : usage=

"l sZer oOr Negat i ve2D[expr, (tol)] returns 'True’ if the expression is zero
or negative; otherw se, returns 'False' ; |sZeroOr Negative2D[List,(tol)] and
| sZer oOr Negati ve2D[List, O, (tol)] return 'True' if any expressions in the
list are zero or negative; |sZeroO Negative2DList,And,(tol)] returns
"True' if all the expressions in the list are zero or negative; the default
tolerance, if omtted, is 10"(-10).";

Begin["* Private' "];

Utilities

Chop

The built-in Mathematica function Chop issues an error message if the tolerance is zero. These
modifications to the Chop function allow a zero tolerance to be specified. Executed when the
package is loaded.

pr ot ect ed=Unpr ot ect [Chop] ;
Chop[expr_, 0] := expr;
Chop[expr_,0.] := expr;

Prot ect[Eval uat e[protected]];

Random Evaluation

The private function RandomEvaluation$2D substitutes random numbers for the non-numeric
symbols in the expression and applies the N function to the result. This is useful for determining
whether a symbolic expression represents some specific numerical value (such as zero). There is
a small probability that an erroneous conclusion may be reached if an unfortunate combination
of random numbers arises.

D2DExpressions2D - Number Queries 431

RandonEval uati on$2D] expr_] :=
Modul e[{ at orrs, synbol s, rul es},
atons=Level [N expr], {-1}];
synbol s=Uni on[Sel ect [at ons, (Head[#] ===Synbol) &] ;
rul es=Map[Rul e[#, Randon{ Real , {0. 1, 0. 9}]] & synbol s];
N expr /. rules]];

Tolerance

The private function Tolerance$2D [tol] returns tol if it is a valid tolerance value; otherwise,
issues a warning message and returns the default tolerance value, 107'°. The special cases are
provided to improve the performance of heavily used tolerance values.

D2DExpr essi ons2D: : badTol =
"The tolerance ‘1" is not a valid tol erance specification; the default
tol erance, 107(-10), will be used.";

Tol erance$2D] 107 (-10)] := 107(-10);
Tol erance$2D{ 0] : = 0;

Tol erance$2Dtol _] :=
If[True@ N tol]>=0],
tol,
Message[D2DExpr essi ons2D: : badTol , tol]; 10*(-10)];

Number Queries

Approximate Query

IsApproximate2D [ezpr] M Returns True if any of the atoms in an expression are approximate
real numbers or if the N function will eventually be applied to the expression; otherwise, returns
False.

| sAppr oxi mat e2D[expr_] :=
(Not [FreeQ expr, _Real]] || Stack[N[___]1]=!={});
Complex Query

IsComplex2D [expr, (tol)] M Returns True if an expression evaluates numerically to a complex
number; otherwise, returns False. The heavily used cases are provided to improve perfor-
mance. The default tolerance, if omitted, is 1071°.

| sConpl ex2D[n_Real ,tol _: (107(-10))] := Fal se;
| sConpl ex2D[n_I nteger,tol _: (10"(-10))] := Fal se;

| sConpl ex2D[n_Rational ,tol _: (107(-10))] := Fal se;

432 D2DExpressions2D - Number Queries

| sConpl ex2D[sym Synbol ,tol _: (107(-10))] := Fal se;
| sConpl ex2D[n_Conpl ex, tol _: (10*(-10))] := Abs[In{n]]>Tol erance$2D[tol];

| sConpl ex2D] expr _, tol _: (107(-10))] :=
Modul e[{n, tol 1},
tol 1=Tol erance$2D/ tol];
n=Chop[N[expr], tol 1] ;
Head[n] ===Conplex] /;
(Head[expr] =!= List);

Complex Query (List)

IsComplex2D [exprList, Or | And, (tol)]] WM With the default option, Or, returns True if any
expression in the list evaluates to a complex number; with the And option, returns True if
all the expressions in the list evaluate to complex numbers; otherwise, returns False. The
default tolerance, if omitted, is 10719,

| sConpl ex2D] expr _Li st, bool _: O, tol _: (107(-10))] :=
Modul e[{t ol 1},
tol 1=Tol erance$2D[tol];
bool @@ Map[|sConpl ex2D[#,tol 1] & expr] 1 /;
(bool ==And || bool ==Or);

Numeric Query

IsNumeric2D[ezpr, (tol)] M Returns True if all the atoms in an expression can be evaluated
to real numbers; otherwise, returns False. The default tolerance, if omitted, is 10~ 1°.

I sNuneri c2D expr_, tol _: (107(-10))] :=
Not [Menber @ Chop[expr// N, Tol erance$2D{tol]],
(_Synbol | _Conplex | _String),{-1}1]1 /;
(Head[tol] =!= Synbol);

Numeric Query (with Message)

IsNumeric2D [expr, funcName]l W Returns True if all the atoms in an expression can be
evaluated to real numbers; otherwise, returns False. Outputs a message with the function
name if the result is False.

I sNurrer i ¢2D: : not Nurreri c=
"The ‘1' function requires nunerical argunents; synbolic argunments are
not allowed.";

I sNurrer i c2D expr _, funcName_Synbol ,tol _: (10"°(-10))] : =
I f[1sNureric2D expr, Tol erance$2D[tol]],
True,
Message[| sNuneri c2D: : not Nuneri ¢, funcNane] ; Fal se] ;

D2DExpressions2D - Number Queries 433

Real Query

IsReal2D[ezpr, (tol)]] M Returns True if the expression can be evaluated to a real number;
otherwise, returns False. A complex number with an insignificant imaginary component will
return True. The default tolerance, if omitted, is 1071°.

I sReal 2D[expr _Real , ___] := True;

I sReal 2D expr_Integer, __] := True;

| sReal 2D[expr _Synbol ,] := Fal se;
I sReal 2D[expr _Rational,___] := True;

| sReal 2D0] expr _Conpl ex, tol _: (10~(-10))] :=
Chop[I n{expr]//N, Tol erance$2D{ t ol]] ===0;

| sReal 2D[expr _, tol _: (107(-10))] :=
Modul e[{n},

n=Chop[N[expr], Tol erance$2D{tol]];
(NumberQn] && (1nfn]==0))];

Scalar Query

IsScalar2D[n] M Returns True if an expression appears to be a scalar quantity—that is,
it cannot be recognized as Null, a list, a complex number or a Descarta2D object; otherwise,
returns False. The special cases for Real, Integer and Symbol are provided to improve the
performance of heavily used queries.

I sScal ar2D[_Real] := True;
I sScal ar2D[_I nteger] := True;

I sScal ar 20 _Synbol] := True;

I sScal ar20] _Li st] := Fal se;

I sScal ar 2D[_?I sConpl ex2D] : = Fal se;
I'sScal ar2D[Nul I] : = Fal se;

| sScal ar 2D expr_] := False /;

Menber @ Obj ect Names2D[], ToStri ng[Head[expr]]];

| sScal ar 2D expr_] := False /;
Not [Free) expr, _Pattern]];

I sScal ar 2D[expr _] := True;

434 D2DExpressions2D - Sign Queries

Scalar Pair Query

IsScalarPair2D[{n;, na}] M Returns True if a list of two expressions appears to be a scalar
pair—that is, neither expression can be recognized as Null, a list, a complex number or a
valid Descarta2D object; otherwise, returns False.

I sScal arPair2D {nl1_,n2_}] := IsScal ar2D[nl] && |sScal ar2D[n2];

IsScalarPair2D[] := False;

Tiny Imaginary Query

IsTinyImaginary2D[expr, (tol)]] W Returns True if any atoms in an expression involve
complex numbers with tiny imaginary parts; otherwise, returns False. The default tolerance,
if omitted, is 10710,

I sTi nyl magi nary2D{ expr _, tol _: (107(-10))] :=
Modul e[{t ol 1},
tol 1=Tol erance$2D[tol];
O @@ Map[(Head[#] ===Conpl ex && Chop[| ni#], tol 1] ===0) &,
Level [expr, {-1}]1]1 1;

Sign Queries

Negative Query

IsNegative2D[expr, (tol)]] M Returns True if a number is numerically negative; otherwise
returns False. The default tolerance, if omitted, is 1071°.

| sNegat i ve2D[expr _,tol _: (10"(-10))] :=
Modul e[{n},
n=Chop[N[expr], Tol erance$2D{tol]];
I f[Menber J {Real , I nteger}, Head[n]], n<0, False]] /;
(Head[expr] =!= List);

Negative Query (List)

IsNegative2D [exprList, Or | And, (tol)]] MW With the default option, Or, returns True if
any expression in the list is numerically negative; with the And option, returns True if all
the expressions in the list are numerically negative; otherwise, returns False. The default
tolerance, if omitted, is 10710,

| sNegat i ve2D] expr _Li st, bool _: Or,tol _: (107(-10))] :=
Modul e[{t ol 1},
tol 1=Tol erance$2D[tol];
bool @@ Map[|sNegative2D[#,tol 1] & expr]] /;
(bool ==And || bool ==0r);

D2DExpressions2D - Sign Queries 435

Zero Query

IsZero2D[expr, (tol)]] M Returns True if an expression is numerically zero; otherwise, returns
False. The heavily used cases are provided as special cases to improve performance. The

default tolerance, if omitted or invalid, is 10710,
| sZero2D[n_Real ,tol _: (107(-10))] := (Abs[n]<=Tol erance$2D[tol]);
| sZero2D[n_I nteger, tol _: (107(-10))] := (Abs[n]<=Tol erance$2Dtol]);
| sZer 02D] expr _Synbol ,tol _: (107(-10))] := Fal se;

| sZer 02D n_Conpl ex, tol _: (107(-10))] :=
Modul e[{t ol 1},
t ol 1=Tol erance$2D tol];
(Abs[Re[n]]<=toll & Abs[In[{n]]<=tol1)];

IsZero2D[h_[___],tol _:(107(-10))] := False /;
Menber @ Coj ect Nanes2D[], ToString[h]];

| sZero2D[expr_, tol _: (107(-10))] : =
Modul e[{n, tol 1},
tol 1=Tol erance$2D[tol];
n=Chop[N[expr], tol 1];
| f[Menber { Real , | nt eger, Conpl ex}, Head[n]],
I sZero2D[n, tol 1],
Chop[RandonEval uati on$2D[n], tol 1] ===0]] /;
(Head[expr] =!= List);

Zero Query (List)

IsZero2D[exprList, Or | And, (tol)]] M With the default option, Or, returns True if any ex-
pression in the list is numerically zero; with the And option, returns True if all the expressions
in the list are numerically zero; otherwise, returns False. The default tolerance, if omitted,
is 10710,
| sZer 02D] expr _Li st, bool _: O, tol _: (10°(-10))] :=
Modul e[{tol 1},
tol 1=Tol erance$2D tol];
bool @@ Map[|sZero2D[#,tol 1] & expr] 1 /;
(bool ==And || bool ==0r);

Zero or Negative Query

IsZeroOrNegative2D [expr, (tol)] M Returns True if the expression is numerically zero or
negative; otherwise, returns False. The default tolerance, if omitted, is 107 1°.

| sZer oOr Negati ve2D{ expr _, tol _: (107(-10))] :=
Modul e[{tol 1},
tol 1=Tol erance$2D tol];
(I'sZero2D expr,tol 1] || IsNegative2D expr,tol1])] /;
(Head[expr] =!= List);

436 D2DExpressions2D - Epilogue

Zero or Negative Query (List)

IsZeroOrNegative2D [exprList, Or | And, (tol)] W With the default option, Or, returns True
if any expression in the list is numerically zero or negative; with the And option, returns True
if all the expressions in the list are numerically zero or negative; otherwise, returns False.
The default tolerance, if omitted, is 10710,

| sZer oOr Negat i ve2D expr _Li st, bool _: O, tol _: (107(-10))] :=
Modul e[{t ol 1},
tol 1=Tol erance$2D[tol];
bool @@ Map[|sZeroOrNegative2D[#,tol 1] & expr]] /;
(bool ==And || bool ==Or);

Epilogue

End[1; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DExpressions2D " *)

D2DGeometry2D

The package D2DGeometry2D provides geometric query functions.

Initialization
Begi nPackage[" D2DGeonet ry2D ", {"D2DCi rcl e2D' ", " D2DExpressi ons2D ",
"D2DLi ne2D' ", "D2DWVaster2D ", "D2DPoint2D ", "D2DQuadratic2D "}];

D2DCeonet ry2D: : usage=
"D2DGeonetry2D is a package providing various geonetric queries.";

| sCoi nci dent 2D: : usage=
"1 sCoi nci dent 2D[obj 1, 0bj 2] returns 'True' if the two objects are

coi ncident; |sCoincident2D[obj _List] returns 'True’ if any pair of objects

in the list is coincident (coordinates, points, lines, circles or
quadratics).";

I sCol | i near 2D: : usage=

"1sCol | i near 2D[poi nt, poi nt, point] returns 'True’ if the three points are
collinear; |sCollinear2D[pt_List] returns 'True’ if any triple of points in

the list are collinear.";

I sConcentric2D: : usage=
"l sConcentric2Dcircle,circle] returns 'True’ if the two circles are

concentric; |sConcentric2D[cir_List] returns "True’ if any pair of circles

inthe list are concentric.";

I sConcurrent 2D: : usage=
"l sConcurrent2D[line,line,line] returns 'True’ if the three lines are

concurrent; IsConcurrent2D[In_List] returns "True’ if any triple of lines

inthe list is concurrent.";

1 sOn2D: : usage=
"IsOn2D{ point,line | circle | quad] returns 'True' if the point is on
the line, circle or quadratic.";

| sParal |l el 2D: : usage=

"lIsParallel 2D[line,line] returns 'True’ if two lines are parallel;
IsParallel 20 I n_List] returns 'True’ if any pair of lines in alist is
parallel.";

437

438 D2DGeometry2D - Utilities

I sTripl eParal | el 2D: : usage=

"1sTripleParallel 2D[line,line, line] returns 'True’ if three lines are
parallel; IsTripleParallel2D[I n_List] returns 'True’ if any triple of lines
inalist is parallel.";

| sPer pendi cul ar 2D: : usage=

"I sPerpendicular2Dline,line] returns "True’ if two lines are
per pendi cul ar; |sPerpendicul ar2D{I n_List] returns 'True' if any pair of
lines in a list is perpendicular.";

| sTangent 2D: : usage=

"lsTangent 2D[l ine,circle] returns 'True’ if aline is tangent to a
circle; IsTangent2D[circle,circle] returns "True' if two circles are
tangent to each other; |sTangent2D[line,quad] returns 'True' if alineis
tangent to a quadratic.";

Begin["* Private' "];

Utilities
Combinations

The private functions PairQ$2D, Pairs$2D, TripleQ$2D and Triples$2D are used to apply
queries over lists of objects.

Pairs$2D{a_,b_}] := {{a, b}};
Pairs$2Df{a_,b_,c_}] :=

Flatten[{Map[{a, #} & {b, c}], Pairs$2D[{b, c}]}, 1];
Pai rs$2D{ L_List /; Length[L]<2] := L;

Triples$2D{a_,b_,c_}] := {{a, b, c}};
Triples$2D[{a_,b_,c_,d__}] :=
Flatten[{Map[({a, #[[1]].#[[2]]}) & Pairs$2D {b,c,d}]],
Triples$2D[{b,c,d}]},1];
Triples$2D[L_List /; Length[L]<3] :=L;

Pair@2D[L: {a_,b__},func_] :=
Menmber QO Map[func[#[[1]], #[[2]]] &
Pairs$2D[L]],
True];
PairQ2D[{___},func_] := Fal se;

Triple@2DL:{a_,b_,c__},func_] :=
Menber O Map[func[#[[1]], #[[2]],#[[3]]1]1&
Triples$2DL]],
True];
Triple@2D[{__ _},func_] := Fal se;

D2DGeometry2D - Coincident Queries 439

Coincident Queries

Two Coordinates

IsCoincident?2D [coords, coords] M Returns True if two coordinates are coincident; otherwise,
returns False.
I sCoi nci dent 20] { x1_?1 sScal ar 2D, y1_?I sScal ar 2D},

{x2_7?lsScal ar 2D, y2_?1 sScal ar2D}] :=
| sZer 02D x1- x2] && |sZero2D[yl-y2];

Two Points

IsCoincident2D [point, point] M Returns True if two points are coincident; otherwise, returns
False.

I sCoi nci dent 20{ Poi nt 2D{ {x1_,y1_}], Point2D {x2_,y2_}]] :=
| sZer 02D x1- x2] && |sZero2D[yl-y2];

Two Lines

IsCoincident2D [line, line] M Returns True if two lines are coincident; otherwise, returns
False.

I sCoi ncident 2D Li ne2Dfal_, bl _,cl], Line2Da2_,b2_,c2_]] :=
I sZero2D[{Det[{{ al, bl},{ a2, b2}}],
Det[{{-c1, bl},{-c2, b2}}],
Det[{{ al,-cl},{ a2,-c2}}]}, And]

Two Circles

IsCoincident2D [circle, circle] M Returns True if two circles are coincident; otherwise,
returns False.

IsCoincident2Df Circle2D[{h1_,k1_},r1_],Crcle2D{h2_,k2_},r2_]] :=
I sCoi nci dent 20 { h1, k1}, {h2, k2}] && IsZero2D[r1l-r2];

Two Quadratics

IsCoincident2D [quad, quad] M Returns True if two quadratics are coincident; otherwise,
returns False.

| sCoi nci dent 2D[QL: Quadratic2D[al_,bl ,cl1_,dl_,el ,f1],
Q: Quadratic2Da2_,b2_,c2_,d2_,e2_,f2_]] :=
Modul e[{ k1, k2},
{kl}=Sel ect[List @®QL, Not[|sZero2D[#]] & 1];
{k2}=Sel ect[List @@ @, Not[|sZero2D[#]] &, 1];
| sZer 02D Map[Si npl i fy[Expand[N[#]]] &,
{al*k2-a2*k1, b1*k2- b2*k1, c1*k2- c2*k1,
d1*k2-d2*k1, el*k2-e2*kl, f 1*k2-f 2*k1}],
And] 1;

440 D2DGeometry2D - Concentric Queries

List of Objects

IsCoincident2D[objList] M Returns True if any pair of objects (points, lines, circles or
quadratics) in a list are coincident; otherwise, returns False.

| sCoi nci dent 2D[obj _Li st] := Pai r @2D[obj, | sCoi nci dent 2D ;

Collinear Queries

Three Points

IsCollinear2D [point, point, point] M Returns True if three points are collinear; otherwise,
returns False.

I sCol I 'i near 2D Poi nt 2D {x1_,y1_}], Poi nt2D[{x2_,y2_}], Poi nt2D[{x3_,y3_}1] :=
I'sZero2Df Det [{{x1,y1,1},{x2,y2,1},{x3,y3, 1} }]];

List of Points

IsCollinear2D[ptsList] M Returns True if any combination of three points in a list are
collinear; otherwise, returns False.

IsCol linear2D pts_List] := Triple@2D pts, |sCollinear2D;

Concentric Queries

Two Circles

IsConcentric2D [circle, circle] M Returns True if two circles are concentric; otherwise,
returns False.

IsConcentric2D[Circle2Df{hl_,k1_},r1_],Circle2D{h2_,k2_},r2_]] :=
| sCoi nci dent 2D { h1, k1}, {h2, k2}];

List of Circles

IsConcentric2D[cirList] M Returns True if any combination of two circles in a list are
concentric; otherwise, returns False.

I sConcentric2D[cir_List] := Pair@2D[cir,|sConcentric2D;

D2DGeometry2D - Concurrent Queries 441

Concurrent Queries

Three Lines

IsConcurrent2D [line, line, line] M Returns True if three given lines are concurrent; oth-
erwise, returns False. Coincident and parallel lines are not considered to be concurrent and
will return False.

I sConcurrent2D[L1: Li ne2Dfal_, bl_,cl_],L2: Line2Dfa2_, b2_,c2_],
L3: Line2Dfa3_,b3_,c3_]] :=
| sZero2D[Det[{{al, b1, c1}, {a2, b2,c2},{a3,b3,c3}}]] &&
Not[IsParall el 2D0[L1, L2]] && Not[lsParallel 2D[L2,L3]] &&
Not [I sParal |l el 2D[L2, L3]];

List of Lines

IsConcurrent2D [InsList] M Returns True if any combination of three lines in a list are
concurrent; otherwise, returns False. Coincident and parallel lines are not considered to be
concurrent and will return False.

I'sConcurrent2Df I ns_List] := Triple@2D|ns, |sConcurrent2D];

On Queries
Point On Line
Is0n2D [point, line] MW Returns True if a point is on a line; otherwise, returns False.

I sOn2D0[Poi nt2D[{x1_,yl }],Line2Dfa2_,b2_,c2_]] := IsZero2D a2*x1+b2*yl+c2];

Point On Circle

Is0n2D [point, circle] M Returns True if a point is on a circle; otherwise, returns False.
IsOn2D[Poi nt 20 {x1_,y1 }],Circle2D[{h2_,k2_},r2_]] :=
| sZer 02D (x1-h2) "2+(y1-k2)"2-12"2];

Point On Quadratic

Is0n2D [point, quad] M Returns True if a point is on a quadratic; otherwise, returns False.

IsOn2D[Point2D[{x_,y_}], Qadratic2Da_,b_,c_,d_,e_,f_]] :=
| sZer 02D] a* x"2+b* x*y+c*yr2+d* x+e*y+f] ;

442 D2DGeometry2D - Perpendicular Queries

Parallel Queries
Two Lines
IsParallel2D[line, line] M Returns True if two lines are parallel, otherwise, returns False.
I sParal |l el 2D[Li ne2Dfal_, bl_,cl_],Line2Da2_,b2_,c2_]] :=
| sZer 02D al*b2- a2*b1l];

List of Lines (by Pairs)

IsParallel2D[InsList] M Returns True if any combination of two lines in a list are parallel;
otherwise, returns False.

IsParall el 2D/ I ns_List] := Pair@2D0 | ns,|sParallel 2D ;

Three Lines

IsTripleParallel2D[line, line, line] M Returns True if three lines are mutually parallel;
otherwise, returns False.

IsTripleParall el 20 Li ne2D[al_, bl_,cl_],
Line2D[a2_, b2_,c2_],
Line2D[a3_, b3_,c3_]] :=
I sZero2D[al*b2-a2*bl] && | sZer 02D a2*b3-a3*b2];

List of Lines (by Triples)

IsTripleParallel2D[insList] M Returns True if any combination of three lines in a list is
parallel; otherwise, returns False.

IsTripleParall el 2D[I ns_List] := Triple@2D[Ins, |sTripleParallel 2D ;

Perpendicular Queries

Two Lines

IsPerpendicular2D[line, line] M Returns True if two lines are perpendicular; otherwise,
returns False.

| sPer pendi cul ar20[Li ne2Dfal_, bl_,cl_],Line2Da2_,b2_,c2_]] :=
| sZer 02D[al*a2+b1*b2];

D2DGeometry2D - Tangent Queries 443

List of Lines

IsPerpendicular2D[insList] M Returns True if any combination of two lines in a list is
perpendicular; otherwise, returns False.

I sPer pendi cul ar2D[| ns_Li st] := Pair@20 | ns, | sPer pendi cul ar 20] ;

Tangent Queries

Line and Circle

IsTangent2D [line, circle] M Returns True if a line is tangent to a circle; otherwise, returns
False.

| sTangent 20 Li ne2D[A1_,B1_,Cl_],Grcle2D {h_,k_},r_]] :=
I sZer 02D] r ~2* (A172+B172) - (CL+A1* h+B1*k) ~2] ;

Two Circles

IsTangent2D [circle, circle] B Returns True if two circles are tangent to each other; otherwise,
returns False.

I sTangent2D[C1: Gircl e2D[{h1_,k1_},r1_],C2:Circle2D{{h2_,k2_},r2_]1] :=
Modul e[{d},
d=(h1- h2) "2+(k1-k2)"2;
IsZero2D[{d-(r1+r2)72,d-(r1-r2)"2}, O] &&
Not [| sCoi nci dent 2D[C1, C2]] 1;

Line and Quadratic

IsTangent2D [line, quad] M Returns True if a line is tangent to a quadratic; otherwise,
returns False.
I sTangent 2D Li ne2D[p_,q_,r_], Quadrati c2D[a_, b

| sZero2D[(4*c*f-en2)*pr2 + 2*(d*e-2*b*f)*p:q +
(4*a*f-dr2)*qrh2 + 2*(b*e-2*c*d)*p*r +
r

Epilogue

End[]; (* end of "'Private" *)
EndPackage[]; (* end of "D2DCeonetry2D " *)

D2DHyperbola2D

The package D2DHyperbola2D implements the Hyperbola2D object.

Initialization
Begi nPackage[" D2DHyper bol a2D' ", { " D2DExpr essi ons2D' ", "D2DGeonetry2D ",
"D2DLi ne2D ", "D2Dwaster2D ", "D2DNumbers2D ", "D2DPoi nt2D ",
"D2DQuadr ati c2D ", "D2DSegnent2D ", "D2DSketch2D ", "D2DTransfornmD "}];

D2DHyper bol a2D: : usage=
"' D2DHyper bol a2D is a package providing support for hyperbolas.";

Conj ugat e2D: : usage=
"Conjugate2D is a keyword used to construct a conjugate hyperbola in
Hyper bol a2 hyper bol a, Conj ugate2D].";

Hyper bol a2D: : usage=

"Hyper bol a2D[{ h, k}, a,b,theta] is the standard form of a hyperbol a,
centered at (h,k), senmi-transverse axis length "a', sem -conjugate axis 'b’
and rotation angle 'theta .";

Sem Conj ugat eAxi s2D: : usage=
" Sem Conj ugat eAxi s2D[hyperbol a] returns the length of the seni-conjugate
axis of a hyperbola.";

Seni Tr ansver seAxi s2D: : usage=
"Sem Transver seAxi s2D[hyperbol a] returns the length of the
sem -transverse axis of a hyperbola.";

Begin["‘Private' "];

Description

Representation

Hyperbola2D[{h, k}, a, b, 61 M Standard representation of a hyperbola in Descarta2D. The
first argument is a list of coordinates representing the center of the hyperbola. The second
and third arguments are (positive) scalars representing the lengths of the semi-transverse and
semi-conjugate axes. The fourth argument is the counter-clockwise rotation (in radians) of
the hyperbola about the center point.

445

446 D2DHyperbola2D - Description

Equation

Quadratic2D [hyperbola]l M Constructs the quadratic representing the equation of a hyperbola.

Quadr ati c2D[Hyper bol a2 {h_, k_},a_,b_,theta_]] :=

Rot at e2D]
Quadratic2D[b2, 0, -a"2, - 2¥xb"2*h, 2*an2*k, - a”2* b 2+b"2* h"2- an2*k 2],
theta, {h,k}];
Evaluation

Hyperbola2D[{h, k}, a, b, 0, False | True] [{] B Evaluates the primary branch of a hyper-
bola (when the keyword is False or omitted) or its reflection (when the keyword is True).
The primary branch is the one opening about the +z-axis when the rotation angle is zero.
The end points of the focal chords are at parameter values —1 and +1.

Hyperbol a2Df{h_,k_},a_,b_,theta_,refl ection_: Fal se][t_?lsScal ar2D] :=
Modul e[{ al pha, e, s},
al pha=If[refl ecti on==Fal se, 0, Pi];
e=Sqrt[anr2+b”2]/ a;
s=Ar cCosh[e] ;
Rot at e2D[{ h+a* Cosh[s*t], k+b*Si nh[s*t]}, t het a+al pha, {h, k}] 1 /;
Menber @ { True, Fal se}, refl ection];

Graphics

Provides graphics for a hyperbola by extending the Mathematica Display command. Executed
when the package is loaded.

Set Di spl ay2D]
Hyper bol a2D{ {h_, k_},a_,b_,t_][{t1_?IsScal ar2D, t2_?l sScal ar2D}] /;
tl<=t 2,
MakePrim tives2D
Hyper bol a20f { h, k}, a, b, t, Fal se], {t1,t2}]];

Set Di spl ay2Df
Hyperbol a2Df{h_,k_},a_,b_,t _J[{t1_7?IsScal ar2D,t2_?lsScal ar2D}] /;
t1>t 2,
MakePrim tives2D
Hyperbol a2D{ {h, k}, a, b, t, True] ,{t2,t1}] 1;

Set Di spl ay2Df
Hyperbol a2 {h_,k_},a_,b_,t_],
Map[MakePrim tives2D
Hyper bol a2D[{ h, k}, a, b, t, #],
Curveli m ts2D[{a, 0}, Hyperbol a2D[{0, 0}, a, b, 0]]1] &
{Fal se, True}] 1];

D2DHyperbola2D - Description 447

Validation

Hyperbola2D[{h, k}, a, b, 61 M Detects a hyperbola with imaginary arguments and returns
the $Failed symbol. If the imaginary parts are insignificant, they are removed.

Hyper bol a2D: : i magi nary=
"An invalid hyperbola of the form’Hyperbola2D{‘1", ‘2, *3", “4']" has
been detected; the argunents cannot be inmaginary.";

Hyperbol a2D[{h_,k_},a_,b_,theta_] :=
(Hyper bol a2D @@ Chopl magi nary2D0[Hyper bol a$2D[{ h, k}, a, b, theta]]) /;
(Free {h,k,a, b,theta}, Pattern] && IsTinylmginary2D[{h, k,a, b,theta}]);

Hyper bol a2D{{h_,k_},a_,b_,theta_] :=
(Message[Hyper bol a2D: : i magi nary, {h, k}, a, b, theta] ; $Fai |l ed) /;
(FreeqQ {h,k,a, b,theta}, Pattern] && |sConplex2D{h,k, a, b,theta},0]);

Hyperbola2D[{h, k}, a, b, 61 B Detects a hyperbola with invalid arguments and returns the
$Failed symbol.

Hyper bol a2D: : i nval i d=

"An invalid hyperbola of the form’Hyperbola2D{‘1, ‘2, ‘3, “4']" was
encountered; the lengths of the sem -transverse and seni-conjugate axes
must be positive.";

Hyperbol a2D[{h_,k_},a_,b_,theta_] :=
(Message[Hyper bol a2D: : i nvalid, {h, k}, a, b,theta]; $Failed) /;
(Free {h,k,a, b,theta}, Pattern] && |sZeroOr Negative2D[{a, b}, O ,0]);

Hyperbola2D[{h, k}, a, b, 81 B Normalizes the rotation angle on a hyperbola to the range
0<o<m.

Hyper bol a2D{{h_,k_},a_,b_,theta_] :=
Hyper bol a2D[{ h, k}, a, b, Pri maryAngl e2D[theta, Pi]] /;
(FreeQ {h,k,a,b,theta}, Pattern] && (theta=!=PrimaryAngl e2D[theta,Pi]));

IsValid2D [hyperbola]l M Verifies that a hyperbola is syntactically valid.

I sVal i d2D[Hyper bol a2D[{h_, k_},a_,b_,theta_, True]] :=
I sVal i d2D[Hyper bol a2D[{ h, k}, a, b, theta]];

I sVal i d2D[Hyper bol a2D[{h_, k_},a_,b_,theta_, Fal se]] :=
I sVal i d2D[Hyper bol a2D[{ h, k}, a, b, theta]];

I sVal i d20f
Hyper bol a2D[{ h_?I sScal ar 2D, k_?1 sScal ar 2D},
a_?l sScal ar 2D, b_?I sScal ar 2D,
theta_?IsScal ar2D]] := True;

448 D2DHyperbola2D - Transformations

Scalars
Angle of Rotation
Angle2D [hyperbola]l M Returns the rotation angle of a hyperbola.

Angl e2D Hyper bol a2D[{h_,k_},a _,b_,theta_]] := theta;

Semi-transverse Axis Length

SemiTransverseAxis2D [hyperbola]l M Returns the length of the semi-transverse axis of a
hyperbola.

Semi Transver seAxi s2D[Hyperbol a2D{ {h_, k_},a_,b_,theta_]] := a;

Semi-conjugate Axis Length

SemiConjugateAxis2D [hyperbola] M Returns the length of the semi-conjugate axis of a
hyperbola.

Seni Conj ugat eAxi s2D[Hyperbol a2D[{h_,k_},a_,b_,theta_]] := b;

Transformations

Reflect

Reflect2D [hyperbola, line] M Reflects a hyperbola in a line.

Ref | ect 2D0[Hyper bol a2D[{h_, k_},a_,b_,theta_],L:Line2Dp_,q_,r_]] :=
Hyper bol a2D] Ref | ect 20 { h, k}, L], a, b, Ref | ect Angl e2D[theta, L]];

Rotate

Rotate2D [hyperbola, 6, coords] M Rotates a hyperbola by an angle 6 about a position
specified by a coordinate list. If the third argument is omitted, it defaults to the origin (see
D2DTransform2D.nb).

Rot at e2D] Hyper bol a2D{ {h_, k_},a_,b_, theta_], al pha_?l sScal ar 2D,
{x0_?I sScal ar 2D, y0_?l sScal ar2D}] : =
Hyper bol a2 Rot at e2D[{ h, k}, al pha, {x0, y0}], a, b, al pha+t het a] ;

D2DHyperbola2D - Point Construction 449

Scale

Scale2D [hyperbola, s, coords] M Scales a hyperbola from a position given by coordinates. If
the third argument is omitted, it defaults to the origin (see D2DTransform2D.nb).

Scal e2D] Hyper bol a2Dj{h_, k_},a_, b_,theta_], s_?l sScal ar 2D,
{x0_7?IsScal ar 2D, y0_?l sScal ar2D}] :=
Hyper bol a2D] Scal e2D[{ h, k}, s, {x0,y0}], s*a, s*b,theta] /;
Not [| sZer oOr Negat i ve2D[s]] ;

Translate

Translate2D [hyperbola, {u, v}] M Translates a hyperbola delta distance.

Transl at e2D] Hyper bol a2D{{h_, k_},a_,b_,theta_],
{u_7?IsScal ar 2D, v_?l sScal ar2D}] :=
Hyper bol a2 { h+u, k+v}, a, b, t heta] ;

Point Construction
Center Point of a Hyperbola
Point2D [hyperbola]l M Constructs the center point of a hyperbola.

Poi nt 20 Hyper bol a2D{ {h_, k_},a_,b_,theta_]] := Point2D[{h, k}];

Pole Point

Point2D[line, hyperbolal M Constructs the pole (point) of a polar (line) with respect to a
hyperbola. If the line is tangent to the hyperbola then the point is the point of tangency.

Poi nt 2D L1: Line2Dfal_, bl_,cl_], H2: Hyperbol a2D{{h_,k_},a_,b_,theta_]] :=
Poi nt 2D[L1, Quadrati c2D[H2]] ;

Line Construction

Axis of a Hyperbola

Line2D [hyperbola]l M Constructs a line that contains the transverse axis of a hyperbola.

Li ne2D] Hyperbol a2D{{h_,k_},a_,b_,theta_]] :=
Rot at e2D[Li ne2D[0, 1, - k], theta, {h, k}];

450 D2DHyperbola2D - Hyperbola Construction

Polar Line

Line2D [point, hyperbolal M Constructs the polar (line) of a pole (point) with respect to a
hyperbola. If the point is on the hyperbola then the line is tangent to the hyperbola at the
point.

Li ne2D[P1: Poi nt2D[{x1_,y1_}], H2: Hyperbol a2D[{h_,k_},a_,b_,theta_]] :=
Li ne2D[P1, Quadrati c2Df H2]] ;

Hyperbola Construction

Conjugate Hyperbola

Hyperbola2D [hyperbola, Conjugate2D] M Constructs the conjugate hyperbola of a given
hyperbola.

Hyper bol a2D] Hyper bol a2D{ {h_, k_},a_, b_, theta_], Conj ugate2D] :=
Hyper bol a2 { h, k}, b, a, t het a+Pi / 2]

Hyperbola from Vertices/Eccentricity

Hyperbola2D [{point, point}, e] B Constructs a hyperbola from the vertices and eccentricity.

Hyper bol a2D: : i nvdef =

"The defining geonetry or eccentricity is invalid; the eccentricity of a
hyper bol a nust be greater than 1, the foci and vertices cannot be
coi ncident and the focus cannot lie on the directrix.";

Hyper bol a2D[{ P1: Poi nt 2D{ {x1_,y1_}], P2: Poi nt2D[{x2_,y2_}]},e_?lsScal ar2D] :=
Modul e[{ a, b, h, Kk},
I f[IsZeroOrNegative2D[e-1] || |sCoincident2D P1, P2],
Message[Hyper bol a2D: : i nvdef] ; $Fai | ed,
a=Di st ance2D[P1, P2]/ 2;
b=a*Sqrt[enr2-1];
{h, k}={(x1+x2)/2, (yl+y2)/2};
Hyper bol a2D[{ h, k}, a, b, ArcTan[x2-x1,y2-y1]1] 1;

Hyperbola from Foci/Eccentricity

Hyperbola2D [point, point, e] M Constructs a hyperbola from the foci and eccentricity.

Hyper bol a2 P1: Poi nt 2D[{x1_, y1 }], P2: Poi nt2D[{x2_,y2_}],e_?IsScal ar2D] :=
Modul e[{a, b, h, k},
If[IsZeroOrNegative2D[e-1] || |sCoincident2D P1, P2],
Message[Hyper bol a2D: : i nvdef] ; $Fai | ed,
a=Di st ance2D[P1, P2]/ (2*e);
b=a*Sqrt[e”2-1];
{h, k}={(x1+x2)/2, (yl+y2)/2};
Hyper bol a2D[{ h, k}, a, b, ArcTan[x2-x1,y2-y1]]]];

D2DHyperbola2D - Epilogue 451

Hyperbola from Focus/Directrix/Eccentricity

Hyperbola2D [point, line, e] M Constructs a hyperbola from focus point, directrix line and
eccentricity.

Hyper bol a2D[P1: Poi nt 2D[{x1_,y1 }],L2:Line2D[p_,q_,r_],e_?lsScal ar2D] :=
Modul e[{d, s, a, b, h, k},
I f[1sZeroOrNegative2Dfe-1] || IsOn2D[P1, L2],
Message[Hyper bol a2D: : i nvdef] ; $Fai | ed,
d=Di st ance2D P1, L2];
s=(p*x1+q*yl+r)/(pt2+q~2);
a=d*e/ (en2-1);
b=a*Sqrt[er2-1];
{h. k}={x1,y1}-{p, q}*(a*s*e)/d;
Hyper bol a20{ { h, k}, a, b, ArcTan[p,q]]] 1:

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DHyperbol a2D " *)

D2DIntersect2D

The package D2DIntersect2D constructs points that are the intersection points of two curves.
It also computes the parameter values where a chordal line intersects a conic curve.

Initialization
Begi nPackage["D2Dl nt ersect 2D ", {"D2DCi rcl e2D' ", "D2DEl | i pse2D ",
"D2DEquat i ons2D' ", " D2DExpressi ons2D ", "D2DCeonetry2D ",
" D2DHyper bol a2D' ", "D2DLi ne2D' ", "D2DMaster2D ", "D2DNunbers2D ",
"D2DPar abol a2D' ", "D2DPoi nt2D ", "D2DQuadratic2D ", "D2DSolve2D ",

" D2DTr ansforn2D "}];

D2DI nt er sect 2D: : usage=
"D2DI ntersect2D is a package for constructing the intersection points
bet ween curves.";

Par anet er s2D: : usage=

"Paraneters2D[1ine, conic] constructs a list containing the tw
paraneters where a line intersects a conic (circle, ellipse, parabola or
hyperbol a).";
Poi nt s2D: : usage=

"Poi nts2D[curve ,curve] constructs a list of intersection points of two
curves.";

Begin["' Private'"];

Intersection Points

Intersection Point of Two Lines

Points2D[line, line] M Constructs a list containing up to one point that is the intersection
point of two lines.

Poi nts2D[L1: Line2Dfal_, bl_,cl_],L2:Line2Da2_,b2_,c2_]] :=
If[lsParallel 2D L1, L2], {}, {Point2D/L1,L2]}];

453

454 D2DlIntersect2D - Intersection Points

Intersection Points of a Line and a Circle

Points2D[line, circle] M Constructs a list containing at most two points that are the
intersection points of a line and a circle.

Poi nts2D[Line2Dfal_,bl_,cl1_],Circle2D{h2_,k2_},r2_]] :=
Modul e[{a, b, d, z, mapLi st},

{a, b,d}={al, bl, al*h2+b1*k2+c1}/ Sqrt[al”2+b1"2];

z=r272-d"2;

mapli st =Whi ch[| sZer 020 z], {0},
I sNegative2Df z], {},
True, {-1,1}];

Map[Poi nt 20] { h2- a*d+#*b*Sqrt [z] , k2- b*d-#*a*Sqrt[z] }] & mapList]];

Intersection Points of Two Circles

Points2D[circle, circle] W Constructs a list containing at most two points that are the
intersection points of two circles.

Points2D{Circle2D[{h1_,k1_},r1_],Crcle2Df{h2_,k2_},r2_]1] :=
Modul e[{ s, d, R, x0, y0, cos, si n, z, mapLi st},
I f[I sCoi nci dent 20 { h1, k1}, {h2, k2}1,{},

s=(h1l-h2)"2+(k1l-k2)"2; d=Sqrt[s]; Res+riln2-r272;

{x0,y0}={R Sgrt[z=(4*s*r172-R"2)]}/(2d);

{cos, si n}={h2-h1, k2- k1}/d;

maplLi st =Whi ch[| sZer 02D z], {0},
| sNegative2D[z], {},
True, {-1,1}];

Map[Poi nt 20[{ h1+cos* x0+#*si n*y0, k1+si n*x0- #*cos*y0}] & mapList]] 1;

Intersection Points of Two Curves

Points2D[curve, curve] M Constructs a list containing at most four points that are the
intersection points of two curves. Valid curve forms are lines, circles, parabolas, ellipses,
hyperbolas and quadratics. Coincident point solutions appear only once in the list returned.
The private function Eqn$2D returns a line or quadratic representing a curve.

Eqn$2D[crv_] : =
If[1s2D crv, {Li ne2D, Quadrati c2D}], crv, Quadrati c2Df crv]];

Points2D[crvl_,crv2_] :=
Modul e[{ X, Yy, eqns, r oot s},
egns=Map[Equat i on2D[#, {x, y}] & Map[Eqn$2D, {crv1, crv2}]];
root s=Sel ect [Sol ve2D] eqns, {x, y}], Not [I sConpl ex2D[{x,y} /. #]]1&;

Uni on[Map[(Poi nt2D[{x,y}] /. #)& roots]]] /;
(I's2D crvl,
{Circl e2D, El |l i pse2D, Hyper bol a2D, Li ne2D, Par abol a2D, Quadrati c2D}] &&
Is2D[crv2,

{Circle2D, El |l i pse2D, Hyper bol a2D, Li ne2D, Par abol a2D, Quadrati c2D}]);

D2DlIntersect2D - Chordal Parameter Range 455

Chordal Parameter Range

Sort Numerically

The private function SortNumeric$2D sorts a list of two numbers into ascending order, retain-
ing the exact form of the numbers, and returns the sorted list. If the ascending order cannot
be determined (for example, when the arguments are symbolic) then the original ordering is
returned.

Sort Nuneric$2D[{nl1_,n2_}] := If[IsNegative2D n2-nl],{n2,nl}, {nl, n2}];

Circle

Parameters2D[line, circle] M Constructs a list containing the two parameters on a cir-
cle where a line intersects the circle. The parameters will be primary angles and sorted in
increasing order (0 < 01 < 09 < 27).

Par amet er s2D: : noChor d=
"No chord exists between ‘1' and ‘2‘'.";

Paranmeters2Df L1: Line2Dfal_,bl_,cl_],C:Crcle2Df{h2_,k2_},r2_]] :=
Modul e[{pt s, x1, x2,y1,y2},

pt s=Poi nt s2D0[L1, C2] ;

| f[Lengt h[pt s] ==2,
{{x1, y1}, {x2, y2} } =Map[Coor di nat es2D, pt s] ;
Sor t Nuneri ¢$2D[{ Pri mar yAngl e2D[Ar cTan[x1- h2, y1-k2]],

Pri mar yAngl e2D[ArcTan[x2- h2,y2-k2]1}1,

Message[Par anet er s2D: : noChord, L1, C2] ; $Fai l ed]];

Ellipse

Parameters2D [line, ellipse] M Returns a list of the two parameters on an ellipse where a line
intersects the ellipse. The parameters will be primary angles and sorted in increasing order
(0 <6, <6y <2m).

Paraneters2Df L1: Line2D{al_,bl_,cl_],E2:Elipse2D{h_,k _},a_,b_,theta_]] :=
Modul e[{I n, pts, x1,y1, x2,y2},
| n=Rot at e2D] Transl ate2D[L1, {-h, -k}], -t heta];
pt s=Poi nts2D[| n, El | i pse2D{ {0, 0}, a, b, 0]];
| f[Lengt h[pt s] ==2,
{{x1, y1}, {x2, y2} } =Map[Coor di nat es2D, pt s] ;
Sor t Nuneri ¢$2D[{ Pri mar yAngl e2D[Ar cTan[x1/ a, y1/b]],
Pri mar yAngl e2D] ArcTan[x2/ a, y2/ b]]1}],
Message[Par anmet er s2D: : noChord, L1, E2] ; $Fai | ed]];

Hyperbola

Parameters2D [line, hyperbola]l M Returns a list of the two parameters on a hyperbola where
a line intersects the hyperbola. The parameters are sorted in the order (—oo < t1 < t2 < +00).

456

D2DlIntersect2D - Epilogue

The line must intersect the hyperbola’s primary branch (in standard position) in two points
for a parameter range to be returned.

Par amet ers2D[L1: Li ne2D[al_, bl_,cl_],
H2: Hyperbol a2D[{h_,k_},a_,b_,theta_]]
Modul e[{I n, pts, t1,t2, x1,x2,y1,y2},
| n=Rot at e2D] Tr ansl at e2D[L1, {-h, -k}], -theta];
pt s=Poi nt s2D[| n, Hyper bol a2D{ {0, 0}, a, b, 0]] ;
I f[Lengt h[pt s] ==2,
{{x1, y1}, {x2, y2}}=Map[Coor di nat es2D, pt s] ;
t 1=Ar cSi nh[y1/ b] / ArcCosh[Sqrt [a*2+b"2]/a] ;

t 2=ArcSi nh[y2/b]/ ArcCosh[Sqrt[a”2+b”"2]/a];
If[lsZero2D[t1-t2],

Message[Par anet er s2D: : noChord, L1, H2] ; $Fai | ed,
If[IsNuneric2D[{t1,t2}] &&

Not [| sCoi nci dent 2D[L1, Li ne2D[H2[t 1], H2[t 2]]]],

Message[Par anet er s2D: : noChord, L1, h2] ; $Fai | ed,
Sort Nuneric$2D0[{t1,t2}]] 1,

Message[Par amet er s2D: : noChord, L1, H2] ; $Fai l ed]];

Parabola

Parameters2D [line, parabola] M Returns a list of two parameters on a parabola where a line
intersects the parabola. The parameters are sorted in increasing order (oo < t1 < t2 < 400).

Par anet ers2D[L1: Li ne2Dfal_, bl_,cl_], P2: Parabol a2Df{h_, k_},f_,theta_]] :=
Modul e[{t, X, y, ans},
{x,y}=P2[t];
ans=Sel ect [Sol ve[al*x+bl*y+c1==0,t], Not[| sConpl ex2D[t /.
| f [Lengt h[ans] ==2,

Sort Nuneri c$2D Map[(t /. #)& ans]],
Message[Par anmet er s2D: : noChord, L1, P2] ; $Fai l ed]];

#]18&];

Epilogue

End[]; (* end of '

"“Private" *)
EndPackage[]; (* end of

"D2Dl ntersect 2D " *)

D2DLine2D

The package D2DLine2D implements the Line2D object.

Initialization
Begi nPackage[" D2DLi ne2D' ", {"D2DEquations2D ", "D2DExpressions2D ",
" D2DGeonetry2D ", "D2DMvaster2D ", "D2DNumbers2D ", "D2DPoint2D ",
"D2DQuadr atic2D ", "D2DSketch2D ", "D2DTransfornkD "}];

D2DLi ne2D: : usage=
"D2DLi ne2D is a package that inplenents the Line2D object.";

Angl e2D: : usage=

"Angl e2D[1ine] gives the between the +x-axis and a line;
Angl e2Df line,line] gives the angle neasured counter-clockw se fromthe
first line to the second line. Angle2D[conic] gives the angle of rotation
of a conic.";

Li ne2D: : usage=
"Line2D[A,/ B,C] is the standard formof a line with the equation
Ax+By+C=0. ";

Par al | el 2D: : usage=
"Parallel 2D is the keyword required in Line2D[point, line, Parallel2D].";

Per pendi cul ar 2D: : usage=

"Perpendicul ar2D is the keyword required in Line2D[point, point,
Perpendi cul ar2D]; it is also required in Line2D point, |ine,
Per pendi cul ar2D] . *;

Sl ope2D: : usage=
"Sl ope2D[1ine] gives the slope of a line. Slope[lnseg] gives the slope
of a line segnment.";

Begi n["‘ Private' "];

457

458 D2DLine2D - Description

Description

Representation

Line2D[A, B, C] m Standard representation of a line in Descarta2D. The three arguments
are the coefficients of the line in general form, Az + By + C' = 0. The normal form of a line,
xcosf+ysinf — p = 0, is also by provided by using the form Line2D[cosf, sinf, —p], where
0 is the angle the normal to the line makes with the +z-axis, and p is the distance of the line
from the origin.

Equations

Line2D[ezpr, {z, y}] M Constructs a line from a linear polynomial in two unknowns. For
example, the polynomial ax+by+c will return Line2D [a, b, c]; the equation az+by+c==10
will also return Line2D[a, b, c]. The {z, y} arguments are assumed to be the names of the
variables.

Li ne2D: : noPol y=
"The expression ‘1° cannot be recognized as a |linear polynomial or
equation in variables *2° and *3'.";

Li ne2D[expr _,{x_,y_}] :=
Modul e[{ pol y, a, b, c},
pol y=I f [Head[expr] ===Equal ,
expr[[1]]-expr[[2]],
expr] //Expand,;
a=Coefficient[poly,Xx];
b=Coef fi ci ent[poly,y];
c=(poly /. {x->0,y->0}) //Expand;
I f[I sZer 02D a*x+b*y+c- pol y],
Li ne2D[a, b, c],
Message[Li ne2D: : noPol y, expr, X, y]; $Fail ed]];

Evaluation

Line2D[A, B, C1[{] M Evaluates a parameter, ¢, on a line. Returns a coordinate list {z, y}.
The point nearest the origin is at parameter ¢ = 0. Other points are parameterized by distance
along the line.

Line2D[al_,bl_,cl1_][t_?lsScal ar2D :=
Modul e[{a, b, ¢},
{a, b,c}={al, bl, cl}/Sqrt[alr2+b1"2];
-{a*c, b*c}+{b,-a}*t];

Graphics

Provides graphics for a line by extending the Mathematica Display command. Executed
when the package is loaded.

D2DLine2D - Description 459

Set Di spl ay2D{
Line2D[a_, b_,c_][{t1_7?IsScal ar2D,t2_?l sScal ar20}],
Li ne[{Li ne2D[a, b, c][t1],
Line2D[a, b, c][t2]}]];

Set Di spl ay2D]
Line2Dfa_,b_,c_],
Li ne[{ Li ne2D[a, b, c] [- AskCur veLengt h2D]]/2],
Line2D[a, b, c][AskCurveLength2D[]/2]}] 1;

Validation

Line2D[A, B, C1 W Detects a line with imaginary coefficients and returns the $Failed
symbol. If the imaginary parts are insignificant, they are removed.

Li ne2D: : i magi nary=
"An invalid line of the form’Line2D*1", '2', '3']’ has been detected;
the argunents cannot be imaginary.";

Line2D[a_,b_,c_] :=
(Li ne2D @@ Chopl magi nary2D[Li ne$2D[a, b, c]]) /;
(FreeQ {a,b,c}, Pattern] && IsTinylmginary2D{{a,b,c}]);

Line2D[a_,b_,c_] :=
(Message[Li ne2D: :i magi nary, a, b, c]; $Fai l ed) /;
(FreeQ{a,b,c}, Pattern] && |sConplex2D{a,b,c},0]);

Line2D[A, B, C] W Returns the $Failed symbol when an invalid line is detected (the first
two coefficients are zero). Also, normalizes lines with tiny coefficients to improve numerical
stability.

Li ne2D: :invalid=
"An invalid line of the form’Line2D*1", ‘2', "3']" was encountered; at
| east one of the first two coefficients nust be non-zero.";

Line2D[a_,b_,c_] :=
(Message[Line2D::invalid,a,b,c];$Failed) /;
(FreeQ {a,b,c}, _Pattern] && |sZero2D[{a, b}, And, 0]);

Line2D[a_,b_,c_] :=
(Line2D @@ ({a, b, c}/Sqrt[ar2+b”2])) /;
(Free {a,b,c}, Pattern] && |sZero2D[{a, b}, And]);

IsValid2D[line] M Verifies that a line is syntactically valid.

I sVal i d2D Li ne2D[a_?I sScal ar 2D, b_?1 sScal ar 2D, c_?l sScal ar2D]] := True;

460 D2DLine2D - Scalars

Simplify and FullSimplify

Simplify[line] and FullSimplify [line] M Extends the Mathematica commands Simplify
and FullSimplify to simplify the coefficients of a line by factoring out common factors.
Executed when the package is loaded.

prot ect ed=Unprotect[Sinplify];

Sinmplify[expr_?(!Freeq#, Line2Dfa_,b_,c_]]&,opts__] :=

Simplify[expr /. Line2D[a_,b_,c_] :>
(Line$2D @@ Si npl i fyCoefficients2D[{a, b,c}]),
opts] /. Line$2D >Li ne2D,
Prot ect[Eval uat e[protected]];

protected=Unprotect[Ful | Sinplify];
Ful | Sinplify[expr_?(!Free#, Line2ja_,b_,c 11&,
opts___] :=
Full Sinplify[expr /. Line2Da_,b_,c_] :>
(Line$2D @@ Si npl i fyCoefficients2D{a,b,c}]),
opts] /. Line$2D >Li ne2D,
Prot ect[Eval uat e[protected]];

Scalars

Angle of a Line

Angle2D[line] W Computes the angle measured counter-clockwise from the +xz-axis to a line.
The result is returned in radians.

Angl e2D[Line2D[a_,b_,c_]] :=
PrimaryAngl e2D[| f[| sZero2D{ b], Pi/ 2, ArcTan[-a/b]],Pi];

Angle between Two Lines

Angle2D[line, line] M Computes the angle measured counter-clockwise from the first line to
the second line. The result is returned in radians.

Angl e2D[L1: Line2D[al_, bl_,cl_],L2:Line2Da2_,b2_,c2_]] :=
Pri maryAngl e2D[(Angl e2D[L2] - Angl e2D[L1]), Pi];
Distance from a Point to a Line

Distance2D [point, line] M Computes the distance between a point and a line.

Di stance2D] Poi nt 2D {x1_,y1_}], Line2D[a2_,b2_,c2_]] :=
Sqrt[(a2*x1+b2*yl+c2) "2/ (a272+b272)];
Slope of a Line

Slope2D[line] M Computes the slope of a line.
Sl ope2D[Line2Dfa_,b_,c_]] := If[IsZero2D[b],Infinity,-alb];

D2DLine2D - Transformations 461

Transformations

Reflect
Reflect2D[line, line] M Reflects the first line in the second line.

Refl ect 2D Line2Dfal_, bl_,cl_],Line2Dfa2_,b2_,c2_]] :=
Modul e[{a, b, c},
a=al*(b272-a2"2)-2*bl*a2*b2;
b=b1*(a2"2-b272)-2*al*a2*b2;
c=cl*(a2"2+b2"2) - 2*c2*(al*a2+bl*b2);
Li ne2D[a, b, c] 1;

Rotate

Rotate2D[line, 0, coords] M Rotates a line by an angle 6 about a position given by coordi-
nates. If the third argument is omitted, it defaults to the origin (see D2DTransform2D.nb).

Rot at e2Df Li ne2D[a_, b_, c_], t heta_?l sScal ar 2D,
{h_?1sScal ar 2D, k_?I sScal ar2D}] :=
Li ne2D[a*Cos[t heta] - b*Si n[t het a] ,
b*Cos[theta] +a*Sin[theta],
a*h+b*k+c- Cos[t heta] *(a*h+b*k) - Si n[t het a] *(a*k-b*h)];

Scale

Scale2D[line, s, coords] M Scales a line from a position given by coordinates. If the third
argument is omitted, it defaults to the origin (see D2DTransform2D.nb).

Scal e2D[Li ne2D[a_, b_, c_], s_?l sScal ar 2D, { h_?I sScal ar 2D, k_?I sScal ar2D}] :=

Li ne2D[a, b, a*(s- 1) *h+b*(s-1)*k+c*s] /;
Not [| sZer oOr Negat i ve2D[s]] ;

Translate

Translate2D[line, {u, v}] M Translates a line delta distance.

Transl ate2D Li ne2Dfa_,b_, c_],
{u_7?IsScal ar 2D, v_?l sScal ar2D}] :=
Li ne2D[a, b, - a*u- b*v+c];

Line Construction

Normalize a Line

Line2D[line] M Constructs a line with normalized coefficients.

462 D2DLine2D - Line Construction

Li ne2D[Line2Dja_,b_,c_]] :=
I f[l1sZeroO Negative2D c],
Appl y[Li ne2D, {a, b, c}/Sqrt[ar2+b"2]],
Appl y[Li ne2D, -{a, b, c}/Sqrt[a*2+b"2]] 1;

Line Through a Point with a Given Slope

Line2D[point, m] M Constructs a line through a point with a given slope. If the slope m is
the symbol Infinity then a vertical line is returned.

Li ne2D[Poi nt 2D[{x0_, y0_}],Infinity] := Line2D 1,0, -x0];

Li ne2D[Poi nt 2D[{x0_, y0_}], m ?l sScal ar2D] := Line2D[m -1, - n¥x0+yO0] ;

Offset Line

Line2D[line, d] M Constructs a line offset a given distance from a given line. The offset
distance may be positive or negative to produce the two possible offset lines.

Li ne2D[Li ne2d a_, b_, c_],d_?lsScal ar2D] :=
Li ne2D[a, b, c-d*Sqgrt[ar2+b"2]];

Line Through Two Coordinates

Line2D[coords, coords] M Constructs a line through two points given as coordinates.
Also, using Line2D[{a, 0}, {0, b}] provides a construction of the intercept form of a line,
z/a+y/b=1.

Li ne2D: : saneCoor ds=
"The coordinates ‘1° and ‘2' are coincident; no valid line can be
constructed.";

Li ne2D[{x1_7?I sScal ar 2D, y1_?I sScal ar 2D}, {x2_7?I sScal ar 2D, y2_?1 sScal ar 2D}] : =
I f[1sCoi nci dent 2D { x1, y1}, {x2,y2}],
Message[Li ne2D: : saneCoor ds, {x1, y1},{x2, y2}]; $Fai | ed,
Li ne2D[- (y2-y1), (x2-x1), (x1*y2-x2*y1)] 1;

Line Through Two Points

Line2D [point, point] M Constructs a line through two points.

Li ne2D[Poi nt2D[{x1_,y1l }],Point2D{x2_,y2_}]] := Line2D {x1,yl},{x2,y2}];

D2DLine2D - Epilogue 463

Line Equidistant from Two Points

Line2D [point, point, Perpendicular2D] M Constructs a line equidistant from two points
(the perpendicular bisector of the line segment joining the two points).

Li ne2D[Poi nt2D[{x1_,y1 }], Poi nt2D[{x2_,y2_}]1, Perpendi cul ar2D] :=
I f[IsCoi nci dent 2D {x1, y1}, {x2,y2}],
Message[Li ne2D: : sanmeCoor ds, {x1, y1}, {x2,y2}]; $Fai | ed,
Li ne2D[x1-x2, y1-y2, - ((x172+y172) - (x2"2+y272))/ 2] 1;

Line Perpendicular to a Line Through a Point

Line2D [point, line, Perpendicular2D] M Constructs a line perpendicular to a given line
through a given point. The keyword Perpendicular2D is optional and may be omitted.

Li ne2D[P1: Poi nt 2D {x1_,y1 }],L2:Line2D[a2_,b2_,c2_]] :=
Li ne2D[P1, L2, Per pendi cul ar 2D0] ;

Li ne2D[Poi nt 200 {x1_,y1_}], Line2D[a2_, b2_, c2_], Perpendi cul ar2D] :=
Li ne2D[b2, - a2, - x1*b2+yl*a2];

Line Parallel to a Line Through a Point

Line2D[point, line, Parallel2D] M Constructs a line parallel to a given line through a given
point.

Li ne2D[Poi nt 20{ {x1_,y1 }], Line2D[a2_, b2_,c2_], Paral l el 2D :=
Li ne2D - a2, - b2, x1*a2+yl1*b2];

Polar Line of a Quadratic

Line2D [point, quad] M Constructs a polar (line) of a quadratic with respect to a pole (point).
If the point is on the quadratic then the line is the tangent at the point.

Li ne2D: : noPol ar =
"Since ‘1" is at the center of the conic, no polar line exists.";

Li ne2D[P1: Poi nt 2D {x1_,y1l }], Q: Quadratic2Da_,b_,c_,d_,e_,f_]] :=
Modul e[{p.q,r},
p=2*a*x1+b*yl+d; q=b*x1+2*c*yl+e; r=d*xl+e*yl+2*f;
1 f[1sZero2O {p, q}, And],
Message[Li ne2D: : noPol ar, P1, Q] ; $Fai | ed,

Line2D[p,q,r]] 1:

Epilogue

End[]; (* end of "*Private" *)
EndPackage[]; (* end of "D2DLi ne2D " *)

D2DLoci2D

The package D2DLoci2D provides functions for constructing loci (points, lines and conics) from

equations.

Initialization
Begi nPackage["D2DLoci 2D ", {"D2DCi rcl e2D' ", "D2DEl | i pse2D ",
" D2DExpr essi ons2D' ", "D2DGeonetry2D ", "D2DHyperbol a2D ", "D2DLi ne2D ",
"D2DPar abol a2D' ", "D2DPoi nt2D' ", "D2DQuadrati c2D ", "D2DTransfornkD "}];

D2DLoci 2D: : usage=
"D2DLoci 2D i s a package that provides functions constructing |oci
(points, lines and conics) from equations.";

Loci 2D: : usage=

"Loci 20f quad] constructs a list of loci (point, lines or conics)
represented by a quadratic; Loci2D[point, line, eccentricity] constructs a
list of loci (point, lines or conics) given the focus point, directrix line

and eccentricity.";

Begi n["‘ Private' "];

Utilities
Not Zero Query

The private function NotZero$2D returns the logical negation of IsZero2D.

Not Zero$2D[r_] := Not[lsZero2D[r]];

Conic Construction

Conic from Quadratic

Loci2D[quad] M Constructs a list of conics (proper or degenerate) represented by a quadratic.

465

466 D2DLoci2D - Conic Construction

Loci 2D: : central =
"The quadratic is a central conic, but its type cannot be determ ned.";

Loci 2D: : noLocus=
"The quadratic has no real |ocus.";

LINEAR POLYNOMIAL, Dx + Ey + F = 0: Constructs a list containing one line represented
by a quadratic whose second-degree coefficients are all zero.

Loci 2D[Quadr ati c20f a_?l sZero2D, b_?1 sZero2D, c_?IsZero2D,d_,e_,f_]] :=
{Line2D[d, e, f]} /;
(Not Zer0$2D[d] || NotZero$2De]);

PARALLEL LINES, A2z? + Dz + F = 0: Constructs a list of two vertical parallel lines.

Loci 200 Quadr ati c2D[a_?Not Zer 0$2D, b_?I sZer 02D, c_?l sZer 02D,
d_,e_?lsZero2D,f_]] :=
Modul e[{di sc=d"2-4*a*f},
di sc=If[|sZero2D disc], 0, Sinplify[disc]];
I f[IsNegative2D] di sc],
Message[Loci 2D: : noLocus] ; {},
Map[Li ne2D[2*a, 0, d+#*Sqrt[disc]]1& {-1,1}]1] 1;

PARALLEL LINES, Cz? 4+ Ex + F = 0: Constructs a list of two horizontal parallel lines.

Loci 200 Quadr ati c2D[a_?l sZer 02D, b_?1 sZer 02D, c_?Not Zer 0$2D,
d_?lsZero2D,e_,f_]] :=
Modul e[{di sc=e"2-4*c*f},
di sc=If[lszZero2D[disc],0,Sinmplify[disc]];
I f[IsNegative2D di sc],
Message[Loci 2D: : noLocus]; {},
Map[Li ne2D[0, 2*c, e+#*Sqrt[disc]] & {-1,1}]] 1;

INTERSECTING LINES, Az? 4+ Cy? = 0: Constructs a list of two intersecting lines or a list
containing a single point.

Loci 200 Quadr ati c2D[a_?Not Zer 0$2D, b_?1 sZer 02D, c_?Not Zer 0$2D,
d_?l sZero2D, e_?l sZero2D, f _?l sZero2D]] :=
Whi ch[

| sNegat i ve2D - a*c],
{Poi nt2D{ {0, 0}1},

I sNegative2Df a] && | sNegative2D[-c],
Map[Li ne2D[Sqrt[-a],#*Sqrt[c], 0] & {-1, 1}],

True, (* IsNegative2D[-a] && |sNegative2Dc] *)
Map[Li ne2D[Sqrt[a],#*Sqrt[-c],0] & {-1,1}]1];

CIRCLE, Az? 4+ Cy? + F =0, A = C: Constructs a list of one circle.

Loci 200 Quadr ati c2D[a_?Not Zer 0$2D, b_?I sZer 02D, c_?Not Zer 0$2D,
d_?1 sZero2D, e_?I sZer 02D, f _?Not Zer 0$2D]] : =
If[IsNegative2D[-f/a],
Message[Loci 2D: : noLocus] ; {},
{Crcle2D[{0,0},Sqrt[-f/a]l} 1 /;
| sZero2D a-c];

D2DLoci2D - Conic Construction 467

PARABOLA, Cy? + Dz + Ey + F = 0: Constructs a list of one parabola in standard position
or rotated 7 radians.

Loci 20[Quadrati c2D{ a_?I sZer 02D, b_?I sZer 02D, c_?Not Zer 0$2D,
d_7?Not Zero$2D,e_,f_]] :=
Modul e[{ h, k, p},

h=(er2-4*c*f)/ (4*c*d);

k=-el/ (2*c);

p=-d/ (4*c);

1 f[1sNegative2D p],
{Par abol a2D{ {h, k},-p, Pi 1},
{Parabol a2D[{h, k}, p, O]}] 1;

PARABOLA, Ay? + Dz + Ey + F = 0: Constructs a list of one parabola rotated 5 or 3n

2
radians.

Loci 2D Quadr ati c2D a_?Not Zer 0$2D, b_?I sZer 02D, c_?I sZer 02D,
d_, e_?Not Zero$2D, f _]] :=
Modul e[{ h, k, p},

h=-d/ (2*a);

k=(d"2-4*a*f)/ (4*a*e);

p=-el/ (4*a);

I f[1sNegative2D p],
{Par abol a2D[{ h, k}, -p, 3Pi /2] },
{Parabol a2D{ {h, k}, p, Pi/2]}] 1;

CENTRAL Conic, Az? + Cy? + F = 0: Constructs a list of one central conic (ellipse or
hyperbola).

Loci 2D Quadr ati c2D a_?Not Zer 0$2D, b_7?I sZer 02D, c_?Not Zer 0$2D,
d_?1 sZero2D, e_?l sZero2D, f _?Not Zer0$2D]] : =
Whi ch[
| sNegative2D[-f/a] && |sNegative2D[-f/c],
Message[Loci 2D: : noLocus]; {},
I sNegative2D[-f/a] && |sNegative2Df/c],
{Hyperbol a2D[{0, O}, Sqrt[-f/c],Sqrt[f/a],Pi/2]},
I sNegative2D[f/a] && |IsNegative2D[-f/c],
{Hyperbol a2D{ {0, 0}, Sqrt[-f/a], Sqrt[f/c], 0]},
I sNegative2D[f/a] && |sNegative2D[f/c],
If[lIsNegative2D[(-f/a)-(-f/c)],
{Ellipse2D[{0,0},Sqrt[-f/c],Sqrt[-f/a],Pi/2]},
{El'lipse2D[{0,0},Sqrt[-f/a],Sqrt[-f/c],0]}],
True,
Message[Loci 2D: :central];{} 1 /;
Not Zer 0$20] a-c] ;

REMOVE FIRST-DEGREE TERMS, Ax? + Cy? + Dz + Ey + F = 0: Removes the 2- and y-
terms from a quadratic by applying a change of variables to the equation. The Translate2D
function performs the inverse translation, thus returning the geometry to its original position.

Loci 2D[Quadr ati c2D[a_?Not Zer 0$2D, b_?Il sZer 02D, c_?Not Zer0$2D,d_,e_,f_]] :=
Transl at e2D[Loci 2D[Quadr ati c2Df 4*a*2*c, 0, 4*a*c"2,
0,0, -c*d"2-a*er2+4*a*c*f]],
{-d/(2*a),-el (2*c)}] /;
(Not Zero$2D[d] || NotZero$2De]);

468 D2DLoci2D - Epilogue

ELIMINATE CROSS-TERM, Az? + Bzy + Cy? + Dz + Ey + F = 0: Eliminates the cross-term
of a quadratic by making the substitution x = kx + y and y = ky — x which is a scaling
and rotation. The subsequent scaling and rotation accomplishes the inverse transformation,
thus returning the geometry to its original position. If k is sufficiently close to zero then the
substitution is not needed.

Loci 2D[Quadrati c2Df a_, b_?Not Zero$2D,c_,d_,e_,f_]] :=
Modul e[{k=Sqrt[((c-a)/b)”2+1]+(c-a)/b, Q1},
I f[1szZero2D k],
Loci 2D[Quadratic2D a,0,c,d, e, f]],
Ql=Quadr ati c2D[a*k"2- b*k+c, 0, c*k"2+b*k+a, d*k-e, e*k+d, f];
Rot at e2D[Scal e2D Loci 20f Q1] , Sqrt [1+k"2]],
-ArcTan[1/Kk]]1] 1;

Conic from Focus, Directrix and Eccentricity

Loci2D [point, line, ¢] M Constructs a list of conics (proper or degenerate) from a focus
point, directrix line and eccentricity.

Loci 2D: : eccentricity=
"The eccentricity, ‘1, is invalid; the eccentricity nust be positive.";

Loci 2D[P1: Poi nt2D[{x1_,y1_}],L2: Line2Dfa2_, b2_,c2_],e_?lsScal ar2D] :=
I f[l1sZeroO Negative2D e],
Message[Loci 2D: : eccentricity, e]; $Fail ed,
Loci 2D[Quadrati c2D{ P1,L2,e]]];

Conic Vertex Equation

Loci2D[point, fcLen, e, 1 M Constructs a conic (circle, ellipse, hyperbola or parabola) from
the vertex point, focal chord length, eccentricity and rotation angle. If the rotation angle is
omitted, it defaults to zero.

Loci 2D[P1: Poi nt2D0[{x1_,y1_}], fcLen_?l sScal ar 2D, e_?l sScal ar2D] :=
Loci 2D[P1, fcLen, e, 0] ;

Loci 200 P1: Poi nt 2D {x1_,y1_}], fcLen_?I sScal ar 2D, e_?I sScal ar 2D,
theta_?lsScal ar2D] :=
Modul e[{ QG
Q=Quadratic2D[P1, fcLen, e, theta];
| f[@==$Fai |l ed, Q Loci 2D[Q] 1];

Epilogue

End[]; (* end of "*Private" *)
EndPackage[]; (* end of "D2DLoci 2D " *)

D2DMaster2D

The package D2DMaster2D is the master package for Descarta2D. It establishes the names
owned by all the other Descarta2D packages (so they will load automatically when referenced),
and it provides the basic environment of queries supporting the Descarta2D objects.

Descarta2D Initialization

Load the Descarta2D package stubs.

| f [Naes[" D2DMVast er 2D"'] =={" D2D\Vast er 2D"},
D2DMast er $2D: : | oaded=
"The package ' D2DMaster2D has al ready been | oaded.";
Message[D2DVast er $2D: : | oaded]] ;

D2DVast er $2D: : noPat h=

"The path to ' D2DMVaster 2D.mi cannot be found; unable to initialize
Descarta2D.";

D2DMast er $2D: : t ooManyPat hs=
"More than one path to ' D2Dvaster2D.mi was found; using ‘1°."

D2D$pat hs=Map[(#<>"\\ Descart a2D"') &, $Pat h] ;
D2D$di r =Sel ect [D2D$pat hs,
(Lengt h[Fi | eNanes[" D2DVast er 2D. ni', {#}]]>0) & ;

| f [Lengt h[D2D$di r] ===0,

Message[D2DVast er $2D: : noPat h] ,

| f[Lengt h[D2D$di r] >1,

Message[D2DMvast er $2D: : t ooManyPat hs, Fi rst [D2D$dir]]];

I f[! Menber J $Pat h, Fi rst [D2D$di r]], AppendTo[$Pat h, First[D2D$dir]]]];

Renove[D2D$pat hs, D2D$di r] ;

Decl ar ePackage[" D2DAr c2D ", { " D2DAr c2D", "Arc2D', "Bul ge2D",
" Conpl enent 2D'}];

Decl ar ePackage[" D2DAr cLengt h2D' ", {"D2DAr cLengt h2D"', "ArcLength2D",
"Circunference2D', "Perineter2D', "Span2D'}];

Decl ar ePackage["D2DAr ea2D ", {"D2DArea2D', "Area2D', "SectorArea2D",
" Segnent Area2D'}];

469

470

D2DMaster2D - Descarta2D Initialization

Decl ar ePackage["D2DCi rcl e2D' ", {"D2DCircle2D', "G rcle2D', "Radius2D'}];
Decl ar ePackage[" D2DConi c2D' ", {"D2DConi c2D', "Asynptotes2D",
"Directrices2D', "Eccentricity2D', "Focal Chords2D', "Foci2D",
"Vertices2D'}];

Decl ar ePackage[" D2DConi cArc2D ", {"D2DConi cArc2D"', "Apex2D', "Coni cArc2D",
"Rho2D'}];

Decl ar ePackage[" D2DEl | i pse2D ", {"D2DEl|ipse2D', "ElIlipse2D',
" Sem Maj or Axi s2D", "Sem M nor Axi s2D'}];

Decl ar ePackage[" D2DEquat i ons2D' ", {"D2DEquati ons2D', "Equation2D",
"Pol ynom al 2D", "SinplifyCoefficients2D'}];

Decl ar ePackage[" D2DExpr essi ons2D' ", {" D2DExpressi ons2D"', "I sApproxi mate2D",
"1 sConpl ex2D', "IsNegative2D', "IsNumeric2D', "l|sReal 2D', "IsScal arPair2D",
"1 sScal ar2D', "IsTinyl nagi nary2D", "IsZero2D', "l|sZeroOr Negative2D'}];

Decl ar ePackage[" D2DGeonet ry2D ", {"D2DGeonetry2D', "I sCoi nci dent2D",

"1sCol l'i near2D', "lsConcentric2D', "lsConcurrent2D', "IsOn2D",

"lIsParall el 2D', "IsTripleParallel2D', "IsPerpendicul ar2D', "lsTangent2D'}];

Decl ar ePackage[" D2DHyper bol a2D' ", {"D2DHyper bol a2D', " Conj ugat e2D",
"Hyper bol a2D', "Sem Transver seAxi s2D', "Seni Conj ugat eAxi s2D'}];

Decl ar ePackage["D2DI ntersect 2D' ", {"D2Dl ntersect2D', "Paraneters2D',
"Poi nts2D'}];

Decl ar ePackage[" D2DLi ne2D' ", {" D2DLi ne2D', "Angl e2D', "Line2D",
"Parall el 2D", "Perpendicul ar2D', "Sl ope2D'}];

Decl ar ePackage["D2DLoci 2D ", {"D2DLoci 2D"', "Loci2D'}];

Decl ar ePackage[" D2Dvaster 2D ", {"Is2D', "lsValid2D', "ObjectNanes2D'}];

Decl ar ePackage[" D2DMedi al 2D ", {"D2DMedi al 2D", " Medi al Equati ons2D",
"Medi al Loci 2D'}];

Decl ar ePackage[" D2DNunber s2D' *, {" D2DNunber s2D', " Chopl nagi nary2D",
"PrimaryAngl e2D', "Pri maryAngl eRange2D'}];

Decl ar ePackage[" D2DPar abol a2D' ", {"D2DPar abol a2D', "Focal Lengt h2D",
"Par abol a2D"'}] ;

Decl ar ePackage["D2DPenci | 2D ", {"D2DPenci | 2D', "Pencil 2D'}];

Decl ar ePackage[" D2DPoi nt 2D' ", {"D2DPoi nt 2D", " Coor di nat es2D", "Di stance2D",
"Poi nt 2D", " XCoor di nate2D", "YCoordi nate2D'}];

Decl ar ePackage["D2DQuadrati c2D ", {"D2DQuadratic2D', "Quadratic2D'}];

Decl ar ePackage[" D2DSegnent 2D ", {"D2DSegnent 2D', "Length2D', "Segnent2D'}];

D2DMaster2D - Package Initialization 471

Decl ar ePackage[" D2DSket ch2D' ", {"D2DSket ch2D', "AskCurvelLength2D",
"CurvelLengt h2D', "CurveLinm ts2D', "IsDisplay2D', "MakePrimtives2D',
"Set Di spl ay2D', "Sketch2D'}];

Decl ar ePackage[" D2DSol ve2D ", {"D2DSol ve2D', "MaxSeconds2D', "Solve2D'}];

Decl ar ePackage["D2DTangent G rcl es2D' ", {"D2DTangentCircl es2D",
"TangentCircl es2D'}];

Decl ar ePackage[" D2DTangent Coni cs2D' ", {"D2DTangent Coni cs2D",
"Tangent Coni cs2D', "Tangent Quadratics2D'}];

Decl ar ePackage["D2DTangent Li nes2D' ", {"D2DTangent Li nes2D",
"Tangent Equati on2D', "TangentLi nes2D', "Tangent Segnents2D'}];

Decl ar ePackage[" D2DTangent Poi nt s2D' ", {"D2DTangent Poi nts2D",
" Tangent Poi nt s2D"}];

Decl ar ePackage[" D2DTr ansfor n2D' ", {"D2DTransfornm2D', "Reflect2D",
"Refl ect Angl e2D', "Rotate2D', "Scal e2D', "Transl ate2D'}];

Decl ar ePackage["D2DTri angl e2D' ", {"D2DTri angl e2D"', "Centroi d2D",
"Circunscri bed2D', "lnscribed2D', "Sol veTriangl e2D', "Triangle2D'}];

Package Initialization
Begi nPackage[" D2DVast er 2D "] ;

D2DWMast er 2D: : usage=
"D2DVaster2D i s the master package for Descarta2D.";

D2DMVast er 2D: : | oaded=
"The package ' D2DMvast er 2D has al ready been | oaded.";

1 s2D: : usage=
"1 s2D] obj ect, headList] returns 'True’ if the object is valid and its
head is included in the list of object heads.";

I sVal i d2D: : usage=
"IsVal i d2D[obj ect] returns 'True’ if the object is syntactically valid.";

Ohj ect Nanes2D: : usage=
"Cbj ect Names2D[] returns a list of strings that are the names of all
Descarta2D objects.";

Begi n["‘Private' "];

472 D2DMaster2D - Epilogue

Objects

Object Names

ObjectNames2D[] M Returns a list of strings that are the symbolic names for all Descarta2D
objects.

Obj ect Nanes2D[] : ={"Arc2D"', "Circle2D', "Coni cArc2D', "Ellipse2D",

"Hyper bol a2D', "Line2D', "Parabol a2D', "Point2D', "Quadratic2D',
"Segnment 2D', "Triangl e2D'};

Default Queries

Is Query

Is2D[object, objHeadList] M Returns True if an object is valid and has its head included in
the objHeadList; otherwise, returns False.

| s2D[obj _, obj Head_Li st] :=
(IsValid2D[obj] && (O @@ Map[(Head[obj] ===#) &, obj Head]));

Valid Query

IsValid2D[object] M Returns True if the object is geometric and is syntactically valid;
otherwise, returns False. Only the default case is implemented here.

IsValid2D[___] := Fal se;
Epilogue
End[1; (* end of "‘Private" *)

EndPackage[]; (* end of "D2DMaster2D " *)

D2DMedial2D

The package D2DMedial2D constructs curves that are equidistant from two points, lines or
circles.

Initialization
Begi nPackage[" D2DMedi al 2D' ", {"D2DCi r cl e2D' ", " D2DExpr essi ons2D ",
" D2DGeonetry2D ", "D2DMaster2D ", "D2DLine2D ", "D2DLoci 2D ",

“D2DPoi nt 2D *, “D2DQuadratic2D "}];

D2DMedi al 2D: : usage=
"D2DMedi al 2D i s a package that constructs nedial equations and loci.";

Medi al Equat i ons2D: : usage=
"Medi al Equati ons2D[{obj, obj}] constructs a list of lines or quadratics
equi di stant fromtwo objects (points, lines or circles).";

Medi al Loci 2D: : usage=
"Medi al Loci 2D[{ obj , obj}] constructs a list of curves equidistant from
two objects (points, lines or circles).";

Begin["' Private'"];

Medi al Equat i ons2D: : coi nci dent =
"The objects {*1', ‘2'} are coincident; no finite nunber of medial

equations exist.";

Medial Equations

Medial Linear or Quadratic

MedialEquations2D[{obj1, obja}] M Constructs a list of lines or quadratics equidistant from
two objects (points, lines or circles).

Medi al Equati ons2D[{obj 1_,o0bj2_}] :=
I f[TrueQ | sCoi nci dent 2D[obj 1, obj 2]],
Message[Medi al Equat i ons2D: : coi nci dent, obj 1, obj 2]; {},
Medi al $2D0] Reverse[Sort[{obj 1,0bj2}]1]]] /;
I s20 obj 1, { Poi nt 2D, Li ne2D, Ci rcl e2D}] &&
I s20 obj 2, { Poi nt 2D, Li ne2D, G rcl e2D}] ;

473

474 D2DMedial2D - Medial Loci

Medial Loci

Medial Loci

MedialLoci2D[{obj1, obj2}] M Constructs a list of curves equidistant from two objects
(points, lines or circles).

Medi al Loci 2D[{obj 1_, 0bj2_}] :=
Uni on[
Fl atten[
Map[| f [Head[#] ===Li ne2D, #, Loci 2D[#]] &,
Medi al Equati ons2D[{obj 1, 0bj 2}1111 /;
| s2D[obj 1, { Poi nt 2D, Li ne2D, Ci rcl e2D}] &&
1 s2D] obj 2, { Poi nt 2D, Li ne2D, G rcl e2D}] ;

Point—Point

The private function Medial$2D constructs a list of one line equidistant from two points.

Medi al $2D[{ Poi nt 2D {x1_,y1 }], Point2D[{x2_,y2_}]}] :=
{Li ne2D[2*(x2-x1), 2*(y2-yl), (x1"2+y1r2) - (x2"2+y2"2)]1};

Point—Line

The private function Medial$2D constructs a list of one quadratic representing the curve
equidistant from a point and a line.

Medi al $20[{ Poi nt 2D[{x1_,y1_}],Line2Dfa2_,b2_,c2_]}] :=
Modul e[{a, b,c,d, e, f,p,q,r},
{p,q,r}={a2,b2,c2}/Sqrt[a2"2+b2"2];
a=q”2;
b=-2*p*q;
c=p"2;
d=-2*(x1+p*r);
e=-2*(yl+qg*r);
f=x1"2+y172-r"2;
{Quadratic2Da,b,c,d, e, f]1} 1;

Point—Circle

The private function Medial$2D constructs a list of one quadratic representing the curve
equidistant from a point and a circle.

D2DMedial2D - Medial Loci 475

Medi al $20[{Poi nt 2D[{x1_,y1 }],CGrcle2D {h2_,k2_},r2_]}] :=
Mdul e[{R a, b, c,d, e, f},
R=(h272+k272) - (x1M2+y1n72) -1 2/ 2;
a=4((x1-h2)"2-r2"2);
b=8*(x1-h2)*(yl-k2);
c=4((yl-k2)"2-r272);
d=4* (R*(x1- h2) +2*r 2"2*x1);
e=4*(R*(y1l-k2) +2*r2"2*y1);
f =RN2- 4% 1 2/ 2% (X110 2+y172) ;
{Quadratic2Da,b,c,d,e, f]}];

Line—Line

The private function Medial$2D constructs a list of two lines equidistant from two lines (the
angle bisectors). If the lines are parallel, only one line is returned in the list.

Medi al $20 {L1: Li ne2D{al_, bl_,cl1_],L2: Line2Dfa2_,b2_,c2_]}] :=
Modul e[{a, b, c, f1,f2,s},
f1=Sqrt[al”r2+b1"2];
f2=Sqrt[a2”2+b272];
a=al*f2+s*a2*f1;
b=b1*f 2+s*b2*f 1;
c=cl*f2+s*c2*f 1;
If[lIsParallel 2D L1, L2],
I f[IsZero2D Sgrt[ar2+b”2] /. s->1],
{Line2Dfa, b,c]} /. s->-1,
{Line2Dfa, b,c]} /. s->1],
Map[(Line2Df a, b,c] /. s->#)& {-1,1}]] 1;

Line—Circle

The private function Medial$2D constructs a list of two quadratics representing curves equidis-
tant from a line and a circle.

Medi al $20{ {Li ne2D[al_, b1l_,cl1_],Circle2D[{h2_,k2_},r2_]}] :=
Modul e[{a, b,c,d, e, f,p,q,r, s},
{p,q,r}={al, bl, cl}/Sqrt[alr2+b1"2];
a=gq"2;
b=-2*p*g;
c=p"2;
d=-2*(h2+p*(r+s*r2));
e=-2*(k2+qg*(r+s*r2));
f=(h27"2+k272) -r272-r*(r+2*s*r2);
Map[(Quadratic2Da, b,c,d, e, f] /. s->#)& {-1,1}]];

Circle—Circle

The private function Medial$2D constructs a list of two quadratics representing the curves
equidistant from two circles.

476 D2DMedial2D - Epilogue

Medi al $2D0[{Circle2D[{h1_,k1_},r1_],Crcle2D{h2_,k2_},r2_]}] :=
Modul e[{s, R D1, D2, a, b, c,d, e, f},
R=(r1-s*r2)"2;
D1=h1"2+k1"2;
D2=h2"2+k2"2;
a=4*((h1l-h2)"2-R);
b=8*(h1l- h2) *(k1l-k2);
c=4*((kl1l-k2)"2-R);
d=4*(h1* (- D1+D2+R) +h2*(D1- D2+R)) ;
e=4* (k1* (- D1+D2+R) +k2* (D1- D2+R)) ;
f =(D1- D2) ~2- 2* (D1+D2) * R+R2;
Map[(Quadratic2D[a, b,c,d, e, f] /. s->#)& {-1,1}] 1;

Epilogue

End[1; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DMedial 2D'" *)

D2DNumbers2D

The package D2DNumbers2D provides functions for special manipulations of real numbers.

Initialization

Begi nPackage[" D2DNunber s2D' ", {"D2DExpressi ons2D ", "D2Dwvaster2D "}];

D2DNunber s2D: : usage=
"D2DNunbers2D i s a package that provides utilities for manipul ating
speci al nunbers.";

Chopl magi nary2D: : usage=
" Chopl magi nary2D] expr, (tol)] renoves tiny imaginary parts from conpl ex
nunbers; the default tolerance, if omtted, is 10°(-10).";

Pri mar yAngl e2D: : usage=

"PrimaryAngl e2D[t het a, peri od] normalizes an angle to a period; the
period nust be Pi or 2Pi radians; if the period is omtted, it defaults to
2Pi . "

Pri mar yAngl eRange2D: : usage=
"PrimaryAngl eRange2D[{t1,t2}] nornalizes a range of angles to prinmary
angles.";

Begi n["‘ Private' "];

Chop Imaginary Part

ChopImaginary2D[ezpr, (tol)] M Removes the tiny imaginary parts of complex numbers in
the expression that are less than a given tolerance. The default tolerance, if omitted, is 1071°.

Chopl nagi nary2D[expr _, tol _: (107(-10))] :=
MapAl I [1 f[I sTi nyl magi nary2D{ #] , Re[#] , #] & expr] /;
True@ N tol]>=0];

477

478 D2DNumbers2D - Epilogue

Primary Angle

PrimaryAngle2D [, 2Pi |Pi] M Adjusts an angle to a primary angle in the range 0 < 6 < p.
The period, p, may be Pi or 2Pi radians. The default period, if omitted, is 2Pi radians.

Pri mar yAngl e2D[t het a_?l sScal ar 2D, period_: 2Pi] :=
Modul e[{t het al=t het a},
Wi | e[| sNegative2D[thetal],
t het al+=peri od] ;
Wi | e[| sZer oOr Negat i ve2D[peri od-t hetal],
t het al- =peri od] ;
| f[Head[t het a] ===Real , Nt hetal],thetal]] /;
(period==Pi || period==2Pi);

Primary Angle Range

PrimaryAngleRange2D[{6;, 62}]1 B Normalizes a list of two angles so that the first is in the
range 0 < ¢ < 27, and the second is in the range ¢1 < ¢2 < (¢1 + 27).

Pri mar yAngl eRange2D[{t 1_?I sScal ar 2D, t 2_?1 sScal ar 2D}] : =
Modul e[{T1, T2, t woPi },
T1=Pri maryAngl e2D[t 1] ;
T2=Pri mar yAngl e2D[t 2] ;
twoPi =I f [Head[T2] ===Real , N[2Pi], 2Pi] ;
I f[IsZeroOr Negative2D[T2-T1],
{T1, T2+t woPi },
{T1,72}] 1:

Epilogue

End[1; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DNunbers2D " *)

D2DParabola2D

The package D2DParabola2D implements the Parabola2D object.

Initialization
Begi nPackage[" D2DPar abol a2D' ", {" D2DExpr essi ons2D' ", "D2DCeornetry2D ",
"D2DLi ne2D' ", "D2Dwaster2D ", "D2DNunmbers2D ", "D2DPoint2D ",

"D2DQuadratic2D ", "D2DSegnent2D ", "D2DSketch2D ", "D2DTransfornkD "}];

D2DPar abol a2D: : usage=
" D2DPar abol a2D i s a package that inplenments the Parabol a2D object.";

Focal Lengt h2D: : usage=
"Focal Lengt h2D[parabol a] returns the focal length of a parabola.";

Par abol a2D: : usage=

" Par abol a2D[{ h, k},f,theta] is the standard form of a parabola that opens
to the right (when theta=0); {x,y} is the vertex point of the parabola; 'f’
is the distance fromthe vertex point to the focus; 'theta is the
counter-clockw se rotation (in radians) of the parabola about the vertex
point.";

Begin["' Private'"];

Description

Representation

Parabola2D[{h, k}, f, 61 M Standard representation of a parabola in Descarta2D. The first
argument is a list of coordinates representing the position of the vertex of the parabola. The
second argument is a (positive) scalar representing the distance from the vertex to the focus
(the focal length). The third argument is the counter-clockwise rotation (in radians) of the
parabola about the vertex point.

479

480 D2DParabola2D - Description

Equation

Quadratic2D [parabola]l B Constructs the quadratic representing the equation of a parabola.

Quadr ati c2D] Parabol a2D{{h_, k_},f_,theta_]] :=
Rot at e2D[Quadrati c2D[0, 0, 1, - 4*f, - 2*k, k"2+4*h*f],theta, {h, k}];

Evaluation

Parabola2D[{h, k}, f, 01[t] M Evaluates a parabola at a parameter ¢ (—oo < t < +00).
The end points of the latus rectum are at t = —1 and t = 1.

Par abol a2D[{h_, k_},f_,theta_][t_?IsScal ar2D] :=
Rot at e2Df { h+f *t 2, k+2*f*t}, theta, {h, k}];

Graphics

Provides graphics for a parabola by extending the Mathematica Display command. Executed
when the package is loaded.

Set Di spl ay2D]
Parabol a2D[{h_, k_},f_,t _][{t1_?IsScal ar2D,t2_7?I sScal ar2D}],
MakePrim tives2D] Parabol a2D[{h, k},f,t],{t1,t2}]];

Set Di spl ay2Df
Par abol a2D[{h_, k_},f _,t_1,
MakePri mi tives2D[Parabol a2D[{ h, k}, f,t],
Curveli m ts2D[{0, 0},
Par abol a2D{ {0, 0}, f,0]]] 1;

Validation

Parabola2D[{h, k}, f, 61 B Detects a parabola with imaginary arguments and returns the
$Failed symbol. If the imaginary parts are insignificant, they are removed.

Par abol a2D: : i magi nary=
"An invalid parabola of the form’Parabola2D[‘1, ‘2, ‘3]’ has been
detected; the argunents cannot be imaginary.";

Par abol a2D[{h_, k_},f_,theta_] :=
(Par abol a2D @@ Chopl magi nar y20{ Par abol a$2D[{ h, k}, f,theta]]) /;
(Free {h,k,f,theta}, Pattern] && IsTinylnmaginary2D[{h, k,f,theta}]);

Par abol a2D[{h_, k_},f_,theta_] :=
(Message[Par abol a2D: : i magi nary, {h, k}, f,theta]; $Fail ed) /;
(Freed {h,k,f,theta}, _Pattern] && |sConplex2D{h,k,f,theta},0]);

Parabola2D[{h, k}, f, 61 M Detects a parabola with an invalid focal length. If the focal
length is negative, the parabola is rotated m radians to make it positive; if the focal length is
zero, the $Failed symbol is returned.

D2DParabola2D - Scalars

481

Par abol a2D; : i nval i d=

"An invalid parabola of the form’Parabola2D ‘1", ‘2', *3']" has been

detected; the focal |ength cannot be zero.";

Parabol a2D[{h_, k_},f_,theta_] :=
(Message[Parabol a2D: :invalid, {h,k},f,theta]; $Failed) /;
(FreeQ {h,k,f,theta}, Pattern] && IsZero2D[f,0]);

Parabol a2D{{h_,k_},f_,theta_] :=
Par abol a2D[{ h, k},-f,theta+Pi] /;
(Free {h,k,f,theta}, Pattern] && |sNegative2D[f,0]);

Parabola2D[{h, k}, f, 01 W Adjusts the rotation angle on a parabola to the range 0 < 6 < 2.

Parabol a2D[{h_, k_},f_,theta_] :=
Par abol a2D[{ h, k}, f, Pri maryAngl e2D[theta]] /;
(FreeQ {h,k,f,theta}, Pattern] && (theta=!=PrinmaryAngl e2Dtheta]));

IsValid2D[parabola]l M Verifies that a parabola is syntactically valid.

I sVal i d20] Par abol a2D[{ h_7?I sScal ar 2D, k_?1 sScal ar 20},
f _?lsScal ar 2D,
theta_?lsScal ar2D]] := True;

Scalars

Angle of Rotation
Angle2D [parabola] M Returns the rotation angle of a parabola.

Angl e2Df Par abol a2D[{h_, k_},f_,theta_]] := theta;

Focal Length
Focallength2D [parabola] M Returns the focal length of a parabola.

Focal Lengt h2D[Par abol a2D[{h_, k_},f_,theta_]] := f;

Transformations

Reflect

Reflect2D [parabola, line] M Reflects a parabola in a line.

Ref | ect 20] Par abol a2D[{h_, k_},f_,theta_], L2: Line2Dfa2_,b2_,c2_]] :=
Par abol a2 Ref | ect 2D { h, k}, L2], f, Refl ect Angl e2D[t heta, L2]] ;

482 D2DParabola2D - Point Construction

Rotate

Rotate2D [parabola, 6, coords] M Rotates a parabola by an angle 6§ about a position spec-
ified by a coordinate list. If the third argument is omitted, it defaults to the origin (see
D2DTransform2D.nb).

Rot at e2D[Par abol a2D[{h_, k_},f_,theta_], al pha_?l sScal ar 2D,
{x0_7I sScal ar 2D, y0_?l sScal ar2D}] :=
Par abol a2D[Rot at e2D)] { h, k}, al pha, {x0, y0}], f, t het a+al pha] ;

Scale

Scale2D [parabola, s, coords] M Scales a parabola from a position given by coordinates. If
the third argument is omitted, it defaults to the origin (see D2DTransform2D.nb).

Scal e2D] Par abol a2D[{h_, k_},f_,theta_], s_?I sScal ar 2D,
{x0_7?l sScal ar 2D, y0_?I sScal ar2D}] :=
Par abol a2D] Scal e2Df { h, k}, s, {x0, y0}], s*f,theta] /;
Not [| sZer oOr Negat i ve2D[s]] ;

Translate

Translate2D [parabola, {u, v}] MW Translates a parabola delta distance.

Transl at e2D[Par abol a2D[{h_, k_},f_,theta_], {u_?IsScal ar 2D, v_?l sScal ar2D}] :=
Par abol a2D[{ h+u, k+v}, f,theta];

Point Construction
Vertex Point
Point2D [parabola] M Returns the vertex point of a parabola.

Poi nt 2D[Par abol a2D{{h_, k_},f_,theta_]] := Point2D {h, k}];

Pole Point

Point2D [line, parabola] M Constructs the pole (point) of a polar (line) with respect to a
parabola. If the line is tangent to the parabola then the point is the point of tangency.

Poi nt 2D L1: Li ne2Df al_, bl_, c1_], P2: Parabol a2D[{h_, k_},f_,theta_]] :=
Poi nt 2D[L1, Quadrati c2D[P2]] ;

D2DParabola2D - Line Construction 483

Line Construction

Axis Line

Line2D[parabola]l M Constructs a line that contains the axis of a parabola.

Li ne2D[Parabol a2D{ {h_, k_},f_,theta_]] :=
Rot at e2D[Li ne2D[0, 1, - k], theta, {h, k}];

Polar Line

Line2D [point, parabola]l W Constructs the polar (line) of a pole (point) with respect to a
parabola. If the point is on the parabola then the line is tangent to the parabola at the point.

Li ne2D[P1: Poi nt 20 {x1_,y1_}], P2: Parabol a2D[{h_, k_},f_,theta_]] :=
Li ne2D[P1, Quadrati c2D[P2]] ;

Parabola Construction

Parabola from Focus/Directrix

Parabola2D [point, line] M Constructs a parabola from a focus point and a directrix line.

Par abol a2D: : i nvpt| n=
"The focus ‘1" is on the directrix ‘2'; no valid parabola can be
constructed. ";

Par abol a2D[P1: Poi nt 2D{ {x1_,y1 }],L2:Line2Dfa2_,b2_,c2_]] :=
Modul e[{pt},
I1f[1sOn2D P1, L2],

Message[Par abol a2D: : i nvptln, P1, L2]; $Fai | ed,

pt =Poi nt 20[P1, L2] ;

Par abol a2D[Coor di nat es2D[Poi nt 2D[P1, pt]1],
Di stance2D[P1, pt]/ 2,
Ar cTan[x1- XCoor di nat e2D[pt],

y1l-YCoordinate2D[pt]]]] 1;

Epilogue

End[]; (* end of "'Private" *)
EndPackage[]; (* end of "D2DParabol a2D " *)

D2DPencil2D

The package D2DPencil2D implements functions for computing families of Descarta2D curves
(lines, circles and quadratics).

Initialization

Begi nPackage[" D2DPenci | 2D' ", {"D2DCi rcl e2D' ", " D2DExpressi ons2D ",
" D2DGeonetry2D ", "D2DLi ne2D' ", "D2DQuadratic2D ", "D2DPoint2D "}];

D2DPenci | 2D: : usage=
"D2DPenci | 2D i s a package that construction pencil curves.";

Penci | 2D: : usage=
"Pencil 2D is a keyword used to specify the formation of a pencil of
obj ects.";

Begin["' Private'"];

Line Pencils

Pencil of Lines Through a Point

Line2D[point, 6, Pencil2D] M Constructs a line parameterized by the variable 6 representing
the pencil of lines through a point. The variable 6 is the angle of rotation of the line.

Li ne2D[Poi nt 2D {x_,y_}]1,t_?lsScal ar 2D, Penci | 2D] : =
Line2D[-Sin[t], Cos[t],x*Sin[t]-y*Cos[t]];

Pencil of Lines Through Intersection Point

Line2D[line, line, k, Pencil2D] M Constructs a line parameterized by the variable k repre-
senting the pencil of lines through the intersection of two lines.

Li ne2D[Line2Dfal_, bl_,cl_], Line2D[a2_, b2_,c2_], k_?l sScal ar 2D, Penci | 2D] : =
Li ne2D[(1-k)*al+k*a2, (1-k)*bl+k*b2, (1-k)*cl+k*c2];

485

486 D2DPencil2D - Quadratic Pencils

Circle Pencils

Pencil of Circles from Two Circles

Circle2D[circle, circle, k, Pencil2D] B Constructs a circle parameterized by the variable k
representing the pencil of circles having common intersection points with two given circles.

Crcle2D[Grcle2D{h1_,k1 },r1],CGrcle2D{h2_,k2_},r2],
k_?1sScal ar 2D, Penci | 2D0] : =

Modul e[{H, K, R1, R2, R},
H=(1- k) *h1+k*h2;
K=(1-k)*k1+k*k2;
R1=h172+k172-r172;
R2=h2/"2+k2"2-r 2"2;
R=Sgrt [H*2+K"2- (1- k) *R1- k*R2] ;
Crcle2D{H K}, R 1;

Quadratic Pencils

Pencil of Quadratics from Two Quadratics

Quadratic2D[quad, quad, k, Pencil2D] M Constructs a quadratic parameterized by the
variable k representing the pencil of quadratics through the intersection points of two given
quadratics.

Quadratic2D Quadratic2Dal_,bl_,cl1_,dl ,el ,f1],
Quadratic2Da2_,b2_,c2_,d2_,e2_,f2],
k_?1sScal ar 2D, Penci | 2D] : =

Quadratic2Df (1-k) *al+k*a2, (1-k)*bl+k*b2, (1-k)*cl+k*c2,
(1-k)*d1+k*d2, (1- k) *el+k*e2, (1-k)*f 1+k*f2];

Pencil of Quadratics from Four Lines

Quadratic2D[{line, line}, {line, line}, k, Pencil2D] M Constructs a quadratic parameter-
ized by the variable k representing the pencil of quadratics passing through the four inter-
section points of four lines taken in predetermined pairs (1-2 with 3—4, and 1-3 with 2—4).

Quadratic2D {L1:Line2Dfal_,bl_,cl1_],L2:Line20ja2_,b2_,c2_]},
{L3:Line2D[a3_,b3_,c3_],L4:Line2D[a4_,bd_,c4]},
k_?I sScal ar 2D, Penci | 2D] : =
Modul e[{ QL, Q2},
Ql=Quadratic2D[L1, L2];
Q@=Quadratic2D{ L3, L4];
Quadratic2D QL, @, k, Penci | 2D] 1;

D2DPencil2D - Epilogue 487

Pencil of Quadratics from Four Points

Quadratic2D [point, point, point, point, k, Pencil2D] M Constructs a quadratic parame-
terized by the variable k representing the pencil of quadratics passing through four points.

Quadrati c2D: : coi nci dent =

"Two or nore of the points are coincident;

no valid quadratic pencil
exists.";

Quadrati c2Df P1: Poi nt 2D{ {x1_, y1_}], P2: Poi nt 2D[{x2_, y2_}],

P3: Poi nt 2D[{x3_, y3_}], P4: Poi nt 2D[{x4_, y4_}1,
k_?I sScal ar 2D, Penci | 2D] : =

I f[1sCoi nci dent 2D[{ P1, P2, P3, P4}],
Message[Quadrati c2D: : coi nci dent] ; $Fai | ed,
Quadr ati c2D] { Li ne2D[P1, P2] , Li ne2D[P3, P4] },
{Li ne2D P1, P3], Li ne2D[P2, P4] }, k, Penci | 2D]];

Epilogue

End[]; (* end of "*Private" *)
EndPackage[]; (* end of "D2DPencil2D " *)

D2DPoint2D

The package D2DPoint2D implements the Point2D object.

Initialization
Begi nPackage[" D2DPoi nt 2D' ", {"D2DExpressi ons2D ", "D2DCGeonetry2D ",
"D2DLi ne2D' ", "D2Dwaster2D ", "D2DNunmbers2D ", "D2DQuadratic2D ",
" D2DSket ch2D ", "D2DTransforn2D "}];

D2DPoi nt 2D: : usage=
"D2DPoi nt 2D i s a package that inplenments the Point2D object."”;

Coor di nat es2D: : usage=

"Coordi nates2D[al,a2,...] gives the {x,y} coordinates of the point
returned by Point2Dal,a2,...].";
Di st ance2D: : usage=

"Di st ance2D] coor ds, coords] gives the di stance between two positions
gi ven by coordinates; Distance2D[point,pt | In | cir] gives the distance
between a point and a point, line or circle.";

Poi nt 2D: : usage=
"Point2D[{x,y}] is the standard formof a point at coordinates {x,y}.";

XCoor di nat e2D: : usage=
" XCoor di nat e2D poi nt] gives the x-coordinate of a point;
XCoor di nat e2D[coords] gives the x-coordinate of a coordinate |ocation.";
YCoor di nat e2D: : usage=
"YCoor di nat e2D poi nt] gives the y-coordinate of a point;
YCoor di nat e[coords] gives the y-coordinate of a coordinate |ocation.";

Begi n["‘ Private' "];

Description

Representation

{z, y} M Standard representation of a location specified by (z,y) in Descarta2D.

489

490 D2DPoint2D - Scalars

Point2D[{z, y}] or Point2D[coords] M Standard representation of a point in Descarta2D.
The coordinates define the (z,y) position of the point.

Graphics

Provides graphics for a point by extending the Mathematica Display command. Executed
when the package is loaded.

Set Di spl ay2Df
Poi nt 2D[{x_, y_}1,
{ Absol ut ePoi nt Si ze[4], Point[{x,y}]} 1;

Validation

Point2D[{z, y}]1 M Detects that a point has imaginary coordinates and returns the $Failed
symbol. If the imaginary parts are insignificant, they are removed.

Poi nt 2D: : i magi nary=
"An invalid point of the form’Point2D[{‘1',°2'}]’ has been detected,
the coordinates of a point cannot be imaginary.";

Point2D[{x_,y_}] :=
(Poi nt 2D @@ Chopl magi nary2D[Poi nt $2D[{x, y}11) /;
(Free {x,y}, Pattern] && IsTinylnmaginary2D[{x,y}]);

Point2D[{x_,y_}] :=
(Message[Poi nt 2D: : i magi nary, x, y]; $Fai l ed) /;
(Free {x,y}, Pattern] && |sConplex2D{x,y},0]);

IsValid2D[point] M Verifies that a point is syntactically valid.

I sVal i d2D Poi nt 2D[{ x_7?I sScal ar 2D, y_?I sScal ar2D}]] := True;

Scalars

Coordinates Function

Coordinates2D[args..] M Returns the {z, y} coordinates of Point2D [arys..].

Coordi nates2Dja___]:=
Modul e[{pt},
| f[pt ===%Fai | ed, pt, { XCoor di nat e2D[pt], YCoordi nate2D[pt]}] /;
(pt=Point2D[a] /. Point20 Point2D[x___]]->Poi nt2D[x] ;
(Is2D[pt, {Point2D}] || pt===%$Failed))];

D2DPoint2D - Equations 491

Distance between Coordinates

Distance2D [coords, coords] M Computes the distance between two locations defined by
coordinates.

Di st ance2D[{x1_7?I sScal ar 2D, y1_?I sScal ar 20},
{x2_7?lsScal ar 2D, y2_?l sScal ar2D}] :=
Sqrt[(x1-x2)"2+(yl-y2)"2];
Distance between Two Points
Distance2D [point, point] M Computes the distance between two points.
Di stance2D] Poi nt 2D {x1_,y1_}], Point2D[{x2_,y2_}]] :=
Sqrt[(x1-x2)"2+(yl-y2)~2];

X-Coordinate (Abscissa)

XCoordinate2D [coords] M Returns the z-coordinate.

XCoor di nat e2D[{ x_7?I sScal ar 2D, y_?I sScal ar2D}] := Xx;

X-Coordinate of a Point (Abscissa)
XCoordinate2D[point] M Returns the z-coordinate of a point.

XCoor di nat e2D{ Poi nt 2D[{x_, y_}1] := X;

Y-Coordinate (Ordinate)

YCoordinate2D[coords] B Returns the y-coordinate.

YCoor di nat e2D{ { x_?1 sScal ar 2D, y_7?I sScal ar2D}] :=vy;

Y-Coordinate of a Point (Ordinate)
YCoordinate2D [point] B Returns the y-coordinate of a point.

YCoor di nat e2D Poi nt 2D[{x_, y_}1] :=;

Equations

Quadratic

Quadratic2D[point] B Constructs the quadratic representing the equation of a point (a point
circle).

Quadratic2D[Poi nt2D[{x_,y_}]] := Quadratic2D 1,0, 1, -2*x, - 2*y, x"2+y"2];

492 D2DPoint2D - Point Construction

Transformations

Reflect

Reflect2D[point, line] M Reflects a point in a line.
Refl ect 2D[Poi nt2D[{x_,y_}],L:Line2D[a_,b_,c_]] :=
Poi nt 2D[Reflect2Df {x,y},L]];

Rotate

Rotate2D [point, 8, coords] M Rotates a point by an angle § about a position specified by co-
ordinates. If the third argument is omitted, it defaults to the origin (see D2DTransform2D.nb).

Rot at e2D[Poi nt 2D{ {x_, y_}], theta_?l sScal ar 2D,
{h_?IsScal ar 2D, k_?1 sScal ar2D}] :=
Poi nt 2D Rotate2D {x,y},theta, {h,k}] 1;

Scale

Scale2D[point, s, coords] M Scales a point from a position given by coordinates. If the
argument is omitted, it defaults to the origin (see D2DTransform2D.nb).

Scal e2D[Poi nt 2D[{x_,y_}],s_?I sScal ar 2D,
{x0_7?l sScal ar 2D, y0_?I sScal ar2D}] :=
Poi nt 2D[{ x0, y0} +s*{ x- x0, y-y0}] /;
Not [| sZer oOr Negat i ve2D[s]] ;

Translate

Translate2D [point, {u, v}] B Translates a point delta distance.
Transl at e2D] Poi nt 2D {x_, y_}1, {u_?I sScal ar 2D, v_?l sScal ar2D}] :=
Poi nt 2D[{ x+u, y+v}];
Point Construction

Point from Coordinates

Point2D[coords] M Constructs a point from the z- and y-coordinates.

Poi nt 2D x_7?I sScal ar 2D, y_?1 sScal ar2D] := Point2D[{x, y}];

D2DPoint2D - Point Construction 493

Midpoint of Two Points
Point2D [point, point] M Constructs the midpoint of two given points.

Poi nt 2D Poi nt 20] {x1_,y1_}], Point2D[{x2_, y2_}]] := Poi nt 2D { x1+x2, y1+y2}/2];

Offset Point from Two Points

Point2D [point, point, d MW Constructs a point at a given distance from the first point on
the line joining the two given points.

Poi nt 2D: : noDi r =
"Points {*1°, ‘2'} are coincident and do not define a valid direction.";

Poi nt 2D P1: Poi nt 2D[{x1_, y1_}], P2: Poi nt 2D[{x2_,y2_}],d_?I sScal ar2D] : =
Modul e[{d12=Sqrt[(x2-x1)"2+(y2-y1l)~2]},
I f[1sZero2D d12],
Message[Poi nt 2D: : noDi r, P1, P2] ; $Fai | ed,
Poi nt 2D { x1, y1} +{d*(x2-x1),d*(y2-y1)}/d12]] 1;

Point of Division

Point2D [point, point, r1, ro] M Constructs a point which divides a line segment determined
by two points into the ratio r1 /7.

Poi nt 2D: : noRat i o=
"The sum of the ratio nunbers {‘1‘, ‘2'} cannot be zero.";

Poi nt 200 Poi nt 2D[{x1_, y1_}], Poi nt 200 {x2_, y2_}1,
rl_7?IsScal ar2D,r2_7?lsScal ar2D] :=
I f[IsZero2D r1+r2],
Message[Poi nt 2D: : noRati o, r1, r2]; $Fail ed,
Poi nt 2D { x1*r 2+x2*r 1, y1*r 2+y2*r 1}/ (r1+r2)]11];

Point Offset Along a Line

Point2D [point, line, d] M Constructs a point at a distance d from a given point in the
direction of a given line. If the given point is on the line then the offset point will also be on
the line. The distance may be positive or negative producing one of the two possible points.

Poi nt 2D Poi nt 2D {x1_,y1_}], Line2D[A2_,B2_, C2_],d_?lsScal ar2D] :=
Poi nt 2D { x1, y1} +{ - d* B2, d* A2}/ Sqr t [A2~ 2+B2"2] | ;

Point Projected Onto a Line

Point2D [point, line] M Constructs a point on a line by projecting a given point onto the
line.
Poi nt 2D[Poi nt 2D {x1_,y1_}],Line2D[A2_,B2_,C2_]] :=
Poi nt2D[{(B2°2*x1- A2* B2*y1- A2*C2),
(- A2*B2*x1+ A2A2%y1-B2*C2)}/ (A2A2+B272)]:

494 D2DPoint2D - Point Construction

General Offset Point

Point2D [point, line, {u, v}1 M Constructs a point offset from the origin of an inferred
coordinate system. The given point is on the +z-axis of the inferred coordinate system and
the given line is the y-axis. The point constructed has coordinates (u,v) in the inferred
coordinate system.

Poi nt 200 P1: Poi nt 2D {x1_,y1_}], L2: Li ne2Df A2_, B2_, C2_],
{u_?lsScal ar 2D, v_?l sScal ar2D}] :=
Modul e[{ a, b, d, D, x=x1, y=y1},
I f[IsOn2D0 P1, L2], x=x1+A2; y=y1+B2] ;
{a, b, d} ={ A2, B2, A2*x+B2*y+C2}/ Sqrt [A2*2+B2"2] ;
D=Sqrt[d"2];
Poi nt 2D[{ x- a*d+(a*u- b*v) *d/ D, y- b*d+(a*v+b*u) *d/ D}] 1;

Intersection Point of Two Lines
Point2D [line, line] M Constructs the intersection point of two lines.

Poi nt 2D: : coi nci dent =
"“No uni que intersection point exists; lines “1' and ‘2‘ are coincident."

Poi nt 2D: : paral | el =
"No intersection point exists; lines ‘1" and ‘2' are parallel.";

Poi nt 2D L1: Li ne2Df A1_,B1_,Cl_],L2: Line2D[A2_,B2_,C2_]] :=
Whi ch[

I sCoi ncident2D[L1, L2],
Message[Poi nt 2D: : coi nci dent, L1, L2]; $Fai | ed,

IsParal l el 200 L1, L2],
Message[Poi nt 2D: : paral l el , L1, L2]; $Fai | ed,

True,
Poi nt 2D[{ B1* C2- B2* C1, A2* C1- A1*C2}/ (A1*B2- A2*B1)] 1;

Center Point of a Quadratic

Point2D[quad] M Constructs the center point of a central quadratic.

Poi nt 2D: : not Central =
‘1" is not a central conic; it has no center point.";

Poi nt 2D[QL: Quadratic2Dfa_,b_,c_,d_,e_,f_]] :=
Modul e[{di sc=b"2-4*a*c},
I f[IsZero2D di sc],
Message[Poi nt 2D: : not Central , Q1] ; $Fai | ed,
Poi nt 2D[{ 2*c*d- b*e, 2*a*e- b*d}/ (b*2-4*a*c)]]];

Pole Point of a Quadratic

Point2D [line, quad] M Constructs a pole (point) of a quadratic with respect to a polar (line).

D2DPoint2D - Epilogue 495

Poi nt 2D: : noPol e=
"Since ‘1" passes through the center of the conic, no pole point

exists.";

Poi nt 2D L1: Line2Df A1_,B1_,Cl_],Q@: Quadratic2Da_,b_,c_,d_,e_,f_]] :=
Modul e[{12, q1, g2},

gl2=A1*(b*e- 2*c*d) +B1* (b*d- 2*a*e) +Cl*(4*a*c- b"2);

1 f[lIsZero2D q12],
Message[Poi nt 2D: : noPol e, L1, Q@] ; $Fai | ed,
ql=Al*(4*c*f-e"2) +Bl*(d*e-2*b*f) +Cl* (b*e- 2*c*d);
g2=Al1* (d*e- 2*b*f) +B1l*(4*a*f- d"2) +C1* (b*d- 2*a*e);
Poi nt 2D[{q1, g2}/ ql12]] 1;

Epilogue

End[]; (* end of "'Private" *)
EndPackage[]; (* end of "D2DPoint2D " *)

D2DQuadratic2D

The package D2DQuadratic2D implements the Quadratic2D object.

Initialization
Begi nPackage["D2DQuadr ati c2D' ", {"D2DEquations2D ", "D2DExpressi ons2D ",
"D2DLi ne2D' ", "D2DLoci 2D ", "D2Dwvaster2D ", "D2DNunmbers2D ", "D2DPoi nt2D "

" D2DSket ch2D ", "D2DTransforn2D "}];

D2DQuadr at i c2D: : usage=
"D2DQuadratic2D is a package providing support for the quadratic
obj ect.";

Quadr ati c2D: : usage=
"Quadratic2Da, b,c,d, e, f] represents the pol ynon al
a*x"2+b* x*y+c*yr2+d* x+ery+f . "

Begi n["‘Private' "];

Description

Representation

Quadratic2D[a, b, ¢, d, e, f1 B A quadratic is used to represent a quadratic polynomial in
two unknowns. Quadratic2D[a, b, c, d, e, fl represents ax? + bxy + cy® + dx + ey + f.

Graphics

Provides graphics primitives for a quadratic by extending the Mathematica Display command.
Executed when the package is loaded.

Set Di spl ay2D{
Quadratic2Da_,b_,c_,d_,e_,f_],

Loci 2D[Quadr ati c20 a, b,_c, a, e, f111;

497

498 D2DQuadratic2D - Transformations

Validation

Quadratic2D[a, b, ¢, d, e, f1 B Detects a quadratic with imaginary coefficients and returns
the $Failed symbol. If the imaginary parts are insignificant, they are removed.

Quadrati c2D: : i magi hary=
"An invalid quadratic of the form’ Quadratic2D ‘1, ‘2', ‘3, “4', ‘5",
‘6']’ has been detected; the arguments cannot be inmaginary."

Quadratic2Da_,b_,c_,d_,e_,f_] :=
(Quadratic2D @@ Chopl magi nary2D Quadrati c$2D[a, b,c,d,e, f]]) /;
(Free{a,b,c,d, e, f}, _Pattern] && IsTinylmginary2D{{a,b,c,d, e, f}]);

Quadratic2Da_,b_,c_,d_,e_f_] :=
(Message[Quadratic2D::imaginary,a,b,c,d, e, f];$Failed) /;
(Free{a,b,c,d,e f}, Pattern] && |sConplex2D{a,b,c,d, e f},0]);

Quadratic2D[a, b, ¢, d, e, f1 B Returns the $Failed symbol when an invalid quadratic is
detected (the first five coefficients are zero). Also, normalizes quadratics with tiny coefficients
to improve numerical stability.

QJadraticZD invalid=
"An invalid quadratic of the form’ Qadratic2D ‘1, ‘2', ‘3, ‘4", ‘5",
‘6]’ was encountered; at |east one of the first flve coefficients mnust be

non-zero.";

Quadratic2Da_,b_,c_,d_,e_ f_] :=
(Message[Quadratic2D::invalid,a,b,c,d, e, f];$Failed) /;
(Free{a,b,c,d,e f}, _Pattern] && IsZero2D[{a,b,c,d,e}, And, 0]);

Quadratic2Da_,b_,c_,d_,e_,f_] :=
(Quadratic2D @@({a ,c,d,e, f}/ Sqgrt[anr2+br2+cr2+d 2+e"2])) /;
(Free{a,b,c,d,e f}, _Pattern] && IsZero2D{a,b,c,d, e}, And]);

IsValid2D[quad] W Verifies that a quadratic is valid.

I sval i d20]
Quadrati c2D[a_?l sScal ar 2D, b_?1 sScal ar 2D,
c_7?1 sScal ar 2D, d_7?I sScal ar 2D,
e_?lsScal ar2D, f _?I sScal ar2D]] := True;

Transformations

Reflect
Reflect2D[quad, line] M Reflects a quadratic in a line.

Refl ect 2D{ Q Quadratic2Dfa_,b_,c_,d_,e_,f_],L:Line20fp_,q_,r_]] :=
Modul e[{eql, eq2, X, Y},
egl=Equation2D[Q {x, y}1;
eqg2=Ref | ect 2D eql, {x, y}, L];
Quadratic2D eq2, {x,y}] 1;

D2DQuadratic2D - Quadratic Construction 499

Rotate

Rotate2D [quad, 6, coords] M Rotates a quadratic by an angle # about a position spec-
ified by a coordinate list. If the third argument is omitted, it defaults to the origin (see
D2DTransform2D.nb).

Rot at e2Df Q Quadratic2Da_,b_,c_,d_,e_,f_],theta_?lsScal ar 2D,
{h_?1sScal ar 2D, k_7?I sScal ar2D}] :=
Modul e[{eql, eq2, x, y},
eql=Equation2D[Q {x, y}1;
eg2=Rot at e2D[eql, {x, y},theta, {h, k}];

Quadratic2D eq2, {x,y}] 1;

Scale

Scale2D[quad, s, coords] M Scales a quadratic from a position given by coordinates. If the
third argument is omitted, it defaults to the origin (see D2DTransform2D.nb).

Scal e2Df Q Quadratic2Da_,b_,c_,d_,e_,f_],s_?lsScal ar 2D,
{h_7?IsScal ar 2D, k_?1 sScal ar2D}] :=
Modul e[{ eql, eq2, X, Y},
egl=Equation2D[Q {x, y}1;
eq2=Scal e2D eql, {x, y},s,{h, k}];
Quadratic2D[eq2, {x,y}] 1 /;
Not [| sZer oOr Negat i ve2D[s]];

Translate

Translate2D[quad, {u, v}] M Translates a quadratic delta distance.

Transl at e2Df Quadratic2Da_,b_,c_,d_,e_,f],
{u_?lsScal ar 2D, v_?l sScal ar2D}] :=
Quadratic2D a, b, ¢, d-2*a*u- b*v, e- 2*c*v- b*u,
a*unr2+b*u*v+c*vr2-urd-vre+f];

Quadratic Construction

Simplify and FullSimplify

Simplify[quad] and FullSimplify[quad] M Extends the Mathematica Simplify and
FullSimplify commands to simplify the coefficients of a quadratic by factoring out com-
mon factors. Executed when the package is loaded.

prot ect ed=Unprotect[Si nplify];
Sinmplify[expr_?(!Freeq #, Quadratic2Da_,b_,c_,d_,e_,f_11&)),
opts__] :=
Sinplify[expr /. Quadratic2Da_,b_,c_,d_,e_,f_] :>
(Quadratic$2D @@
Si npl i fyCoefficients2Df{a,b,c,d, e, f}]),
opts] /. Quadratic$2D >Quadrati c2D;
Protect[Eval uat e[protected]];

500 D2DQuadratic2D - Quadratic Construction

prot ect ed=Unprotect[Ful | Sinplify];
Ful | Sinplify[expr_?(!FreeQq #, Quadratic2Da_,b_,c_,d_,e_,f_11&,
opts__] :=
Full Sinplify[expr /. Quadratic2Dfa_,b_,c_,d_,e_,f_] :>
(Quadratic$2D @@
Si npl i fyCoefficients2D{a,b,c,d, e, f}]),
opts] /. Quadratic$2D >Quadrati c2b;
Prot ect[Eval uat e[protected]];

Normalize

Quadratic2D[quad] W Normalizes the coefficients of a quadratic so that the sum of the
squares of the first five coefficients equals one.

Quadratic2D Quadratic2Da_,b_,c_,d_,e_,f_]] :=
(Quadratic2D @ ({a,b,c,d, e, f}/Sqrt[ar2+b"2+cr2+d"2+e”2]));

Quadratic from Equation/Polynomial

Quadratic2D[expr, {z, y}] M Forms a quadratic from a polynomial or equation in two
unknowns. For example, the expression az? + bxy + cy? + dx + ey + f == 0 will return
Quadratic2D[a, b, ¢, d, e, f1; the polynomial ax? + bzy + cy? + dx + ey + f will also return
Quadratic2D[a, b, ¢, d, e, fl. The z and y arguments are assumed to be the names of the
variables.

Quadrati c2D: : noPol y=
"The expression ‘1' cannot be recognized as a quadratic pol ynom al or
equation in variables *2° and *3'.";

Quadratic2D expr_,{x_,y_}] :=
Modul e[{eqgn, a, b, c,d, e, f},
egn=I f [Head[expr] ===Equal ,
expr[1]]-expr[[2]],
expr] //Expand;
a=Coefficient[eqn, x"2];
b=Coef fi ci ent[eqn, x*y];
c=Coefficient[eqn,y"2];
d=Coefficient[Expand[eqn /. {x*y->0}],x];
e=Coefficient[Expand[egn /. {x*y->0}],vy];
f=(eqn /. {x->0,y->0}) //Expand;
I f[1sZero2D a*x"2+b*x*y+c*yr2+d*x+e*y+f - eqn] ,
Quadratic2Da, b,c,d, e, f],
Message[Quadrati c2D: : noPol y, expr, x, y]; $Fai l ed]];

Quadratic from Coordinates

Quadratic2D[coords] M Forms a (degenerate) quadratic from a point given by a coordinate
list (a point circle).

Quadratic2D[{x_?I sScal ar 2D, y_?l sScal ar2D}] :=
Quadratic2D[1,0, 1, -2*x, - 2*y, x"2+y"2];

D2DQuadratic2D - Quadratic Construction 501

Quadratic Through Three Points

Quadratic2D [point, point, point] B Constructs a quadratic (circle) that passes through three
points.

Quadratic2D[Poi nt2D[{x1_,y1_}], Poi nt 2D {x2_,y2_}], Point2D[{x3_,y3_}]] :=
Modul e[{ eqgn, x, y},
eqn=Det [{{ x"2+ y"2, X, vy, 1},
{x172+y172, x1,y1, 1},
{x2"2+y272,x2,y2, 1},
{x3"2+y372,x3,y3,1}}];
Quadratic2D[eqn, {x,y}] 1;

Quadratic Through Five Points

Quadratic2D [point, point, point, point, point] B Constructs a quadratic that passes through
five points.

Quadratic2D Poi nt2D[{x1_,y1 }], Point2D{x2_,y2_}],Point2D{x3_,y3_}],
Poi nt 2D[{x4_,y4_}], Point2D[{x5_,y5_}]1] :=
Modul e[{full,a, b,c,d, e, f},

ful | ={{x172, x272, x3"2, x4"2, x5"2},
{x1*y1, x2*y2, x3*y3, x4*y4, x5*y5},
{y1r2, y272, y372, y4r2, y5°2},
{x1, X2, X3, x4, x5},
{yi, y2, y3, y4, Y5},
{1, 1, 1, 1, 1}};

{a,b,c,d, e, f}=Map[Det[Transpose[Drop[ful | ,{#}]1]]1&{1,2,3,4,5,6}];

Quadratic2Da,-b,c,-d,e,-f]];

Quadratic Tangent to Five Lines

Quadratic2D [line, line, line, line, line] M Constructs a quadratic tangent to five lines. The
private function Reciprocal$2D constructs the reciprocal of a conic with respect to the unit
circle 2 + y? = 1. If any of the lines pass through the origin, the entire configuration is
transformed to avoid the infinities involved.

Reci procal $200 Quadrati c2Dfa_,b_,c_,d_,e_,f_]] :=

Quadrati c2D[4*c*f-e"2, 2% d*e- 4*b*f, 4*a*f-dr2,
4*c*d- 2*b*e, 4*a*e- 2*d*b, 4*a*c- b"2];

Quadratic2D L1: Line2D[al_,bl_,cl1_],L2:Line20ja2_,b2_,c2_],
L3: Line2D[a3_, b3_,c3_], L4: Line2D[a4_,b4_,c4_],
L5: Line2Dfa5_, b5_,c5_]] : =
Modul e[{u, v,Ins, @,
{u, v} ={Randoni | nteger, {-5,5}], Randon{ | nteger, {-5,5}]1};
I ns=Transl ate2D[{ L1, L2, L3, L4, L5}, {u, v}];
Q=Quadratic2D I ns];
Translate2D[Q {-u,-v}] 1 /;
I sZero2D{c1,c2,c3,c4,c5},O];

502 D2DQuadratic2D - Quadratic Construction

Quadratic2D Line2D[al_, bl _,cl_],Line2Da2_,b2_,c2_],
Line2D[a3_, b3_,c3_],Line2Dfa4_,b4_,c4_],
Line2D[a5_,b5_,c5_]] : =

Reci procal $20]
Quadrati c2D]
Poi nt 2D {-al/c1, - b1/ c1}], Poi nt 2D[{ - a2/ c2, - b2/ c2}],
Poi nt 2D[{- a3/ c3, - b3/ c3}], Poi nt 2D[{ - a4/ c4, - b4/ c4}],
Poi nt 2D[{ - a5/ c5, -b5/¢c5}11]1 /;
Not [| sZero2D[{c1, c2,c3,c4,c5},0O1]];

Quadratic from Two Lines

Quadratic2D [line, line] M Constructs a quadratic representing two lines multiplied together.

Quadratic2D[Line2D[al_, bl_,cl1_],Line2Dfa2_,b2_,c2_]] :=
Quadratic2D al*a2, al*b2+a2*bl, b1*b2, al*c2+a2*cl, bl*c2+h2*cl, cl*c2];

Quadratic from Focus/Directrix/Eccentricity

Quadratic2D[point, line, e] M Constructs a quadratic from a focus point, directrix line and
eccentricity.

Quadratic2D: :eccentricity=
"The eccentricity ‘1" is invalid; the eccentricity nust be positive.";

Quadratic2D[Poi nt2D[{x1_,y1_}],L2: Line2D[a2_,b2_,c2_],e_?lsScal ar2D] :=
Modul e[{I ,mr},
1 f[1sZeroOr Negative2D e],
Message[Quadrati c2D: : eccentricity, e]; $Fail ed,
{p,q,r}=List @Line2D[L2];
Quadrati c2D[er2*pnh2-1, 2*e2*p*q, e"r2*qh2-1,
2% (x1+en2*p*r), 2*(yl+en2*qg*r),en2*r~2-x172-y172]] 1;

Quadratic Vertex Equation

Quadratic2D[point, fcLen, e, 8] M Constructs a quadratic from the vertex point, focal chord
length, eccentricity and rotation angle. If the rotation angle is omitted, it defaults to zero.

Quadratic2D::invLen=
"A non-positive focal chord length, ‘1', is invalid; no valid quadratic
can be constructed.";

Quadratic2D: :invEcc=
"A negative eccentricity, ‘1‘, is invalid; no valid quadratic can be
constructed.";

Quadratic2D[P1: Poi nt 2D[{x1_,y1_}], fcLen_?l sScal ar2D, e_?l sScal ar2D] :=
Quadrati c2D[P1, fcLen, e, 0] ;

D2DQuadratic2D - Epilogue 503

Quadrati c2D Poi nt 200 {x1_,y1_}], fcLen_?I sScal ar 2D,
e_7?1sScal ar2D,t heta_?lsScal ar2D] : =
Modul e[{ eqn, x, y},
Whi ch[

| sZer oOr Negat i ve2D[f cLen],
Message[Quadrati c2D::invLen, fcLen]; $Fai | ed,

| sNegat i ve2D e],
Message[Quadrati c2D: : i nvEcc, €] ; $Fai | ed,

True,
eqn=(y-y1l)~2==f cLen*(x- x1) - (1-e"2) (x-x1)"2;
Rot at e2D[Quadr ati c2f eqn, {x, y}], theta, {x1,y1}]] 1;

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DQuadratic2D " *)

D2DSegment2D

The package D2DSegment2D implements the Segment2D object.

Initialization
Begi nPackage[" D2DSegnent 2D *, {"D2DCi rcl e2D ", "D2DExpressi ons2D ",
" D2DGeonetry2D ", "D2DLine2D' ", "D2DWVaster2D ", "D2DNunbers2D ",
"D2DPoi nt 2D ", "D2DSket ch2D ", "D2DTransfornmD "}];

D2DSegrent 2D: : usage=
" D2DSegnent 2D i s a package providing support for |line segnents.”;

Lengt h2D: : usage=
"Lengt h2D[| nseg] conputes the length of a Iine segnent.";

Segnent 2D: : usage=
" Segnent 20({ x0, y0}, {x1,y1}] is the standard formof a line segnent with
end points {x0,y0} and {x1,y1}.";

Begin["' Private'"];

Description

Representation

Segment2D [{zo, o}, {1, y1}]1 M Standard representation of a line segment in Descarta2D.
The coordinates {zg, yo} and {x1, y1} are start and end points, respectively, of the line
segment.

Evaluation

Segment2D [{zo, yo}, {x1, y1}1[{1] M Evaluates a parameter, —oo < t < 0o, on a line
segment. The parameter values 0 and 1 are the start and end points, respectively. Returns a
coordinate list {z, y}.

Segnent 2D[{x0_, y0_},{x1_,y1_}][t_?IsScal ar2D] :=
{x0+t *(x1-x0), yO0+t*(yl-y0)};

505

506 D2DSegment2D - Description

Graphics

Provides graphics primitives for a line segment by extending the Mathematica Display com-
mand. Executed when the package is loaded.

Set Di spl ay2Df
Segnent 2D[{x0_, y0_}, {x1_,y1_}][{t1_?IsScal ar2D, t2_7?I sScal ar 2D}],
Li ne[{ Segment 2D[{ x0, y0}, {x1, y1}]1[t1],
Segnent 2D {x0, y0}, {x1,y1}1[t2]}] 1;

Set Di spl ay2Df
Segment 2D {x0_, y0_},{x1_,y1 }],
Line[{{x0, y0}, {x1,y1}}] I;

Validation

Segment2D [{zo, yo}, {x1,y1}]1 M Detects line segments with imaginary arguments and
returns the $Failed symbol. If the imaginary parts are insignificant, they are removed.

Segnent 2D: : i magi nary=
"An invalid line segnent of the form Segnent2D[‘'1',‘2'] has been
detected; the argunents cannot be inmaginary.";

Segnent 2D[{x0_, y0_}, {x1_,y1 }] :=
(Segnent 2D @@ Chopl nmagi nar y2D0[Segnent $20({ x0, y0}, {x1, y1}]1]) /;
(Freed {x0,y0, x1,yl}, Pattern] && IsTinylmaginary2D{x0,y0, x1,y1}]);

Segnent 2D[{x0_, y0_}, {x1_,y1 }] :=
(Message[Segnent 2D: : i magi nary, {x0, y0}, {x1,y1}]; $Fai l ed) /;
(Freed {x0,y0, x1,yl1}, Pattern] && |sConplex2D {x0,y0, x1,y1},0]);

Segment2D [{zo, Yo}, {z1, y1}] M Returns the $Failed symbol for line segments with coin-
cident start and end points.

Segnent 2D: @i nval i d=
"An invalid line segment of the form Segnent2D[‘1',‘2‘] has been
detected; the defining coordinates cannot be coincident.";

Segnent 2D[{x0_, y0_}, {x1_,y1 }] :=
(Message[Segnent 2D: : i nval i d, {x0, y0}, {x1,y1}]; $Fail ed) /;
(Freed {x0,y0, x1,yl}, Pattern] && |sCoincident2D{x0,y0}, {x1,y1}]);

IsValid2D[Inseg] M Verifies that a line segment is syntactically valid.

I sVal i d20]
Segnent 2D0[{ x0_7?1 sScal ar 2D, y0_?I sScal ar 2D},
{x1_?lsScal ar2D,y1_?lsScal ar2D}]] := True;

D2DSegment2D - Scalars 507

Scalars

Length

Length2D[Inseg] M Computes the length of a line segment.

Lengt h2D[Segnent 2D {x0_, y0_},{x1_,y1 }]] := Sgrt[(x0-x1)"2+(y0-y1l)"2];

Slope

Slope2D[inseg] M Computes the slope of a line segment.

Sl ope2D[Segnent 2D{ {x0_, y0_}, {x1_,y1_}]] :=
I f[IsZero2D x1-x0],Infinity, (yl-y0)/(x1-x0)];

Transformations

Reflect

Reflect2D[Inseg, linc] M Reflects a line segment in a line.

Ref | ect 20 Segnent 20] {x0_, y0_}, {x1_,y1_}],L2:Line2Da_,b_,c_]] :=
Segrent 20 Ref | ect 2D[{ x0, y0}, L2], Ref | ect 2D[{ x1, y1}, L2]];

Rotate

Rotate2D[inseq, 0, coords] M Rotates a line segment by an angle 6 about a position spec-
ified by a coordinate list. If the third argument is omitted it defaults to the origin (see
D2DTransform2D.nb).

Rot at e2D Segnent 2D[{x0_, y0_},{x1_,y1 }], theta_?l sScal ar 2D,
{h_?lsScal ar 2D, k_?I sScal ar2D}] :=
Segrent 20 Rot at e2D[{ x0, y0}, t heta, {h, k}],
Rot at e2D[{ x1, y1}, theta, {h, k}]];

Scale

Scale2D[inseq, s, coords] M Scales a line segment from a position given by coordinates. If
the third argument is omitted it defaults to the origin (see D2DTransform2D.nb).

Scal e2D] Segnent 2D {x0_, y0_},{x1_,y1 }],s_?lsScal ar 2D,
{h_7?IsScal ar 2D, k_?1 sScal ar2D}] :=
Segnent 2D0] Scal e2D] {x0, y0}, s, {h, k}], Scal e2D[{ x1, y1},s,{h,k}]1] /;
Not [| sZer oOr Negat i ve2D[s]] ;

508 D2DSegment2D - Line Construction

Translate

Translate2D[inseg, {u, v}] M Translates a line segment delta distance.

Transl at e2D] Segnent 2D[{x0_, y0_}, {x1_,y1_}], {u_?l sScal ar 2D, v_?I sScal ar 2D}]

Segnent 20 { x0+u, yO+v}, { x1+u, y1+v}];

Point Construction
Midpoint
Point2D[Inseg] M Constructs the midpoint of a line segment.

Poi nt 2D Segnent 2D {x0_, y0_},{x1_,y1 }]] := Point2D] {x0+x1, yO+yl}/2];

Line Segment Construction
Line Segment from Two Points
Segment?2D [point, point] M Constructs a line segment from two points.

Segment 2D] Poi nt 2D{ {x0_, y0_}], Poi nt2D[{x1_, y1_}]] :=
Segment 2D] { x0, y0}, {x1, y1}];

Line Construction

Line from Line Segment

Line2D[Inseg] M Constructs a line containing a line segment.
Li ne2D[Segrment 20 {x0_, y0_},{x1_,y1 }]1] :=
Li ne2D[- (y1-y0), (x1-x0), (x0*yl-x1*y0)];
Line Bisecting a Line Segment

Line2D [Inseg, Perpendicular2D] M Constructs a line that is the perpendicular bisector of
a line segment.

Li ne2D[Segrment 20{ {x0_, y0_}, {x1_,y1_}], Perpendi cul ar2D] :=
Li ne2D 2* (x1- x0), 2*(y1-y0), x0"2-x172+y0"2-y172] ;

D2DSegment2D - Circle Construction 509

Circle Construction

Circle from Diameter Chord

Circle2D[Inseg] M Constructs a circle from a line segment that is one of the circle’s diameter
chords.

Circl e2D] Segment 20{ {x0_, y0_}, {x1_,y1_}]] :=
Circle2D { (x0+x1)/2, (yO+yl)/ 2}, Sgrt[(x0-x1)"2+(y0-y1)"2]/2];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DSegnent2D " *)

D2DSketch2D

The package D2DSketch2D provides the Sketch2D command which is the basic command for
plotting Descarta2D objects.

Initialization
Begi nPackage[" D2DSket ch2D ", {"D2DExpressions2D ", "D2DVaster2D "}];

D2DSket ch2D: : usage=
"D2DSket ch2D i s a package providing sketching functions.";

AskCur velLengt h2D: : usage=

"AskCurvelLength2D[] returns the value of the option CurvelLength2D for
the Sketch2D function (the approxinate sketched | ength of an unbounded
curve).";

CurveLengt h2D: : usage=
"CurvelLength2D->n is an option for the Sketch2D function to specify the
approxi mat e sketched | ength of an unbounded curve.";

CurvelLi m ts2D: : usage=

"CurvelLi mts2D[{x, y},curve] returns a list of two paraneter val ues,
{-t,t}, so that the distance the point on the unbounded curve at the
paraneter 't’' is a distance CurveLength2D/2 fromthe given coordinates.";

I sDi spl ay2D: : usage=
"I sDi spl ay2D[obj ect] returns 'True' if the object can be displayed.";

MakePrimtives2D: : usage=

"MakePrimtives2D object,{t1,t2}] returns a list of graphics primtives
between a pair of paraneters for a paranetrically defined curve.";
Set Di spl ay2D: : usage=

"Set Di spl ay2D[obj Patt, obj Prinmj nodifies the Display command to allow
plotting of a new object.";

Sket ch2D: : usage=
" Sket ch2D] obj Li st, opts] sketches a list of geonetric objects.”;

Begin["‘Private' "];

511

512 D2DSketch2D - Plotting

Utilities
Filter Options

The private function FilterOptions$2D filters a list of options and provides a Sequence of
valid options for the specified command.

FilterOptions$2D] command_Synbol ,opts__] :=
Modul e[{keywords = First /@ Options[conmand] },
Sequence @@ Sel ect[{opts}, Menber @ keywords, First[#]]1& 1;

Plotting

Set Display

SetDisplay2D [objPatt, objPrim] M Modifies the Mathematica Display command to enable
plotting of a new object. The argument objPatt is a pattern which matches the standard
form of the object used in Descarta2D; the argument objPrim provides the commands that
generate the primitives required to plot the object.

Set Attri but es[Set Di spl ay2D, Hol dAl |];
Set Di spl ay2D[obj Patt _,objPrim] :=
Modul e[{ pr ot ect ed},
pr ot ect ed=Unpr ot ect [Di spl ay] ;
Di splay[ch_,prim?(! FreeJ #, objPatt] & ,format__] :=
Di splay[ch,prim /. {objPatt :> objPrin},fornat];
Prot ect [Eval uat e[protected]];
| sDi spl ay2D{ obj : obj Patt] : =
IsvValid2Dobj /. h_[a__]J[t___]->h[a]] &&
IsNuneric2D[obj /. h_[a__ J[t___]->h[a]] &&
IsNurmeric2Dfobj /. h_[a__ _J[t__]->{t}];
Nul 17;

Display Query

IsDisplay2D[object] M Returns True if the object can be displayed and has parameters that
can be evaluated to real numbers; otherwise, returns False. The function SetDisplay2D,
above, provides the implementation of IsDisplay2D for each object after its display graphics
are defined.

I sDisplay2D ___] := False;

Curve Length

Curvelength2D->n M The option CurveLength2D of the Sketch2D command specifies the
plotted length of an infinite curve and is measured from the midpoint to one of the plotted
end points of the curve.

D2DSketch2D - Plotting 513

Sket ch2D: : i nval i dLengt h=
"Option CurvelLength2D->'1' is invalid; 'CurveLength2D nmnust be positive;
the current value of CurvelLength2D >'2' will be retained.";

pr ot ect ed=Unpr ot ect [Set Opti ons] ;

Set Opt i ons[Sket ch2D, opt s1___, CurvelLengt h2D->n_,opts2__] :=
Message[Sket ch2D: : i nval i dLengt h, n, AskCur veLengt h2Df 1] /;

(1sZeroOrNegative2D[n] || !lIsReal 20 n]);

Protect[Eval uat e[protected]];

AskCurveLength2D[] M Returns the value of the Sketch2D command CurveLength2D option.
AskCurvelLength2D[] := Options[Sketch2D, CurveLength2D][[1, 2]];

Curve Parameter Limits

CurveLimits2D[{z, y}, curve] M Returns a list of two parameter values {—¢, t} on an
unbounded curve such that the points at the parameter values on the curve are at a distance
CurveLength2D/2 from the given base-point coordinates. This is a numerical function used
to support plotting, and, therefore, requires numerical arguments.

Curveli m ts2D[p0: {x0_,y0_},crv_?lsValid2D :=
Modul e[{xt, yt, t, eqn,root},
{xt,yt}=crv[t];
egn=Sgrt [(xt-x0)"2+(yt-y0) 2] ==AskCur veLengt h2D[]/ 2;
root =Fi ndRoot [Eval uate[eqn], {t, 1}];
{-t,t} /. root[[1]] 1 /;
I sNurrer i c2D] { pO, crv}, Curveli m ts2D] ;

Make Graphics Primitives

MakePrimitives2D [curve, {t1, t2}] M Provides graphics primitives for a parametrically
defined curve between two parameters.

MakePrim tives2D crv_?lsValid2D, {t1_?IsScal ar2D, t2_?lsScal ar2D}] :=
Modul e[{ saveMsg, t, parPlot},
saveMsg=Head[Par anetri cPl ot:: ppcon]; O f[ParanetricPl ot:: ppconi;
par Pl ot =ParanetricPlot[crv[t] //Evaluate,{t,t1,t2},
Di spl ayFuncti on->ldentity];
| f[saveMsg===String, On[ParanetricPl ot:: ppconi];
parPlot[[1,1,1]] 1;

Sketch

Sketch2D [objList, opts] M Plots a list of Descarta2D objects. The options may be any
options supported by the Mathematica Graphics command. The list is flattened before it is
plotted.

Sket ch2D: : noCbj ="No valid objects to sketch.";

514 D2DSketch2D - Epilogue

Sket ch2D: : not Real =
"<''1'> object(s) cannot be sketched.";

Opt i ons[Sket ch2D] =
{ Axes- >Tr ue,
Fr ame- >Tr ue,
Aspect Rati o- >Aut onati c,
Pl ot Range- >Aut omat i c,
Cur velLengt h2D- >10};

Sket ch2D[obj _List,opts___?0ptionQ :=
Modul e[{ sket chOpt sLi st, i nput Opt sLi st, al | Opt sLi st,
gr Opt sSequence, real bj, n, grafi x},
sket chOpt sLi st =Opt i ons[Sket ch2D] ;
i nput Opt sLi st=Fl atten[{opts}];
Set Opti ons[Sket ch2D,
Fil terOptions$2D Sket ch2D,

Sequence @@ i nput OptsList]];
al | Opt sLi st =Fl atten[Joi n[i nput Opt sLi st, sketchOptsList]];
gr Opt sSequence=Fi | t er Opt i ons$2D[Gr aphi cs, Sequence @@ al | Opt sLi st];
real Cbj =Sel ect[Fl atten[obj], | sDi splay2D] //N,

I f[(n=Length[Fl atten[obj]]-Length[real Oj])>0,
Message[Sket ch2D: : not Real , n]];
grafix=If[Length[real Obj]>0,
Show{ G aphi cs[real Obj, gr Opt sSequence]],
Message[Sket ch2D: : noQbj]; Nul I'];
Set Opt i ons[Sket ch2D, Sequence @@ sket chOptsList];
grafix];

Epilogue

End[1; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DSketch2D " *)

D2DSolve2D

The package D2DSolve2D provides the Solve2D function which is a specialized version of the
Mathematica Solve and NSolve commands.

Initialization

Begi nPackage[" D2DSol ve2D ", {"D2DExpressi ons2D "}];

D2DSol ve2D: : usage=
"D2DSol ve2D i s a package for solving equations.";

MaxSeconds2D: : usage=
"MaxSeconds2D is an option of the Solve2D function that tine constrains

the solution of the equations.";

Sol ve2D: : usage=
"Sol ve2Df eqns, vars] solves a |list of equations for variables in given in
alist.";

Opti ons[Sol ve2D] =
{ MaxSeconds2D- >30} ;

Begin["' Private'"];

Symbol Queries
Single Symbol Query

The private function IsSymbol$2D [expr, symbol] returns True if the expression contains a
given symbol; otherwise, returns False.

| sSynbol $20] expr _, sym Synmbol] : = Menber (Level [expr, {-1}], syni;

Symbol List Query

The private function IsSymbol$2D [expr, symbolList] returns True if the expression contains
any of the symbols in a list; otherwise, returns False.

| sSynbol $20 expr _, sym List] := O @@ Map[| sSynbol $20] expr, #] & syni ;

515

516 D2DSolve2D - Solve

Solve

Maximum Seconds Option

MaxSeconds2D->n M The option MaxSeconds2D specifies the maximum number of seconds
allowed to solve equations using Solve2D. The private function AskMaxSeconds$2D returns
the current setting for MaxSeconds2D.

Sol ve2D: : i nval i dTi me=
"Option MaxSeconds2D->‘1‘ is invalid; 'MaxSeconds2D nust be positive;
the current value of MaxSeconds2D->'2° will be retained.";

pr ot ect ed=Unpr ot ect [Set Opt i ons] ;

Set Opti ons[Sol ve2D, optsl___, MaxSeconds2D->n_,opts2__] :=
Message[Sol ve2D: :i nval i dTi me, n, AskMaxSeconds$2D[1] /;

(1 sZeroOrNegative2D[n] || !lIsReal 2D n]);

Prot ect[Eval uat e[protected]];

AskMaxSeconds$2D[] := Options[Sol ve2D, MaxSeconds2D][[1, 2]];

Solve

Solve2D [eqnList, varsList, opts] M Solves a list of equations for a list of variables. Uses
the Mathematica function NSolve if any real numbers are involved, or if the Mathematica
function N is in the evaluation stack; otherwise, uses the Mathematica function Solve. An
empty list is returned (and a warning message output) if the equations cannot be solved in
the number of seconds specified by the option MaxSeconds2D->n.

Solve2D: :infinite=
"An infinite nunber of solutions exist; only independent solutions wll
be returned.";

Sol ve2D: : ti me=

"The equations could not be solved in MaxSeconds2D->'1‘, an enpty |ist
of solutions will be returned; using approxi mate nunbers nay produce a nore
conplete list of solutions.";

Si npl i f yEquat i on$2D[eqn_Equal] : =
(eqn[[1]]// ExpandAl |)==(eqn[[2]]// ExpandAl l);

Sol ve2D[eqns: {Hol dPattern[Equal [_, _]..1},
vars: {_Synbol ..},
MaxSeconds2D- >secs_] : =
Modul e[{ save, resul t},
save=AskMaxSeconds$2D]];
Set Opt i ons[Sol ve2D, MaxSeconds2D- >secs] ;
resul t =Sol ve2D[eqns, vars] ;
Set Opt i ons[Sol ve2D, MaxSeconds2D- >save] ;
result];

D2DSolve2D - Epilogue

517

Sol ve2Df egns: {Hol dPattern[Equal [_, _]..]1},vars: {_Synbol ..}]
Modul e[{ save, ans},
save=Head[Sol ve: : svars]; O f[Sol ve: : svars] ;
ans=Ti meConstrai ned[
1 f[1sApproxi mat e2D] eqns],
NSol ve[Map[Si npl i f yEquati on$2D, eqgns]// N, vars,
Wor ki ngPr eci si on- >$Machi nePr eci si on] ,
Sol ve[Map[Si npl i f yEquat i on$2D, eqns], vars]],
AskMaxSeconds$2D[],
Message[Sol ve2D: : ti me, AskMaxSeconds$2D] 1]1;{}1;
| f[save===String, On[Sol ve: : svars]];
1 f[I sSynmbol $20] Map[(vars /. #)&, ans], vars],
Message[Sol ve2D: :infinite];
Sel ect [ans, Not [| sSynbol $20{ (vars /. #),vars]]é&],
ans] 1;

Epilogue

End[]; (* end of "*Private" *)
EndPackage[]; (* end of "D2DSol ve2D " *)

D2DTangentCircles2D

The package D2DTangentCircles2D provides a variety of functions for constructing tangent
circles that satisfy three conditions. The conditions include passing through a given point,
center at a given point or on a given curve, tangent to a given line and tangent to a given
circle.

Initialization
Begi nPackage["D2DTangent Circl es2D ", {"D2DCircle2D ", "D2DExpressions2D ",
" D2DGeonetry2D ", "D2DLi ne2D' ", "D2DWVaster2D ", "D2DPoi nt2D ",

" D2DSol ve2D "}1;

D2DTangent Gi r cl es2D: : usage=
"D2DTangentGircl es2D is a package for constructing tangent circles.";

Tangent G rcl es2D: : usage=

"Tangent C rcl es2D obj Li st, (center), (radius)] constructs a list of
circles tangent to one, two or three objects (points, lines or circles);
optionally, the center nay be constrained to a point, line or circle;

optionally, the radius may be specified; the total nunber of constraints
must be three (constraining the center to a point is two constraints).";

Begi n["‘Private' "];

Queries

Point, Line or Circle Query

The private function IsSimple$2D returns True if an object is a point, line or circle; otherwise,
returns False.

I sSi npl e$2D[obj _] : = |s20 obj, {Poi nt 2D, Li ne2D, C rcl e2D}];
Line or Circle Query

The private function IsSimpleCurve$2D returns True if an object is a line or a circle; otherwise,
returns False.

519

520 D2DTangentCircles2D - Tangent/On Equations

I sSi npl eCurve$2D{ obj _] := Is2D[obj, {Line2D, Crcle2D}];

Tangent/On Equations

Point Tangent to a Circle (On Circle)

The private function TangentEquation$2D returns an equation constraining a point to be on
a circle.

Tangent Equat i on$2D0] Poi nt 2D[{x1_,y1_}],Crcle2D{h2_, k2_},r2_]] :=
(x1- h2) A2+(y1- k2) A2==r 27 2;

Line Tangent to a Circle

The private function TangentEquation$2D returns an equation constraining a line to be
tangent to a circle.

Tangent Equat i on$20[Li ne2D{al_, b1l_,c1_],Crcle2D[{h2_,k2_},r2_]] :=
(alr2+b172) *r 272==(al*h2+b1*k2+c1)"2;

Circle Tangent to a Circle

The private function TangentEquation$2D returns an equation constraining two circles to be
tangent.

Tangent Equation$2D[Circle2D[{h1_,k1_},r1_],Crcle2D{h2_,k2_},r2_]] :=
((h1-h2)"2+(k1l-k2)"2-(r1-r2)~2)*((hl-h2) "2+(k1l-k2)"2- (r1+r2)"2) ==

Point on a Point

The private function OnEquation$2D returns a pair of equations constraining two points to
be coincident.

OnEquation$2D[{x1_,y1_}, Point2D[{x2_,y2_}]] := {x1==x2, yl==y2};

Point on a Line

The private function OnEquation$2D returns equation constraining a point to be on a line.

OnEquation$2D[{x1_,y1_}, Line2D[a2_, b2_,c2_]] := {a2*x1+b2*yl+c2==0};

Point on a Circle
The private function OnEquation$2D returns an equation constraining a point to be on a
circle.

OnEquation$2D[{x1_,y1_},Crcle2D{h2_,k2_},r2_]] :=
{(x1-h2) "2+(yl-k2) "2==r 22} ;

D2DTangentCircles2D - General Circle Tangency 521

General Circle Tangency

Tangent Circles

The private function TangentCircles$2D is a general function that constructs a list of circles
tangent to a list of one, two or three objects, optionally with center on a given object, optionally
with a given radius.

Tangent G rcl es$2D] obj _Li st, cenCbj _,radius_] :=

Modul e[{h, k, r, cl, eql, eq2, eq3, ans, ci rcl es},
cl=Circle2D[{h,k},r];
eql=Map[Tangent Equat i on$20 #, c1] &, obj] ;
eq2=If[cenCbj ===Nul | , {}, OnEquati on$2D[{ h, k}, cen®oj]];
eq3=If[radius===Nul | , {}, {r==radi us}];
ans=Sol ve2D[Joi n[eql, eq2, eq3],{h,k,r}];
ans=Sel ect [ans, Not [| sConpl ex2D[{ {h, k,r} /. #]]&];
ans=Sel ect[ans, Not[| sZeroOr Negative2D[r /. #]]&;
circles=Map[(cl /. #)& ans];
Conpl ement [Union[circles],obj]];

Tangent Circle Construction

Tangent Object, Center Point

TangentCircles2D [{pt| In| cir}, point] M Constructs a list of circles tangent to a point, line
or circle and passing through a point.

Tangent G rcl es2D] { obj _?I sSi npl e$2D}, P: Poi nt2D{ {x_,y_}]] :=
Tangent G rcl es$2D {obj }, P, Nul I];

Tangent Object, Center on Object, Radius

TangentCircles2D[{pt| In| cir}, In| cir, Y1 M Constructs a list of circles tangent to a point,
line or circle, with center point on a line or circle and with a given radius.

Tangent Gi r cl es2D[{ obj 1_?1 sSi npl e$2D}, obj 2_?I sSi npl eCur ve$2D,
r3_?lsScal ar2D] :=
Tangent G rcl es$2D] {obj 1}, obj 2,r3] /;
Not [| sZer oOr Negative2D[r3]];

Two Tangent Objects, Center On Object

TangentCircles2D [{pt| In| cir, pt|in| cir}, in| cir] M Constructs a list of circles tangent
to two objects (points, lines or circles) centered on a line or circle.

Tangent G rcl es2D] { obj 1_7?I sSi npl e$2D, obj 2_7?1 sSi npl e$2D},
obj 3_?1sSi npl eCurve$2D] : =
Tangent G rcl es$2D { obj 1, obj 2}, obj 3, Nul I] ;

522 D2DTangentCircles2D - Epilogue

Two Tangent Objects, Radius

TangentCircles2D[{pt| In| cir, point|in| cir}, Y1 M Constructs a list of circles tangent to
two objects (points, lines or circles) with a given radius.

Tangent G rcl es2D[{ obj 1_?1 sSi npl e$2D, obj 2_7?I sSi npl e$2D},
r3_?lsScal ar2D] :=
Tangent Ci rcl es$20 { obj 1, obj 2}, Nul | , r3] /;
Not [| sZer oOr Negat i ve2D[r3]];

Three Tangent Objects

TangentCircles2D [{pt| In| cir, pt| In| cir, pt|in| cir}] MW Constructs a list of circles tangent
to three objects (points, lines or circles).

Tangent G rcl es2D[{ obj 1_?I sSi npl e$2D, obj 2_7?I sSi npl e$2D,

obj 3_7?1sSi npl e$2D}] : =
Tangent Ci rcl es$2D { obj 1, obj 2, obj 3}, Nul |, Nul I] ;

Epilogue

End[1; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DTangentCircles2D " *)

D2DTangentConics2D

The package D2DTangentConics2D provides functions for constructing conics and quadratics
that satisfy five conditions. Each condition may be either passing through a given point or
tangent to a given line.

Initialization

Begi nPackage[" D2DTangent Coni cs2D ", {"D2DCi rcl e2D' ", "D2DEl | i pse2D ",

" D2DExpr essi ons2D' ", "D2DCGeonetry2D ", "D2DHyperbol a2D ", "D2DLi ne2D ",
"D2DLoci 2D ", "D2Dwaster2D ", "D2DParabol a2D' ", "D2DPencil 2D ",

"D2DPoi nt 2D ", "D2DQuadratic2D ", "D2DSol ve2D ", "D2DTransforn2D "}];

D2DTangent Coni ¢s2D: : usage=
" D2DTangent Coni cs2D i s a package for constructing tangent conics and
quadratics.";

Tangent Coni ¢s2D: : usage=

"Tangent Coni cs2D[{ obj 1, obj 2, obj 3, obj 4, obj 5}] constructs list of conic
curves given five objects; the objects may be any conbination of points and
lines; the conics will pass through the given points and be tangent to the
given lines.";

Tangent Quadr ati cs2D: : usage=

"Tangent Quadr ati cs2D[{ obj 1, obj 2, obj 3, obj 4, obj 5}] constructs |ist of
quadratics given five objects; the objects may be any conbinati on of points
and lines; the quadratics will pass through the given points and be tangent
to the given lines.";

Begi n["‘Private' "];

Error Messages

General Error Messages
Tangent Coni ¢s2D: : coi nci dent =

"Two or nore of the defining points or lines are coincident; no proper
coni ¢ can be constructed.";

523

524 D2DTangentConics2D - Utilities

Tangent Coni cs2D: : col | i near =
"Three or nore of the defining points are collinear; no proper conic can
be constructed.";

Tangent Coni cs2D: : concurrent =
"Three or nmore of the tangent |lines are concurrent; no proper conic can
be constructed.";

Tangent Coni ¢cs2D: : | i nesThru=
"One of the points is on nore than one of the tangent |ines; no proper
coni ¢ can be constructed."”;

Tangent Coni cs2D: : paral | el =
"Three or nore of the defining lines are parallel; no proper conic can
be constructed.”;

Tangent Coni cs2D: : poi nt sOn=
"Two or nore of the points are on a tangent line; no proper conic can be
constructed.";

Utilities
Numeric Computations

The private function N$2D numerically normalizes lines and quadratics (or lists of such objects)
if approximate numerical computations are underway; otherwise, no action is taken.

N$2D] expr _Li st] := Map[N$2D, expr];

N$2D[L: Line2D[a_,b_,c_]] :=
I f[I sApproxi mate2D[L], Line2D] N L] 1,L];

N$2D[P: Poi nt 2D[{x_,y_}]] :=
1 f[| sApproxi mate2D[P], N[P], P];

N$2D[Q@ Quadratic2D[a_,b_,c_,d_,e_,f_]] :=

If[IsApproxi mte2D[@, Quadratic2Dl NQ].4Q;

Number of Points on a Line

The private function CountPoints0n$2D returns the number of points from a given list that
are on a given line.

Count Poi nt sOn$20[pts_Li st, L: Line2Dfa_,b_,c_]] :=
Count [Map[| sOn2D[#, L] & pts], True];
The private function MaxPoints0On$2D returns the maximum number of points from a given

list that are on any of the lines in a list.

MaxPoi nt sOn$20] pts_List, |l ns_List] :=
If[Length[pts]<1 || Length[lns]<1,
0

Néax @@ Map[Count Poi nt sOn$20] pts, #] & I ns] 1;

D2DTangentConics2D - Utilities

525

Number of Lines Through a Point

The private function CountLinesThru$2D returns the number of lines from a given list that

pass through a given point.

Count Li nesThru$2D[I ns_Li st, P: Point2D[{x_,y_}]] :=
Count [Map[| sOn2D[P, #] & I ns], True];

The private function MaxLinesThru$2D returns the maximum number of lines from a given
list that pass through any of the points in a list.

MaxLi nesThru$2D{ | ns_Li st, pts_List] :=

If[Length[lns]<1 ||
0

Lengt h[pt s] <1,

l\/iiX @@ Map[Count Li nesThru$2D[| ns, #] & pts]];

Validity Queries

The private function ValidObjects$2D verifies that the object list contains valid objects.
The function private ValidConfigurationQ$2D verifies that the configuration of the objects

is valid.

Val i dOoj ect sQB2D[obj _Li st, funcNane_] :=
((Count [Map[| sVal i d2D, obj], True] ==
Count [Map[| s2D[#, { Poi nt 2D, Li ne2D}] &, obj], True] ==
Lengt h[obj] ==5) &&
I sNuner i c2D] obj , funcNane]) ;

Val i dConfi gurati on@2D obj _List] :=

Modul e[{ pts, | ns},

pt s=Sel ect [N$2D0] obj], | s2D[#, { Poi nt 2D}] &] ;
| ns=Sel ect [N$2D{ obj], | s2D[#, { Li ne2D}] & ;

Vihi ch

| sCoi nci dent 2D] pt s],

Message[Tangent Coni ¢s2D: : coi nci dent] ; Fal se,
| sCoi nci dent 2D[| ns],

Message[Tangent Coni ¢s2D: : coi nci dent] ; Fal se,
I sCol | i near 2D pt s],

Message[Tangent Coni cs2D: : col | i near] ; Fal se,
I sConcurrent 2D | ns],

Message[Tangent Coni ¢s2D: : concurrent]; Fal se,
I sTripleParallel 201 ns],

Message[Tangent Coni cs2D: : paral |l el | ; Fal se,
MaxPoi nt sOn$20 pt s, | ns] >1,

Message[Tangent Coni cs2D: : poi nt sOn] ; Fal se,
MaxLi nesThru$2D[| ns, pt s] >1,

Message[Tangent Coni cs2D: : | i nesThru] ; Fal se,

True,
True]];

526 D2DTangentConics2D - Quadratic and Conic Construction

Polynomials

Point on Line

The private function Polynomial$2D forms a polynomial by substituting the coordinates of a
point into the equation of a line.

Pol ynomi al $20 Poi nt 2D[{x_,y_}],Line2Da_,b_,c_]] := a*x+b*y+c;

Point on Quadratic

The private function Polynomial$2D forms a polynomial by substituting the coordinates of a
point into a quadratic equation.

Pol ynomi al $2D Poi nt 2D0{ {x_,y_}], Quadratic2D[a_,b_,c_,d_,e_,f_]] :=
a*xN2+b* x*y+cryr2+d* x+ery+f

Line Tangent to Quadratic

The private function Polynomial$2D forms a polynomial of coefficients from a line and a
quadratic when the line is tangent to the quadratic.

Pol ynomi al $2D] Li ne2D{ p_,q_,r_], Qadratic2Da_,b_,c_,d_,e_,f_]] :=
((4*c*f-en2)*pr2+(4*a*f-di2) *gh2+(4%a*c-br2) *rr2+
2*(b*d-2*a*e) *q*r +2* (b*e- 2*c*d) *p*r +2*(d*e- 2*b*f) *p*q) ;

Quadratic and Conic Construction

Quadratic Tangent to Five Objects

TangentQuadratics2D [{obj1, obja, 0bjs, objs, objs}] M Constructs a list of conics tangent
to five objects. The objects may be any combination of points or lines.

Tangent Quadr ati cs2D[obj _List] :=
| f[ValidConfigurati on@2D[obj],
Tangent Quadr at i c$2D[obj / / N$2D] ,
{31 7

Val i dObj ect s@2D] obj , Tangent Quadr ati cs2D] ;
Conic Tangent to Five Objects

TangentConics2D [{obji, objz, objs, objs, objs}]1 M Constructs a list of conics tangent to five
objects. The objects may be any combination of points or lines.

D2DTangentConics2D - Quadratic and Conic Construction 527

Tangent Coni cs2D[obj _List] : =
Modul e[{ Q coni cs},
I f[Val i dConfi gurati on@2D[obj],
Q=Tangent Quadr ati cs2D{ obj // N$2D] ;
coni cs=Fl att en[Map[Loci 2D, Q];
Uni on[
Sel ect [coni cs,
I s2D[#, {Circl e2D, El | i pse2D, Hyper bol a2D, Par abol a2D}] &],
{3111/
Val i dQoj ect s@2D[obj , Tangent Coni cs2D] ;

Preprocess Arguments

Preprocesses the arguments to private function TangentQuadratic$2D to match the imple-
mented functions.

Tangent Quadratic$2D[{a_,b_,c_,d_,e_}] :=
Tangent Quadrati c$2D[a, b, c, d, e];

Tangent Quadratic$2D[a___,L1_Line2D,b___ ,L2 Line2D,c___,L3_Line2D,d__] :=
Tangent | nverse$2D[{L1,L2,L3,a,b,c,d}];

Tangent Quadratic$2D{a___,L_Line2D,b___,P_Point2D,c__] :=
Tangent Quadrati c$2D{ a, P, b, c, L];

Tangent Quadratic$2D{a___,P_Point2D,b___,L_Line2D,c__] :=
(Tangent Quadrati c$2D0{{P, L}, a, b, c]) /;
1sOn2D P, L] ;

Five Points

Private function that constructs a list containing one quadratic passing through five points.

Tangent Quadratic$2D[P1_,P2_,P3_,P4_,P5_] :=
{Quadrati c2D] P1, P2, P3, P4, P5] //N$2D};

Four Points, One Line (No Points on Line)

Private function that constructs a list containing two quadratics passing through four points
and tangent to one line. None of the points can be on the tangent line.

Tangent Quadr at i ¢$2D[P1_Poi nt 2D, P2_Poi nt 2D, P3_Poi nt 2D, P4_Poi nt 2D,
L5_Line2D] :=
Modul e[{Q k, al | Root s, r eal Root s},

Q=Quadr ati c2D[{ Li ne2D[P1, P2], Li ne2D[P3, P4] },
{Line2D[P1, P3], Li ne2D[P2, P4]}, k, Penci | 2D] // N$2D;

al | Root s=Sol ve2D[{ Pol ynoni al $20[L5, Q@ ==0}, {k}];

real Root s=Sel ect[al | Root s, | sReal 2D[k /. #]&;

N$2D[Mep[(Q /. #)& real Roots]]];

528 D2DTangentConics2D - Quadratic and Conic Construction

Four Points, One Line (One Point on Line)

Private function that constructs a list containing one quadratic passing through four points
and tangent to one line. One of the points must be on the tangent line.

Tangent Quadr at i c$2D[{ P1_Poi nt 2D, L1_Li ne2D}, P2_Poi nt 2D, P3_Poi nt 2D,
Point2D[{x4_,y4_}]] :=
Modul e[{x, y, L12, L13, L23, I n, k},

L12=Pol ynom al $20 Poi nt 2D({ x, y}], Li ne2D P1, P2]] ;

L13=Pol ynomi al $2D[Poi nt 20[{ x, y}], Li ne2D[P1, P3]];

L23=Pol ynomi al $2D[Poi nt 20 { x, y}], Li ne2D[P2, P3]];

I n=Pol ynom al $20[Poi nt 2D[{ x, y}], L1];

k=(L12*L13)/ (I n*L23) /. {x->x4,y->y4};

{Quadratic2D L12*L13-k*I n*L23, {x,y}] //N$2D}];

Three Points, Two Lines (No Points on Lines)

Private function that constructs a list containing four quadratics given three points and two
tangent lines. None of the points can be on the tangent lines.

Tangent Quadr at i c$2D[Poi nt 2D[{0, 0}], Poi nt 200 {x2_, y2_}], Poi nt 2D[{ x3_, y3_}],
Line2D[al_, bl_,cl_], Line2Dfa2_,b2_,c2_]] :=
Modul e[{pl1, p12, p13, p21, p22, p23, p31, p32, p33, a, b, ans, k, ¢,
pll=cl; pl2=al*x2+bl*y2+cl; pl3=al*x3+bl*y3+cl;
p21l=c2; p22=a2*x2+b2*y2+c2; p23=a2*x3+h2*y3+c2;
p31l=1; p32=a*x2+b*y2+1; p33=a*x3+b*y3+1;
ans=Sol ve2D[{ p11*p21*p32"r2==p12*p22*p31"2,
pl2*p22*p3372==p13*p23*p32~2},{a, b}];
ans=Sel ect[ans, (I sReal 2D[a /. #] && IsReal20b /. #])&];
k=cl*c2;
E(al*x+bl*y+cl) *(a2*x+b2*y+c2) - k* (a*x+b*y+1) " 2;
N$2D[Map[Quadratic2D{ (Q /. #),{x,y}]& ans]] 1;

Tangent Quadr at i c$2D P1: Poi nt 200 {x1_, y1_}], P2: Poi nt 2D[{x2_, y2_}],
P3: Poi nt 2D {x3_, y3_}],
L1:Line2Dfal_,bl ,cl1],L2:Line2Dja2_,b2_,c2_]] :=
Modul e[{pt 2, pt3,1nl,1n2, @,
{pt2,pt3,1nl,In2}=Transl ate2Df { P2, P3, L1, L2}, {-x1,-y1}] //N$2D;
Q=Tangent Quadr ati ¢$2D[Poi nt 20{ {0, 0}], pt 2, pt 3,1 nl, | n2];
N$2D[Transl at e2D[Q {x1,y1}]] 1;

Three Points, Two Lines (One Point on Line)

Private function that constructs a list containing up to two quadratics through three points,
tangent to two lines when one of the points is on a tangent line.

Tangent Quadr ati ¢$2D[{ P1_Poi nt 2D, L1_Li ne2D}, P2_Poi nt 2D, P3_Poi nt 2D,
L4_Line2D] :=
Modul e[{Q k, al | Root s, root s},

Q=Quadr ati c2D[{L1, Li ne2D P2, P3] },
{Li ne2D P1, P2], Li ne2D[P1, P3]}, k, Penci | 2D ;

al | Root s=Sol ve2D] { Pol ynoni al $20[L4, Q ==0}, {k}];

roots=Sel ect[al |l Roots, | sReal 2D{ k /. #]&];

N$2D Map[(Q /. #) & roots]]];

D2DTangentConics2D - Quadratic and Conic Construction 529

Three Points, Two Lines (Two Points On Lines)

Private function that constructs a list containing up to one quadratic through three points,
tangent to two lines when two of the points are on the tangent lines (one point on each tangent
line).

Tangent Quadr at i c$2D[{ P1_Poi nt 2D, L1_Li ne2D},
{P3_Poi nt 2D, L3_Li ne2D}, P2: Poi nt 2D[{x2_,y2 }]] :=
Modul e[{x, y, I n13,1n1,1n3, k},
| n13=Pol ynom al $20 Poi nt 200 { x, y}1, Li ne2D[P1, P3]] ;
| n1=Pol ynoni al $20[Poi nt 200 {x, y}], L1] ;
| n3=Pol ynomi al $2D[Poi nt 200 {x, y}], L3];
k=(In1*I n3)/1n13"2 /. {x->x2,y->y2};
{Quadratic2D I n1*l n3-k*1 n13”2, {x,y}] //N$2D}];

Reciprocal Method

Private function that constructs a list containing quadratics given five elements (points or
tangent lines). The method of reciprocals is used. Using the reciprocal method converts a
case with more than two tangent lines to its reciprocal, which has two or fewer tangent lines.

Tangent | nver se$2Df ori gObj s_List] :=
Modul e[{ of f set, obj sTrans, i nvertedj s, @,
of f set =SaveO f set $2D[ori gOj s] ;
obj sTrans=Tr ansl at e2D[ori gObj s, - of f set];
i nvertedObj s=Map[| nvert $2D, obj sTrans] // N$2D;
(=Tangent Quadr ati c$2D[i nvert edj s] ;
Transl at e2D] Map[Reci procal $2D, Q, of fset] //N$2D];

Private functions that construct the pole point of a line with respect to a unit circle and the
polar line of a point with respect to a unit circle.

Invert$20 Line2Dfa_,b_,c_]] := Point2D[{-a/c,-b/c}];

I nvert$20] Poi nt 2D[{x_,y_}]] := Line2D x,y,-1];

Private function that constructs the reciprocal quadratic of a quadratic with respect to a unit
circle.

Reci procal $200 Quadrati c2Dfa_,b_,c_,d_,e_,f_]] :=
Quadrati c2D[4*c*f-en2, 2*d*e-4*b*f, 4*a*f-d"2,
4*c*d- 2*b*e, 4*a*e-2*d*b, 4*a*c- b"2] // N$2D;

Private functions that determine an offset that will safely position a list of objects insuring
that no line passes through the center of inversion and no point is coincident with the center
of inversion.

I nval i dOf f set 2D P1: Poi nt 2D[{x1_,y1_}],of fset:{dx_,dy_}] :=
I sCoi nci dent 2D[P1, Poi nt 2D[of f set]];

530 D2DTangentConics2D - Epilogue

I nval i dOf f set @B2D[L1: Li ne2D{al_, bl_,cl1_],of fset:{dx_,dy_}] :=
| sOn2D] Poi nt 2D of f set], L1];

SaveOf fset $2D[obj _List] : =
Modul e[{ of f set ={0, 0} },
Whi | e[Meber @ Map[| nval i dOf f set Q62D #, of f set] & obj],
True],
of f set ={ Randon{ | nt eger, {-4, 4}],
Randoni I nteger, {-4,4}1}1.;

of fset];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DTangent Conics2D " *)

D2DTangentLines2D

The package D2DTangentLines2D provides functions for computing lines that are tangent to
curves using a variety of defining conditions.

Initialization
Begi nPackage[" D2DTangent Li nes2D' ", {"D2DCircle2D ", "D2DConic2D ",
"D2DEl | i pse2D ", "D2DEquations2D ", "D2DExpressions2D ", "D2DGeonetry2D ",
" D2DHyper bol a2D' ", "D2DLi ne2D' ", "D2DMaster2D ", "D2DParabol a2D ",
"D2DPoi nt 2D ", "D2DQuadratic2D ", "D2DSegnent2D ", "D2DSol ve2D ",
" D2DTangent Poi nt s2D' ", "D2DTr ansform2D "}];

D2DTangent Li nes2D: : usage=
"D2DTangent Li nes2D i s a package for constructing tangent lines and line
segnments.”;

Tangent Equat i on2D: : usage=

"Tangent Equati on2D[| i ne, quad] constructs an equation involving the
coefficients of a line and a quadratic constraining the line to be tangent
to the quadratic.";

Tangent Li nes2D: : usage=

"Tangent Li nes2D[poi nt, curve] constructs a list of lines through a point
and tangent to a second-degree curve; TangentLi nes2D[line, curve,
Paral | el 2D] constructs a list of tangent lines parallel to a given line;
Tangent Li nes2D[| i ne, curve, Perpendicul ar2D] constructs a |ist of tangent
l'ines perpendicular to a given |ine; TangentLines2D curve, curve]
constructs a list of lines tangent to two curves.";

Tangent Segnent s2D: : usage=
"Tangent Segnent s2D[curve, curve] constructs a list of |ine segnents
tangent to two curves.";

Begi n["‘ Private' "];

531

532 D2DTangentLines2D - Line Construction

Tangent Equation

Line Tangent to a Quadratic

TangentEquation2D [line, quad] M Forms an equation between the coefficients of a line and
a quadratic constraining the line to be tangent to the quadratic.

Tangent Equat i on2D[Li ne2D{ p_, q_,r_],
Quadratic2Da_,b_,c_,d_,e_,f_]] :=
((4*c*f-en2)*pr2+(4*a*f-dr2) *gh2+(4*a*c- bN2) *r "2+
2*(b*d-2*a*e) *q*r +2* (b*e- 2*c*d) *p*r +2* (d*e- 2*b*f) *p*q) ==0;

Line Construction

Lines Through a Point Tangent to a Circle

TangentLines2D [point, circle] W Constructs a list containing up to two lines through a point
and tangent to a circle.

Tangent Li nes2D[Poi nt 2D {x1_,y1_}],Crcle2D {h2_, k2_},r2_]] :=
Uni on[Tangent Li ne$2Df { x1, y1}, 0,{h2, k2},r2,1]];

Lines Through a Point Tangent to a Curve

TangentLines2D [point, curve] M Constructs a list containing up to two lines through a point
and tangent to a curve or quadratic.

Tangent Li nes2D[P1: Poi nt 2D[{x1_,y1_}],crv2_] :=

Modul e[{ pt s},
pt s=Tangent Poi nt s2D[P1, crv2];
Whi ch[
pt s=={}, {}
Lengt h[pt s] ==1, {Line2D P1, crv2]},
True, Map[Li ne2D[P1, #] & pts]]] /;

Is2D[crv2, {El | i pse2D, Hyper bol a2D, Par abol a2D, Quadr ati c2D}];

Parallel or Perpendicular Tangent Lines

TangentLines2D [line, curve, Parallel2D | Perpendicular2D] M Constructs a list containing
up to two lines which are parallel or perpendicular to a given line and tangent to a conic
curve quadratic. If the Parallel2D|Perpendicular2D keyword is omitted, the default is
Parallel2D.

D2DTangentLines2D - Line Construction 533

Tangent Li nes2D{ L: Line2D{p_,q_,r_], Q Quadratic2Dfa_,b_,c_,d_,e_,f_],
Paral l el 2D] : =
Modul e[{z, eql, R, ans},

z=R*(-b"2+4*a*c) +q*(b*d- 2*a*e) +p* (- 2*c*d+b*e);

1f[IsZero2D z],{},
egl=Tangent Equat i on2D[Li ne2D[p, q, R, J ;
ans=Sel ect [Sol ve2D[{eql}, {R}],

Not [I sConpl ex2D[R /. #]]&];

Map[Li ne2D[p,q, (R /. #)]& ans]] 1;

Tangent Li nes2D[L: Line2D[a_,b_,c_],crv_, Parallel 2D :=
Tangent Li nes2D[L, Quadratic2D[crv], Paral | el 20] /;
Is2D[crv,{C rcle2D, El | i pse2D, Hyper bol a2D, Par abol a2D}] ;

Tangent Li nes2D[L: Line2D[a_,b_,c_],crv_] :=
Tangent Li nes2D[L, crv, Paral | el 2D] /;
Is2 crv, {G rcl e2D, El | i pse2D, Hyper bol a2D, Par abol a2D, Quadr ati c2D}] ;

Tangent Li nes2D[Li ne2D[a_, b_, c_], crv_, Per pendi cul ar2D] :=
Tangent Li nes2D] Li ne2D[- b, a, c], crv, Paral | el 20] /;
Is2Df crv,{C rcle2D, El | i pse2D, Hyper bol a2D, Par abol a2D, Quadr ati c2D}] ;

Lines Tangent to Two Circles

TangentLines2D [circle, circle] M Constructs a list containing up to four lines which are
tangent to two circles. The first two lines in the list (if present) are the external tangents;

the last two lines (if present) are the internal tangents. The private function TangentLine$2D
implements the mathematics.

Tangent Li nes2D[Circle2D[{h1_,k1_},r1_],Circle2D[{h2_,k2_},r2_]] :=
Fl at t en[{ Map[Uni on[Tangent Li ne$2D{ { h1, k1},r1, {h2, k2},r2, #]]1& {-1,1}1}];

Tangent Li ne$2D[{h1_,k1_},r1_,{h2_,k2_},r2_,s_] :=
Modul e[{ H=h1- h2, K=k1- k2, R=r 1+s*r 2, L, A2, B2, C2, | ns, sv1, sv2},

L=H"2+K"2;
A2=A1*H B1*K; B2=Bl*H+Al*K; C2 =L*r1-hl*A2-k1*B2;
svl=Head[Li ne2D: : i magi nary]; O f [Li ne2D: : i nagi nary] ;
sv2=Head[Li ne2D: :invalid]; Off[Line2D: :invalid];
I ns=Map[(Li ne2D[A2, B2, C2] /. #)&

{{A1->R, Bl-> Sqgrt[L-R*2]},

{Al->R, Bl->-Sgrt[L-R'2]}}];

I f[svl===String, On[Li ne2D: :i nagi nary]];
I f[sv2===String, On[Line2D::invalid]];
Select[Ins,IsValid2D]];

Lines Tangent to Two Quadratics

TangentLines2D [quad, quad] M Constructs a list containing up to four lines tangent to two
quadratics. The private function TanLn$2D computes the candidate tangent lines, and the
private function DeleteCoincident$2D removes coincident solutions.

534 D2DTangentLines2D - Line Construction

TanLn$2D[QL: Quadratic2Dal_,bl_,cl_,dl_,el ,f1_],
Q@: Quadratic2Da2_,b2_,c2_,d2_,e2_,f2_]] :=
Modul e[{L, p, q, r, ans, | ns, svMsgl, svMsg2},

L=Li ne2D[p,q,r];

ans=Sol ve2D[{ Tangent Equat i on2D[L, Q1]
Tangent Equati on2D[L, Q] ,
pr2+gh2==1},{p, q,r}l;

svMsgl=Head[Li ne2D: : i magi nary] ; Of f [Li ne2D: : i magi nary] ;

svMsg2=Head[Li ne2D: :inval id]; OFf[Li ne2D: :invalid];

I ns=map[(L /. #)&, ans];

I f [svMsgl===Stri ng, On[Li ne2D: : i nagi nary]] ;

I f[svMsg2===String, On[Li ne2D: :invalid]];

Sel ect[Ins, IsValid2D];

Del et eCoi nci dent $200 {s1___,
L1:Line2Dfal_,bl ,c1],s2__ ,
L2: Line2Dfa2_,b2_,c2_]1,s3__ }]:=
Del et eCoi nci dent $20[{s1, L1, s2,s3}] /;
I sCoi nci dent 2D[L1, L2] ;

Del et eCoi nci dent $20[| ns_Li st]: =I ns;

Tangent Li nes2D] QL: Quadratic2Dfal_,bl_,cl_,dl_,el_,f1],
@: Quadratic2Da2_,b2_,c2_,d2_,e2_,f2_]] :=
I f[1sCoincident 20 QL, Q] , {},
Del et eCoi nci dent $20] TanLn$2D[Q1, Q]]];

Lines Tangent to Two Conics

TangentLines2D [curve, curve] M Constructs a list containing up to four lines tangent to
two conic curves (circles, ellipses, hyperbolas, parabolas or quadratics).

Tangent Li nes2D[crvl_,crv2_] :=
Modul e[{ QL, Q2},
Ql=If[Is2D crvl, {Quadrati c2D}], crvl, Quadratic2D crvl]];
Q=If[l1s2D crv2, {Quadratic2D}], crv2, Quadratic2D crv2]];
Tangent Li nes2D[QL, @Q@]] /;
Is2D[crvl, {Crcle2D, El | ipse2D, Hyper bol a2D, Par abol a2D, Quadrati c2D}] &&
Is2D crv2, {CGrcl e2D, El | i pse2D, Hyper bol a2D, Par abol a2D, Quadr ati c2D}] ;

Line Segments Tangent to Two Curves

TangentSegments2D [curve, curve] M Constructs a list containing up to four line segments
tangent to two curves (circles, ellipses, hyperbolas, parabolas or quadratics).

D2DTangentLines2D - Epilogue 535

Tangent Segnent s2D[crvl_,crv2_] :=
Modul e[{1 ns, svMsgl, svMsg2},
| ns=Tangent Li nes2D{ crv1, crv2];
svMsgl=Head[Segrent 2D: : i nagi nary] ; O f [Segnent 2D: : i nagi nary] ;
svMsg2=Head[Segnent 2D: : i nval i d] ; O f [Segnent 2D: : i nval i d] ;
| ns=Map[Segment 20] Poi nt 20 #, crv1] , Poi nt 2D[#, crv2]] & | ns] ;
I f[svMsgl===Stri ng, On[Segnent 2D: : i magi nary]];
| f[svMsg2===Stri ng, On[Segnent 2D: :invalid]];
Select[Ins,IsValid2D] /;
Is2D[crvl, {C rcle2D, El |i pse2D, Hyper bol a2D, Par abol a2D, Quadr ati c2D}] &&
Is2Df crv2, {Circl e2D, El | i pse2D, Hyper bol a2D, Par abol a2D, Quadr ati c2D}] ;

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DTangentLines2D " *)

D2DTangentPoints2D

The package D2DTangentPoints2D provides functions for constructing the point of contact
between a curve and a tangent line.

Initialization
Begi nPackage[" D2DTangent Poi nt s2D' ", {"D2DCi rcle2D ", "D2DEl |ipse2D ",
" D2DExpr essi ons2D' ", "D2DCeonetry2D ", "D2DHyperbol a2D ",
"D2DI ntersect2D ", "D2DLine2D' ", "D2Dwvaster2D ", "D2DParabol a2D ",
"D2DPoi nt 2D ", "D2DQuadratic2D "}];

D2DTangent Poi nt s2D: : usage=
" D2DTangent Poi nt s2D i s a package for constructing tangent points.";

Tangent Poi nt s2D: : usage=
"Tangent Poi nt s2D[poi nt, curve] constructs a list containing points that

are the tangency points of the lines froma point to a curve.";

Begi n["‘Private' "];

Point Construction

Circle Contact Points

TangentPoints2D [point, circle] M Constructs a list containing up to two points that are the
contact points of the lines tangent to a circle from a point. This is a simplified formula for
circles; the general second-degree form also produces the correct points (see below).

Tangent Poi nt s2D[Poi nt 2D[{x1_,y1 }],Crcle2D {h_,k_},r_]] :=
Mdul e[{d, R c, s, S},
d=(x1-h)"2+(yl-k)"2;
1f[1sZero2D d], {},
R=If[IsZero2D d-r~2],0,d-r"2];
c=(r*(x1-h)-S*Sgrt[R *(yl1-k))/d;
s=(r*(yl-k)+S*Sqrt[Rl *(x1-h))/d;
Map[(Poi nt 20 { h+r*c, k+r*s}] /. S >#)&,
Wi ch[I sZero2D[R, {1},
I sNegative2D[R], {},
True! {_111}]]]]r

537

538 D2DTangentPoints2D - Epilogue

Conic Contact Points

TangentPoints2D [point, curve] M Constructs a list containing up to two points that are the
contact points of the lines tangent to a second-degree curve (ellipse, parabola, hyperbola or
quadratic) from a point. The circle is handled as a special case (see above).

Tangent Poi nt s2D[P1: Poi nt 2D[{x1_,y1_}],crv2_] :=
Modul e[{Q a, b, c,d, e, f,p,q,r, pts},
Q=I f [Head[crv2] ===Quadr ati c2D, crv2, Quadrati c2D[crv2]];
{a,b,c,d,e,f}=List @Q
p=2*a*x1+b*yl+d; q=b*x1+2*c*yl+e; r=d*xl+e*yl+2*f;

Whi ch[
I'sZero2 {p, g}, And], {},
1sOn2D P1, Q, {Poi nt 2D[Li ne2D[p, q,r],crv2]},
Tr ue, Poi nt s2D0[Li ne20[p, q,r],crv2]]] /;

Is2D[crv2, {El | i pse2D, Hyper bol a2D, Par abol a2D, Quadr ati c2D}];

Epilogue

End[1; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DTangent Poi nts2D " *)

D2DTransform2D

The package D2DTransform2D provides the basic support for the transformations provided
by DescartazD (reflect, rotate, scale and translate). Each Descarta2D object provides specific
support for the transformations using these basic capabilities.

Initialization

Begi nPackage[" D2DTr ansf orneD' ", {"D2DExpressi ons2D' ", "D2DLi ne2D ",
"D2Dwvast er 2D "}];

D2DTr ansf or n2D: : usage=
"D2DTransforn2D i s a package providing transformations.";

Ref | ect 2D: : usage=
"Refl ect2D[obj,line] reflects an object in a line;
Refl ect2D[obj List,line] reflects a |list of objects in a line;
Refl ect[eqgn, {x,y},line] reflects an equation in variables 'x’ and 'y’ in a
line.";

Ref | ect Angl e2D: : usage=
"Refl ect Angl e2D[theta,line] reflects an angle in a line.";

Rot at e2D: : usage=

"Rot at e2D[obj , theta, {h,k}] rotates an object an angle 'theta about a
point with coordinates {h, k}; Rotate2D[objList,theta,{h,k}] rotates a |list
of objects; Rotate2D[eqn,{x,y},{h,k}] rotates an equation in variables 'x’
and 'y’; if the {h,k} coordinates are omtted, the default is {0,0}.";

Scal e2D: : usage=

"Scal e2D obj, s, {h, k}] scales an object about coordinates {h,k} by scale
factor 's’; Scal e2Df obj List,s,{h,k}] scales a list of objects;
Scal e2D eqn, {x, y},{h,k}] scales an equation in variables 'x’ and 'y’; if
the center of scaling {h,k} is omtted, the default is {0,0}.";

Transl at e2D: : usage=

"Transl at e2D[obj, {u, v}] translates an object delta distance {u,Vv};
Transl at e2D[obj Li st, {u,v}] translates a |list of objects;
Transl ate2D[eqn, {x, y},{u,v}] translates an equation in variables 'x’ and

ryrLn

Begin["‘Private' "];

539

540 D2DTransform2D - Reflect

Queries

Transformable Query

The private function IsTransformable$2D[] returns True if an object or all the objects in
a list are transformable; otherwise, returns False.

| sTransf or mabl e$20{ obj _List] :=

(And @@ Map[| sTransf or mabl eSi ngl eLevel $20{ #] & obj]) /;
Not [| sScal ar Pai r 2D[obj]] ;

| sTransf or mabl e$20{ obj _] : = IsTransformabl eSi ngl eLevel $2D[obj] ;

I sTransf or nabl eSi ngl eLevel $2D[obj _] : =
(lIsValid2D[obj] || IsScalarPair2D obj]);

Reflect
Reflect Angle

ReflectAngle2D[#, line] M Reflects an angle in a line. This function is useful for reflecting
objects that are defined by rotation angles.

Ref | ect Angl e2D[t het a_?1 sScal ar 2D, Li ne2D[a_, b_,c_]] :=
2*ArcTan[b, -a] -t het a;
Reflect Coordinates
Reflect2D[{z, y}, line] M Reflects a list of coordinates {z, y} in a line.
Ref | ect 2D { x_7?I sScal ar 2D, y_?l sScal ar 2D}, Line2D[a_,b_,c_]] :=
{x,y}-2*(a*x+b*y+c)*{a, b}/ (ar2+b"2);
Reflect Equation
Reflect2D[egn, {z, y}, line] M Reflects an equation in the variables « and y in a line.
Ref | ect 2D eqn_Equal , { x_?1 sScal ar 2D, y_?I sScal ar 2D}, Line2Dfa_,b_,c_]] :=
eqn /. {x->((b*2-ar2)*x-2*a*b*y-2*a*c)/ (ar2+b"2),
y->((anr2-b"2)*y-2*a*b*x-2*b*c)/ (ar2+b"2) };
Reflect List
Reflect2D[objList, line] M Reflects a list of {x, y} coordinates or objects.

Ref | ect 2D obj _Li st ?1 sTransf or mabl e$2D, L: Line2D[a_, b_,c_]] :=
Map[Ref | ect 2D #, L] & obj] /;
Not [| sScal ar Pai r 2D obj 11 ;

D2DTransform2D - Rotate 541

Rotate

Rotate About Origin
Rotate2D [object, 1 M Rotates an object by an angle § about the origin.

Rot at e2D[obj _?I sTransf or mabl e$2D, t het a_?I sScal ar2D] : =
Rot at e2D[obj , t heta, {0, 0}];

Rotate Coordinates

Rotate2D [coords, 0, coords] M Rotates a coordinate list {z, y} by an angle 6 about a position
specified by a coordinate list. If the third argument is omitted, it defaults to the origin.

Rot at e2D {x1_7?I sScal ar 2D, y1_7?I sScal ar 2D}, t het a_?l sScal ar 2D,
{h_?lsScal ar 2D, k_?I sScal ar2D}] :=
{h+((x1-h)*Cos[theta] -(yl-k)*Sin[theta]),
k+((x1-h)*Sin[theta] +(yl-k)*Cos[theta])};

Rotate Equation

Rotate2D[egn, {z, y}, 0, coords] M Rotates an equation in the variables z and y by an angle
about a position given by coordinates.

Rot at e2Df eqn_Equal , { x_?1 sScal ar 2D, y_?I sScal ar 2D}, t het a_?l sScal ar 2D,
{h_?IsScal ar 2D, k_?1 sScal ar2D}] :=
eqn /. {x->h+(x-h)*Cos[theta] +(y-k)*Sin[theta],
y->k-(x-h)*Sin[theta] +(y-k)*Cos[theta]};

Rotate List

Rotate2D [objList, 8, coords] M Rotates a list of {z, y} coordinates or objects by an angle
about a position specified by a coordinate list. If the third argument is omitted, it defaults
to the origin.

Rot at e2Df obj _Li st ?1 sTransf or mabl e$2D, t het a_?I sScal ar 2D,
{h_?lsScal ar 2D, k_?1 sScal ar2D}] :=
Map[Rot at e2D[#, t heta, {h, k}]& obj] /;
Not [| sScal ar Pai r 20{ obj]1];

Scale

Scale from Origin
Scale2D[object, s M Scales an object about the origin.
Scal e2D[obj _?I sTransf or nabl e$2D, s_?I sScal ar2D] : =

Scal e2D{ obj, s, {0,0}] /;
Not [| sZer oOr Negat i ve2D[s]] ;

542 D2DTransform2D - Translate

Scales Coordinates

Scale2D[coords, s, coords] M Scales a coordinate list from a position given by coordinates.
If the position is omitted, it defaults to the origin.
Scal e2D[{x1_?1 sScal ar 2D, y1_?I sScal ar 2D}, s_?Il sScal ar 2D,
{h_?IsScal ar 2D, k_?l sScal ar2D}] :=

({h, k} +s*{x1-h,y1l-k}) /;
Not [| sZer oOr Negat i ve2D[s]] ;

Scale Equation

Scale2D[egn, {z, y}, s, coords] M Scales an equation in the variables z and y from a position
given by coordinates.

Scal e2D] eqn_Equal , {x_?l sScal ar 2D, y_?I sScal ar 2D}, s_?I sScal ar 2D,
{h_?IsScal ar 2D, k_?1 sScal ar2D}] :=
(eqn /. {x->h+(x-h)/s,y->k+(y-k)/s}) /;
Not [| sZer oOr Negat i ve2D[s]] ;
Scale List

Scale2D[objList, s, coords] M Scales a list of {z, y} coordinates or objects from a position
given by coordinates. If the position is omitted, it defaults to the origin.

Scal e2D[obj _Li st, s_?IsScal ar 2D, { h_?I sScal ar 2D, k_?I sScal ar2D}] : =

Map[Scal e2D #,s,{h,k}] & obj] /;
(Not[IsScal arPai r2D[obj]] && Not[|sZeroOrNegative2D[s]]);

Invalid Scale

Returns the $Failed symbol when Scale2D is called with a non-positive scale, s.

Scal e2D: : i nval i dScal e=
"The scale factor ‘1 is invalid; the scale factor nust be positive.";

Scal e2D[obj _?1 sTransf or mabl e$2D, s_?lsScalar2D, ___] : =

(Message[Scal e2D: : i nval i dScal e, s]; $Fail ed) /;
| sZer oOr Negat i ve2D] s] ;

Translate

Translate Coordinates

Translate2D[coords, {u, v}]1 M Translates a coordinate list delta distance.

Transl at e2D] { x_?1 sScal ar 2D, y_?I sScal ar 2D},
{u_?lsScal ar 2D, v_?I sScal ar2D}] := {x+u, y+v};

D2DTransform2D - Epilogue 543

Translate Equation

Translate2D[egn, {z, y}, {u, v}] W Translates an equation in the variables z and y by delta
distance.

Transl at e2D] eqn_Equal , { x_?1 sScal ar 2D, y_?I sScal ar 20},
{u_7?IsScal ar 2D, v_?l sScal ar2D}] :=
(egn /. {X->X-u,y->y-v});

Translate List

Translate2D[objList, {u, v}] M Translates a list of {z, y} coordinates or objects delta
distance.

Tr ansl at e2D[obj _Li st ?1 sTr ansf or nabl e$2D,
{u_7?IsScal ar 2D, v_?l sScal ar2D}] :=
Map[Tr ansl at e2D[#, {u, v}] & obj] /;
Not [| sScal ar Pai r 20{ obj]1];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DTransfornmD " *)

D2DTriangle2D

The package D2DTriangle2D implements the Triangle2D object.

Initialization
Begi nPackage[" D2DTri angl e2D' ", {"D2DCi rcl e2D' ", " D2DExpressi ons2D ",
" D2DGeonetry2D ", "D2DLine2D' ", "D2DWVaster2D ", "D2DNunbers2D ",
"D2DPoi nt 2D ", "D2DSegrent 2D ", "D2DSketch2D ", "D2DTransfornD "}];

D2DTr i angl e2D: : usage=
"D2DTri angl e2D i s a package that inplenments the Triangl e2D object.";

Cent r oi d2D: : usage=
"Centroid2D is the keyword required in Point2Dtriangle, Centroid2D].";

Circunscri bed2D: : usage=

"Circunmscribed2D is the keyword required in Crcle2D[triangle,
Circunscribed2D]; it is also required in Point2D[triangle,
Circunscri bed2D] . ";

I nscribed2D: : usage=
"I nscribed2D is the keyword required in Crcle2Dtriangle, |nscribed2D;
it is also required in Point2D[triangle, |nscribed2D .";

Sol veTri angl e2D: : usage=

"Sol veTri angl e2D[{{s1, s2,s3},{al,a2,a3}}] conputes a conplete triangle
configuration of the form{{sl,s2,s3},{al, a2,a3}} given three of the six
sides and/or angl es; unspecified sides and/or angles should be specified as
Nul I'; Sol veTri angl e2D[{{s1, s2,s3}, {al, a2,a3}}, True] conputes an alternate
configuration, if one exists.";

Triangl e2D: : usage=
"Triangl e2D[{ x1, y1}, {x2,y2},{x3,y3}] is the standard formof a triangle,
the coordinates being the vertices of the triangle.";

Begin["‘Private' "];

545

546 D2DTriangle2D - Description

Description

Representation

Triangle2D[{z1, y1}, {z2, y2}, {x3, y3}]1 M Standard representation of a triangle object in
Descarta2D. The three arguments are the vertex coordinates of the triangle.

Graphics

Provides graphics for a triangle by extending the Mathematica Display command. Executed
when the package is loaded.

Set Di spl ay2D]
Triangl e2D[{x1_,y1 },{x2_,y2 },{x3_,y3_}],
Line[{{x1,y1},{x2,y2},{x3,y3},{x1,y1}}] I;

Validation

Triangle2D[{z1, y1}, {®2, y2}, {3, y3}] M Detects that the arguments of a triangle are
imaginary and returns the $Failed symbol. If the imaginary parts are insignificant, they are
removed.

Triangl e2D: : i magi nary=
"An invalid triangle of the form’Triangle2D[‘1", ‘2, ‘3]’ has been
detected; the argunents cannot be imaginary.";

Triangl e2D pl: {x1_,y1 },p2:{x2_,y2_},p3:{x3_,y3_}] :=
(Triangl e2D @@
Chopl magi nary2D[Tri angl e$20] p1, p2, p3]]) /;
(Freed {pl, p2, p3}, _Pattern] && IsTinyl magi nary2Df{pl, p2, p3}]);

Triangl e2D pl: {x1_,y1 },p2:{x2_,y2_},p3:{x3_,y3_}] :=
(Message[Tri angl e2D: : i magi nary, p1, p2, p3]; $Fai l ed) /;
(Freed {pl, p2, p3}, _Pattern] && |IsConpl ex2D {p1l, p2, p3},0]);

Triangle2D[{z1, y1}, {z2, y2}, {x3, ys}]1 M Detects that the vertex points of a triangle are
collinear and returns the $Failed symbol.

Triangl e2D: :invalid=
"An invalid triangle of the form’Triangle2D[‘1, ‘2', 3]’ has
detected; the vertex points cannot be collinear.";

Triangl e2D[pl: {x1_,y1 },p2:{x2_,y2_},p3:{x3_,y3_}] :=
(Message[Tri angl e2D: @i nval i d, {x1, y1}, {x2,y2}, {x3,y3}]; $Fail ed) /;
(Freed {p1, p2, p3}, _Pattern] &&
I sCol | i near 20[Poi nt 20 p1], Poi nt 2D[p2] , Poi nt 200 p3]1) ;

IsValid2D [triangle] M Verifies that a triangle is valid.

I sVal i d2D] Tri angl e2D]
{x1_?l sScal ar 2D, y1_?l sScal ar 2D},
{x2_7?lsScal ar 2D, y2_?1 sScal ar 2D},
{x3_?lsScal ar 2D, y3_?l sScal ar2D}]] := True;

D2DTriangle2D - Queries 547

Queries

Configuration Query and Check

The private function IsValidConfiguration$2D [{{s1, s2, s3}, {a1, a2, ag}}] checks the va-
lidity of a complete triangle configuration and returns True if it is valid; otherwise, returns

False.

I sVal i dConfi gur ati on$20) {
S:{sl1l_?lsScal ar 2D, s2_7?l sScal ar 2D, s3_?l sScal ar 20},
A: {al_7?I sScal ar 2D, a2_?I sScal ar 2D, a3_?I sScal ar2D}}]: =True /;
Not [| sZer oOr Negat i ve2D[{s1, s2,s3, al, a2, a3}]] &&
(1sZero2D[s1*Sin[a2]-s2*Sin[al]] ||
Not [| sReal 2D[s1*Si n[a2] -s2*Sin[al]]]) &&
(1sZero2D[s2*Sin[a3]-s3*Sin[a2]] ||
Not [| sReal 200 s2*Si n[a3]-s3*Sin[a2]]]) &&
(I'sZero2D s1*Sin[a3]-s3*Sin[al]] ||
Not [| sReal 200 s1*Si n[a3] -s3*Sin[al]]]) &&
(I sZero2D Pi - (al+a2+a3)] ||
Not [| sReal 200 Pi - (al+a2+a3)]]);

I'sVal i dConfi gurati on$2D[__]: =Fal se;

The private function CheckConfiguration$2D[{{s1, s2, s3}, {a1, a2, az}}]1 checks the va-
lidity of a complete triangle configuration and returns the configuration unchanged if it is
valid; otherwise, reports an error and returns $Failed.
Sol veTri angl e2D: : i nvConfi g=
"The configuration of sides and/or angles specified is invalid; no
triangle can be constructed.";
CheckConf i gur ati on$20) {
S:{sl1l_?lsScal ar 2D, s2_7?l sScal ar 2D, s3_?l sScal ar 20},
A: {al_7?lsScal ar 2D, a2_?l sScal ar 2D, a3_7?I sScal ar2D}}]: ={S, A} /;
I sVal i dConfi guration$2D{{S, A}];

CheckConfiguration$2D __]:=
(Message[Sol veTri angl e2D: : i nvConfi g] ; $Fai | ed);

Vertex Query

The private function IsVertex$2D[n] returns True if n is a valid triangle vertex number (1,
2 or 3); otherwise, returns False.

IsVertex$2D[n_] := (n==1 || n==2 || n==3);

Scalars

Angle

Angle2D [triangle, n] M Computes the angle at a vertex of a triangle.

548 D2DTriangle2D - Scalars

Angl e2D[Tri angl e2D] p1: {x1_,y1_},p2:{x2_,y2_},p3:{x3_,y3_}].,n_]
Angl e2D[Tri angl e2D{ p2, p3, pl1],n-1] /;
(n==2 || n==3);

Angl e2D[Tri angl e2D[p1: {x1_,y1_}, p2:{x2_,y2_},p3:{x3_,y3_}1,n_]
Modul e[{a, b, c},
a=Di st ance2D] p1, p2];
b=Di st ance2D[p1, p3];
c=Di st ance2D[p2, p3];
ArcCos[(an2+b"2-cn2)/ (2*a*b)]] /;
(n==1);

Solve Triangle

SolveTriangle2D[{{s1, s2, s3}, {a1, a2, as}}, True|False] M Completely solves a triangle
given a partial configuration of side lengths and angles and returns the complete configuration
of sides and angles. Three of the six configuration parameters are expected, and the others
should be set to Null. If more than three configuration parameters are specified, then they
must be consistent. The second argument, when set to True, returns an alternate configuration
if two solutions exist; if omitted, it defaults to False. The global variable is used at lower
levels to resolve ambiguous cases. The private function SolveTriangle$2D must be called
three times to compute up to three missing configuration parameters.

D2D$Sol veTri angl e2D$Al t er nat eSol ut i on=Fal se;

Sol veTri angl e2D) {
S:{sl_?lsScalar2D | Null,s2_7?IsScalar2D | Null,s3_?IsScalar2D | Null},
A:{al_?IsScalar2D | Null,a2_?IsScalar2D | Null,a3_?IsScalar2D | Null}},
al ternateSol ution_: Fal se]: =
(D2D$Sol veTri angl e2D$Al t er nat eSol uti on=al t er nat eSol uti on;
CheckConfi gurati on$2D Nest [Sol veTri angl e$2D, {S, A}, 3]]) /;
Menber @ { Tr ue, Fal se}, al t er nat eSol uti on];

Checks for under-constrained configurations, and, if detected, displays an error message.

Sol veTri angl e2D: : constrai n=
"The triangle configuration is under-constrained; three constraints are
expected.";

Sol veTri angl e2D) {
S:{sl_?IsScalar2D | Null,s2_7?lIsScalar2D | Null,s3_?IsScalar2D | Null},
A:{al_?lIsScalar2D | Null,a2_?IsScalar2D | Null,a3_?IsScalar2D | Null}},
al ternateSol ution_: Fal se]: =
(Message[Sol veTri angl e2D: : constrain]; $Fail ed) /;

(Count[A Null]>1 && Count[Join[S, Al, Nul 1]>3) &&

Menber 0 { True, Fal se}, al t ernat eSol uti on] ;

Two angles are known, compute the third using 61 + 65 4+ 63 = .

Sol veTri angl e$2D[{S: {s1_, s2_, s3_},
A: {al_?IsScal ar2D, a2_?l sScal ar2D, Nul 1} |
A:{al_?l sScal ar 2D, Nul | , a2_?I sScal ar 2D} |
A {Null,al_?lsScal ar 2D, a2_?I sScal ar2D}}]: =
{S,A/. Null->Pi-(al+a2)};

D2DTriangle2D - Scalars 549

Three sides are known (SSS), but not all the angles. Compute the missing angles directly.

Sol veTri angl e$2D[{ S: { s1_?I sScal ar 2D, s2_7?I sScal ar 2D, s3_?| sScal ar 2D},
A:{al_,a2_,a3_} /; Count[A Null]>0}]:=
{S, {If[al===Nul |, ArcCos[(- s1"2+s2"2+s3"2)/ (2*s2*s3)], al],
I f[@2===Nul | , ArcCos[(s172-s272+s3"2)/(2*s1*s3)], a2],
I f[a3===Nul |, ArcCos[(s172+s2"2-s3"2)/(2*s1*s2)],a3]}};

Three angles are known (AAA) but no sides. Compute all the sides directly. Since this case is
under-constrained, we use the added constraint that the perimeter is set equal to 1 and issue
a warning message.

Sol veTri angl e2D: : angl esOnl y=
"The triangle configuration is under-constrained; a valid configuration
with the triangle’'s perinmeter arbitrarily set to 1 will be conputed.”;

Sol veTri angl e$2D[{S: {Nul I , Nul | , Nul I },
A: {al_7?I sScal ar 2D, a2_7?I sScal ar 2D, a3_?I sScal ar2D}}]: =
Modul e[{ SA},
SA={{Sin[al],Sin[a2],Sin[a3]}/(Sin[al] +Sin[a2] +Sin[a3]), A};
I f[1sValidTriangl eQ@2D[SA], Message[Sol veTri angl e2D: : angl esOnl y]] ;
SAL;

Three angles are known and at least one side. Compute the missing side(s) using the Law of
Sines.

Sol veTriangl e$2D{{S:{___, _?IsScalar2D, ___} /; Count[S, Null]>0,
A: {al_7?lsScal ar 2D, a2_?1 sScal ar 2D, a3_7?I sScal ar 2D} }] : =
Modul e[{ n=1, si des=S},
While[S[[n]]===Null, n++];
NBD[Ellf[ZSgH#]]:::Nul I, sides[[#]]=S[[n]]1*Sin[A[[#]]]/Sin[A[[n]]]])&,
{sides, A} 1;

Two sides and the included angle are known (SAS). Compute the third side using the Law of
Cosines.

Sol veTri angl e$20]
{S:{s1_7?IsScal ar2D, Nul | , s3_7?l sScal ar 2D}, A: {al_, a2_?l sScal ar 2D, a3_}}
{S:{Nul |, s3_?lsScal ar2D, s1_?I sScal ar 2D}, A: {a2_?l sScal ar2D, a3_, al_}}
{S:{s3_7?IsScal ar 2D, s1_?l sScal ar2D, Nul | }, A: {a3_, al_, a2_?l sScal ar 2D} }
{S /. Null->Sgrt[sl”r2+s3"2-2*s1*s3*Cos[a2]], A};

|
|
1=

Two sides and one angle (not the included angle) are known (SSA-CCW).

Sol veTri angl e$2D]
{S:{s1_7IsScal ar 2D, s2_7?I sScal ar2D, Nul | }, A: {al_7?I sScal ar2D, Nul | , Nul I }} |
{S:{s2_7?IsScal ar2D, Nul | , s1_?l sScal ar 2D}, A: {Nul | , Nul | , al_?l sScal ar2D}} |
{S:{Nul |, s1_?lsScal ar 2D, s2_?I sScal ar 2D}, A: {Nul | , al_?l sScal ar 2D, Nul | }}

1:=
{S /. Null->SolveTriangl eSSA2D[{s1, s2, al}], A};

550 D2DTriangle2D - Transformations

One angle (not the included angle) and two sides are known (SSA-CW).

Sol veTri angl e$2D]
{S: {s1_7?IsScal ar 2D, Nul | , s3_7?1 sScal ar 2D}, A: {al_7?I sScal ar2D, Nul | , Nul I'}} |
{S:{Null,s3_?lsScal ar 2D, s1_?l sScal ar 2D}, A: {Nul | , Nul | , al_?l sScal ar2D}} |
{S:{s3_7?lsScal ar2D,s1_?IsScal ar2D, Nul I }, A {Nul | , al_?l sScal ar 2D, Nul | } }

]:=
{S /. Null->SolveTriangl eSSA2D[{s1, s3, al}], A};

Special function for solving SSA cases. Returns the length of the third side of the configuration,
or Null if the configuration is invalid.

Sol veTri angl e2D: : anbi guous=
"Two valid solutions exist for this configuration; set the alternate
solution option to '“1'" to conpute the other configuration.";

Sol veTri angl eSSA20) {s1_,s2_,al_}]:=
Modul e[{a2, a2al t, a3, a3al t, s3,s3alt,nornValid, altValid},
a2=ArcSin[s2*Sin[al]/sl]; a2alt=Pi-a2;
a3=Pi - (al+a2); a3al t=Pi - (al+a2alt);
s3=Sqrt[slr2+s272-2*s1*s2* Cos[a3]];
s3al t=Sqrt[sl”r2+s2"2-2*s1*s2*Cos[a3al t]];
nor nVal i d=I sVal i dConfi guration$2Df {{s1, s2,s3}, {al, a2, a3}}];
al tVal i d=I sVal i dConfi gurati on$2D[{{s1, s2,s3alt},{al,a2alt,a3alt}}];
If[nornvalid && altValid && Not[|sZero2D[s3-s3alt]],
Message[Sol veTri angl e2D: : anbi guous,
Not [D2D$Sol veTri angl e2D$Al t er nat eSol ution]]];
Swi t ch[{nornVval i d, al t Val i d, D2D$Sol veTri angl e2D$Al t er nat eSol uti on},
{True ,True ,True }, s3alt,
{True , True , Fal se}, s3,
{True , Fal se, True }, s3,
{True , Fal se, Fal se}, s3,
{Fal se, True, True }, s3alt,
{Fal se, True, False}, s3alt,
{Fal se, Fal se, True }, Null,
{Fal se, Fal se, Fal se}, Null]];

No other cases match, just return the configuration.

Sol veTri angl e$2D[{S: {s1_,s2_,s3_},A {al_,a2_,a3_}}]: =S A};

Transformations

Reflect
Reflect2D[triangle, line] M Reflects a triangle in a line.

Refl ect 2D Tri angl e2Df {x1_,y1_},{x2_,y2_},{x3_,y3_}],
L2: Line2Dl A2_,B2_,C2_]] :=
Tri angl e2D] Ref | ect 2D[{ x1, y1}, L2],
Refl ect 2D {x2, y2}, L2],
Refl ect 2D[{x3,y3}, L2]];

D2DTriangle2D - Point Construction 551

Rotate

Rotate2D [triangle, 0, coords] M Rotates a triangle by an angle 6 about a position spec-
ified by a coordinate list. If the third argument is omitted, it defaults to the origin (see
D2DTransform2D.nb).

Rot at e2Df Tri angl e2D{ {x1_,y1_},{x2_,y2_},{x3_,y3_}], theta_7?I sScal ar 2D,
{h_?1sScal ar 2D, k_?I sScal ar2D}] :=
Tri angl e2D] Rot at e2D[{ x1, y1}, theta, {h, k}],
Rot at e2D[{x2, y2}, theta, {h, k}],
Rot at e2D[{ x3, y3},theta, {h, k}]];

Scale

Scale2D[triangle, s, coords] M Scales a triangle from a position given by coordinates. If the
third argument is omitted, it defaults to the origin (see D2DTransform2D.nb).

Scal e2D[Tri angl e2D) {x1_,y1 },{x2_,y2 },{x3_,y3_}],s_7?IsScal ar 2D,
{h_?lsScal ar 2D, k_?l sScal ar2D}] : =
Tri angl e2D[Scal e2Df {x1,y1},s,{h, k}],
Scal e2D[{x2, y2},s,{h, k}],
Scal e2D[{x3,y3},s,{h,k}]] /;
Not [| sZer oOr Negat i ve2D[s]] ;

Translate

Translate2D [triangle, {u, v}] M Translates a triangle delta distance.

Transl at e2D Tri angl e2Df {x1_,y1_},{x2_,y2_},{x3_,y3_}1,
{u_7?IsScal ar 2D, v_?l sScal ar2D}] :=
Triangl e2D { x1+u, y1+v}, {x2+u, y2+v}, {x3+u, y3+v}];

Point Construction

Centroid

Point2D [t{riangle, Centroid2D] M Constructs the centroid point of a triangle. The centroid
is the intersection of the medians of the triangle (the lines connecting the vertices to the
midpoints of the sides).

Poi nt 2D Tri angl e2D[{x1_,y1 },{x2_,y2_},{x3_,y3_}], Centroi d2D :=
Poi nt 2D { x1+x2+x3, y1+y2+y3}/ 3] ;

552 D2DTriangle2D - Line Segment Construction

Center of Circumscribed Circle

Point2D [triangle, Circumscribed2D] M Constructs the center of the circle that circumscribes
a triangle. The center of the circumscribed circle is the intersection of the perpendicular
bisectors of the triangle sides.

Poi nt 2D[Tri angl e2D{ {x1_,y1_},{x2_,y2_},{x3_,y3_}],Crcunscribed2D :=
Poi nt 2D[G r cl e2D[Poi nt 2D[{ x1, y1}], Poi nt 2D[{x2, y2}1, Poi nt 2D {x3,y3}]111;

Center of Inscribed Circle

Point2D [triangle, Inscribed2D] M Constructs the center of the circle that inscribes a
triangle. The center of the inscribed circle is the intersection of the angle bisectors of the
triangle sides.

Poi nt 2D[T1: Tri angl e2D {x1_,y1 },{x2_,y2_},{x3_,y3_}], I nscribed2D :=
Poi nt 2D[G rcl e2Df T1, | nscri bed2D]] ;

Vertex Point

Point2D[triangle, n] MW Constructs a vertex point of a triangle. The vertex points are
numbered from 1 to 3.

Poi nt 2D[T1: Tri angl e2D {x1_,y1 },{x2_,y2_},{x3_,y3_}],n_?IsVertex$2D :=
Poi nt2D[T1[[n]]];

Line Construction

Side of a Triangle

Line2D[triangle, n1, no] M Constructs the line associated with vertices n; and no of a
triangle.

Line2D[T: Triangl e2D[{x1_,y1 },{x2_,y2 },{x3_,y3_}],
nl_?lsVertex$2D,
n2_?lsVertex$2D] :=
Line2D[T[[n1]],T[[n2]]1] /;
(nl!'=n2);

Line Segment Construction

Side of a Triangle

Segment?2D [triangle, n1, ne] M Constructs the line segment associated with vertices n; and
ng of a triangle.

D2DTriangle2D - Circle Construction 553

Segrment 2D[T: Tri angl e2D[{x1_,y1 },{x2_,y2_},{x3_,y3_}1,
nl_?I sVertex$2D,
n2_7?l sVertex$2D] :=
Segrment 2D[T[[n1]], T[[n2]]1] /;
(nl!=n2);

Circle Construction

Circumscribed Circle

Circle2D[triangle, Circumscribed2D] M Constructs a circle that circumscribes a triangle.

Circle2D Triangl e2D[{x1_,y1_},{x2_,y2_},{x3_,y3_}],Crcunscribed2D :=
Circl e2D Poi nt 2D[{ x1, y1}], Poi nt 2D] { x2, y2}], Poi nt 2D {x3, y3}]];

Inscribed Circle

Circle2D[triangle, Inscribed2D] M Constructs a circle inscribed in a triangle.

Crcle2D Triangl e2D pl: {x1_,y1l },p2:{x2_,y2_},p3:{x3_,y3_}],Inscribed2D :=
Modul e[{s1,s2,s3,s,r,h,k},
s1=Di st ance2D[p2, p3];
s2=Di st ance2D] p1, p3];
s3=Di st ance2D p1, p2] ;
s=(sl+s2+s3)/ 2;
r=sqrt[(s-sl1)*(s-s2)*(s-s3)/s];
{h, k}=(s1*{x1, y1} +s2*{x2, y2} +s3*{x3,y3})/ (2*s);
Crcle2D{h,k},r] 1;

Triangle Construction

Triangle from Three Points

Triangle?2D [point, point, point] M Constructs a triangle from three vertex points.

Triangl e2D[Poi nt 2D[{x1_,y1_}], Poi nt2D{{x2_,y2_}],Point2D {x3_,y3_}]1] :=
Triangl e2D[{x1, y1}, {x2,y2}, {x3,y3}];

Triangle from Three Lines

Triangle2D [line, line, line] M Constructs a triangle from three lines that define the sides of
the triangle.

Triangl e2D: : noTri angl e=
"Two of the lines ‘1 are parallel, or the three are concurrent; no
triangle exists.";

554 D2DTriangle2D - Epilogue

Triangl e2D[L1: Line2D[al_, bl_,cl_],
L2: Line2D[a2_,b2_,c2],
L3: Line2D a3_,h3_,c3_]] :=
If[lsParallel 2D {L1,L2,L3}] || IsConcurrent2D[L1, L2, L3],
Message[Tri angl e2D: : noTri angl e, {L1, L2, L3}]; $Fai | ed,
Triangl e2Df Poi nt 2D[L1, L2], Poi nt 20[L1, L3], Poi nt 2D[L2, L3]]];

Triangle from Sides/Angles

Triangle2D[{s;, s2, s3}] M Constructs a triangle in standard position from a configuration
of three side lengths. The first vertex will be at the origin and the second on the +z-axis.

Triangl e2D[{s1_?I sScal ar 2D, s2_?I sScal ar 2D, s3_7?I sScal ar2D}]: =
Triangl e2D[{{s1,s2,s3},{Nul |, Null,Null}}];

Triangle2D[{{si, s2, s3}, {a1, a2, as}}, True|False]l M Constructs a triangle in standard
position from a configuration of side lengths and angles. The first vertex will be at the origin
and the second on the +x-axis. Three of the six configuration parameters are expected, and
the others should be set to Null. If more than three configuration parameters are specified,
then they must be consistent. The second argument, when set to True, returns an alternate
solution if two solutions exist; if omitted, it defaults to False.

Triangl e2D] {
S:{sl_?IsScalar2D | Null,s2_7?IsScalar2D | Null,s3_?IsScalar2D | Null},
A:{al_?lsScalar2D | Null,a2_?IsScalar2D | Null,a3_?IsScalar2D | Null}},
al ternateSol ution_: Fal se]: =
Modul e[{ SA, S1, S2, S3, Al, A2, A3,f1,f2,a, b, d},
SA=Sol veTri angl e2D[{ S, A}, al t ernat eSol uti on] ;
| f [SA===%Fai | ed, $Fai | ed,
{{S1, s2, S3}, { A1, A2, A3} } =SA;
f 1=- S1"2+S2"2+S3"2;
f 2=- (S1- S2- S3) (S1+S2- S3) (S1- S2+S3) (S1+S2+S3) ;
Triangl e2D{ {0, 0}, {d, 0}, {a, b}] /.
{a->f1/(2*S3),b->Sqrt[f2/S3"2]/2,d->S3}]] /;
Menmber @ { Tr ue, Fal se}, al t ernat eSol uti on];

Epilogue

End[]; (* end of "*Private" *)
EndPackage[]; (* end of "D2DTri angl e2D " *)

Part VIII

Explorations

apollon.nb

Circle of Apollonius

Exploration

Show that the locus of a point P(z,y) that moves so that the ratio of its distance from two
fixed points P;(z1,y1) and Pa(xa,y2) is a circle with radius

dk
(k2 — 1)

and center

—z1 + k%z0 —y1 + k%Yo
k2—1 7 k2-1

where d = | Py P3|. The locus is called the Circle of Apollonius for the points P; and P» and
the ratio k.

Approach

Form the equation of the locus directly from the conditions. Show that the locus is the circle
described.

Solution
Construct the points.
In[1]: Cear [x1, y1, x2, y2, x, yI;
P1 = Poi nt 2D[{x1, y1}1;

P2 = Poi nt 2D[{x2, y2}1;
P = Poi nt 2D[{X, Y}1;

557

558

apollon.nb

Compute the distances.

1n[2]: dl = Di stance2D[P1, PJ;
d2 = Di stance2D[P2, PJ;

Form the equation representing the relationship.

n[3]: O ear [k]
eql =k”2%xd272-d172 // Expand

out 3] -x2+k2x2+2xx1-x1%2-2k2xx2+kZ2x2%2-y2+k?2y2:+2yyl-y1?2-2k?yy2+k2y2?

Construct the circle from its equation. The numerator under the radical is dk.

In[4]: Cl =Circl e2D[Quadrati c2D[eql, {X, y}1] // FullSinplify

_ 2 _ 2 2 _ 2 _ 2
out [4] O'rcIeZD[{ x1 +k?x2 yl+k y2}’ \/k ((X1-%x2)%+ (yl-y2)°) }

-1+kz 7 -1 +k2 (-1 +k2)?2

In[5]: Clear[d, E1l, E2, E3];
c2=ClL// {
KN2 % (X1 =-%x2)"2 4+ (yl-y2)"2) -> d*"2xk"2,
Sqrt [E1l_"2«E2_"2%E3_] ->E1%xE2/Sqrt [1/E3]}

! -x1+kZx2 -yl+k2y2 dk
Out[E]CIrC|92DH Tk Tk } J(W]

Discussion
This is a plot of a numerical example with P;(1,1), P»(—1,—2) and k = 1.5.
In[6]: d =Di stance2D[P1, P2];

Sket ch2D[{P1, P2, C2} //. {
x1->1, yl->1, x2->-1, y2->-2, k->1.5}1;

) °
-4
-6
-8

6 -4 -2

arccent.nb

Centroid of Semicircular Arc

Exploration

Show that the centroid of the area bounded by a semicircular arc of radius r and its chord is
on the axis of symmetry at a distance

H_47“

" 37

from the chord of the arc.

Approach

Construct representative geometry for the semicircular arc. Using symbolic computations,
compute the width of a horizontal rectangle spanning the arc having infinitesimal height. Use
integration to find moments of inertia on each side of the centroid. Equate the moments of
inertia on each side of the centroid and solve for the y-coordinate of the centroid.

Solution
Construct a semicircular arc of radius r (the portion of the circle above the z-axis).

In[1]: Clear[r];
Cl =Circl e2D[{0, 0}, r];

Construct a horizontal line at height y.

In[2]: Clear[y];
L1 = Li ne2D[Poi nt 2D[0, y], 01;

Compute the intersection points of the horizontal line with the arc.

559

560 arccent.nb

In[3]: pts = Points2D[L1, Cl1]

The width of the arc is the difference between the abscissas of the intersection points.

In[4]: L = XCoor di nat e2D[Fi r st [pts]] - XCoor di nat e2D[Last [pts]]

out[4] 2~r2-y?2

By integrating Ld find the moment of inertia of an area, where d is the distance from the
centroid line (y =7). I; is the expression for the moment of inertia of the upper area with
respect to v.

In[5]: Cl ear [yB];
intl=Integrate[Lx (yB-y), yl //Sinplify

1 y
out[s5] 5 Vr2-y2 (2r2+y (-2y+3yB)) +r2yBArcTan| ——2—-|
3 \rz-y2

The next few steps show the output computed by Mathematica Version 3.0.1. Version 4.0
produces slightly different results that are algebraically equivalent. The final step is the same
in both versions.

Inf6]: 1= (intl /. y->yB)y-(intl /. y->0) /. (r*2)"(3/2) ->r"3

2r3 1 5o > 2 2 2 yB
Out[6] ~=g—+ 5 r2-yB (2r? +yB) +r yBArcTan[\/A—rZ—_;yBZ‘}

I5 is the expression for the moment of inertia of the upper area with respect to 7.
In[7]: int2=Integrate[L (y-yB), y] 7/ Sinplify

out [7] 7%x/r27y2 (2r2+y (-2y +3yB)) 7r2yBArcTan[%,,,-}

In[8]: l2=-Limt[int2, y->r]1-(nt2 /. y->yB) //Sinplify

1 2 1 /= > 2 2 2 yB
out[s] — nr?yB+ Z\r2-yB? (2r%+yB?) +r yBArcTan[—r?\/_i—y—Bz—]

The moments of inertia must be the same on each side of the centroid line.
In[9]: eql=12-11-==

3
2! —lnrzyB::

out [9] 3 >

Solve for .
n[10]: Sol vel[eql, yB]

out [10] {{yBe g—%}}

arcentry.nb

Arc from Bounding Points and Entry Direction

Exploration

Let Py and P; be the start and end points of an arc, respectively, and P be a third point on
the vector tangent to the arc at Py. Show that

s=|(P—PBy) x (P — P)|
c=(P-F) (- FR)

represent values of s and ¢ useful for computing the bulge factor of the arc.

Approach

Use the trigonometric definition of a cross-product to justify the value for s. Use the trigono-
metric definition of a dot product to justify the value for c.

Solution

The cross-product definition in two dimensions is A x B = | A||B|sin(a) where « is the angle
between vectors A and B. Therefore, (P — Py) x (P, — Py)| is equal to |PP,||PP]|sin(«)
which is a scalar multiple of sin(a). The dot product trigonometric definition in two di-
mensions is A - B = |A||B| cos(«) where « is the angle between vectors A and B. Therefore,
(P —Py)- (P, — P) is equal to |PP||PP1| cos(c) which is the same scalar multiple of cos(c).
Therefore, s and ¢ are multiples of the sine and cosine of the angle between the chord and the
entry angle as required.

561

562 arcentry.nb

Discussion

Example: Construct and sketch the arc with start point (3,0) and end point (0,0) with an
entry angle vector through the point (4,1). First define functions for the two-dimensional
cross-product and magnitude.

In[1]: Cross2D[{ul_, v1_3}, {u2_, v2_3}]:=Cross[{ul, v1, 0}, {u2, v2, 0}1;

In(2]: Magnitude2D[{ul_, vl_, wl_: 0}]:=Sqrt [ul”2+Vv1"2+wWl"2];

Compute the bulge factor using s and c¢. The bulge factor is given by

S

B=—"—#—/—+/(¢6.
¢+ V2 + 52
In[3]: PO = Poi nt 2D[p0 = {3, 0}1;

P1 = Poi nt 2D[pl = {0, 0}1];

P = Poi nt 2D[p = {4, 1}1;

s = Magni t ude2D[Cr 0ss2D[p - p0O, pl-p0]];

¢ = Dot [p - p0, pl-pO0];

B=s/(c+Sqrt[c"2+s"2])

3

out [3] ———re
u 3:+32

Plot the geometry.

In(4]: Sketch2D[{PO, P1, P, Arc2D[p0O, pl, B], Segnent2D[P, P0O]1}];

QU UIN UTWO

arcexit.nb

Arc from Bounding Points and Exit Direction

Exploration

Let Py and P; be the start and end points, respectively, of an arc and P be a third point on
the vector tangent to the arc at P;. Show that

S:|(P1—P0)><(P—P1)|
C:(Pl—Po)'(P—Pl)

represent values of s and c¢ useful for computing the bulge factor of the arc.

Approach

Use the trigonometric definition of a cross-product to justify the value for s. Use the trigono-
metric definition of a dot product to justify the value for c.

Solution

Let @ be the point of intersection of the tangents at end points Py and P;. The entry angle
QPyP, = « is equal to the angle QP Py because triangle AQP,P; is an isosceles triangle.
The cross-product definition in two dimensions is given by A x B = |A||B|sin(a) where «
is the angle between vectors A and B. Therefore, the expression |(P1 — Fy) x (P — Py)| is
| Py Py || PPy sin(«) which is a scalar multiple of sin(a). The dot product trigonometric defini-
tion in two dimensions is given by A - B = |A||B| cos(a) where « is the angle between vectors
Aand B. (P — By) - (P — Py) is |PyP1||PP:1| cos() and, therefore, is the same scalar multiple
of cos(aw). Therefore, s and ¢ are multiples of the sine and cosine of the angle between the
chord and the entry angle as required.

563

564 arcexit.nb

Discussion

Example: Construct and sketch the arc with end points (3,0) and (0,0) with an exit angle
vector through the point (1, —1). First define functions for the two-dimensional cross-product
and magnitude.

In[1]: Cross2D[{ul_, v1_3}, {u2_, v2_3}]:=Cross[{ul, v1, 0}, {u2, v2, 0}1;

In(2]: Magnitude2D[{ul_, vl_, wl_: 0}]:=Sqrt [ul”2+Vv1"2+wWl"2];

Compute the bulge factor using s and c¢. The bulge factor is given by

S

B=—"—#—/—+/(¢6.
¢+ V2 + 52
In[3]: PO = Poi nt 2D[p0 = {3, 0}1;

P1 = Poi nt 2D[pl = {0, 0}1];

P = Poi nt2D[p = {1, -1}];

s = Magni t ude2D[Cr 0ss2D[pl - p0, p - pl]];

¢ = Dot [pl -p0, p-pll;

B=s/(c+Sqrt[c"2+s"2])

3

out [3] ———re
u 3:+32

Plot the geometry.

In(4]: Sketch2D[{PO, P1, P, Arc2D[p0O, pl, B], Segnent2D[P, P1]1}];

P, O B N W

archimed.nb

Archimedes’ Circles

Exploration

yh

CI/

r
2 -
X

Draw the vertical tangent line at the intersection point of the two smaller tangent circles, ¢;
and ¢z, in an arbelos (shoemaker’s knife, see figure). Prove that the two circles C' and C”
tangent to this line, the large semicircle, ¢z, and ¢; and co, are congruent (have equal radii).
These circles are known as Archimedes’ Circles.

Approach

Position the arbelos from the origin using circles whose radii are r1, r2 and r3 = 2 (r1 4 r2) (see
definitions, below). Compute the tangent circles as described in the exploration statement.
Compare the radii of these circles to show they are equal.

Solution

Construct the arbelos circles and the tangent line.

565

566 archimed.nb

In[1]: Cear[rl, r27;
cl=Crcle2D[{r1l, 0}, r1];
c2=Circle2D[{2*r1+r2, 0}, r2];
c3=Circle2D[{(r1+r2), 0}, rl1+r2];
112 = Li ne2D[Poi nt 2D[2 *r1, O], Infinity]

out (1] Line2D[1, 0, -2r1]

Construct the tangent circles.

n([2]: OFf [Solve2D :infinite];
t1l=TangentCircl es2D[{c1, c3, |12}];
t2 = Tangent Gircl es2D[{c2, c3, |12}];
On[Sol ve2D: :infinite];

Compare the radii. Since negative radii are invalid, the radius of the Archimedes’ Circle is
given by R = rira/ (r1 + r2). One pair is above the z-axis, the other pair is below.

n[3]: {Map[Radi us2D, t1],
Map [Radi us2D, t21} // Sinplify

rir2 rir2 rir2 rir2
Tr1+r2 r1+r2’ 11412 r1+r2}'

rlr2 rir2 rir2 rir2
Tr1+r2’ rl+r2’ rl4r2’ r1+r2}}

out[3] {{-r1, -r2, r2,

{41, rl, -r2,

arcmidpt.nb

Midpoint of an Arc

Exploration

Po

Show that the midpoint, P, of a bulge factor arc between points Py and P; whose bulge factor
is B has coordinates

p <(~To +21) = B(yo — 1) (Yo +y1) + Blxo —$1)> '

2 ’ 2

Approach

Construct the perpendicular bisector of the arc’s chord. Offset the midpoint of the chord an
appropriate direction and distance to find the arc’s midpoint.

Solution

Create the arc end points.

In[1]: O ear [x0, y0, x1, y1];
PO = Poi nt 2D[{x0, y0}1;
P1 = Poi nt 2D[{x1, y1}1;

567

568 arcmidpt.nb

Construct the midpoint of the arc’s chord.

Inf2]: PM= Poi nt 2D[PO, P1];

Rotate Py about Py 7/2 radians to find @, which is on the vector from Py to P.
In[3]: Q= Rotate2D[PO, Pi /2, Coordinates2D[PM]]

[{X();“ 0+ yogyl, X0+ L (-x0 - x1) +y0+yl}}

out [3] Poi nt 2D 5

-y
Offset Py in the direction of @ by distance h = Bd/2, where d is the distance between P,
and P;.

In[4]: O ear [B, d];
P=Point2D[PM Q Bxd/2] /. d->Sqrt [(x0-x1)"2+ (yO-y1)~2] //Sinplify

out [4] Poi ntZD[{% (X0 +x1+B (-y0+yl)), % (B (x0-x1) +y0+yl)}]

The coordinates of the point at the parameter ¢ = 1/2 produce the same result.

In[5]: Arc2D[{x0, y0}, {x1, y1}, B1[1/2] //FullSinplify

out [5] {% (x0+x1+B (-y0+yl)), % (B (x0-x1) +y0+yl)}

Discussion

Example: Construct the midpoint of the bulge factor arc with end points (4,0) and (0,4) and
bulge factor B = 2. First, define a function for computing the midpoint.

In[6]: ArcM dPoi nt 2D[PO : Poi nt 2D[{x0_, y0_}1,
P1: Point2D[{x1_, y1_}],
B_?IsScal ar2Dj : =
Poi nt 2D[((x0 +x1) -B (yO-y1)) /2, ((yO+yl) +B (x0-x1)) /2];

Construct the midpoint and plot the geometry.

In[7]: PO =Point2D[p0 = {4, 0}];
P1 = Poi nt 2D[p1l = {0, 4}1;
P = ArcM dPoi nt 2D[PO, P1, 27;
Sket ch2D[{PO, P1, P, Arc2D[p0O, pl, 2]}1;

OFRPNWM~UUTO N

caarclen.nb

Arc Length of a Parabolic Conic Arc

Exploration

Using exact integration in Mathematica show that the arc length of a parabolic conic arc with
control points Py(0,0), Pa(a,b) and P;(1,0) can be expressed exactly in symbolic form in
terms of elementary functions of a and b.

Approach

Create the conic arc. Compute the arc length using the standard formula. Show that the
result is a function of a and b only.

Solution

Create the conic arc.

In[1]: O ear [a, b];
cal = Coni cArc2D[{0, 0}, {a, b}, {1, 0}, 1/2];

Find the parametric equations.

n[2]: Cear[t];
{xt, yty=cal[t] //Sinplify

out[2] {t (-2a (-1+t) +t), -2b (-1+t)t}

Compute the derivatives.

In[3]: {Dx, Dy} = Map[D[#, t1& {xt, yt}] //Sinplify

out[3] {2 (a+t -2at), b (2-4t)}

569

570 caarclen.nb

Integrate to find the arc length. The resulting function involves elementary functions of a
and b only. The result shown here was computed by Mathematica Version 3.0.1. Version 4.0
produces a different result that is algebraically equivalent and involves elementary functions
of a and b only.

Inf[4]: Il =Integrate[Sqrt [Dx"2+Dy"2], t1];
arclenl=(11 /. t ->1)-(1 /. t->0) //Sinmplify

Vi-2a-+a2+b? (1-3a+2a?+2b?) a2+ b2 (~a+2a?+2b?)
T1-4a+4az+4p? * -

Out [4] 1-4a+4a2+4b?

b? Log[4 (Va2 b + 22E28)| b2iogla (i Zaial b2 . Llazatan)
(1-4a+4a2+4p2)32 ! (1-4a+4a2+4ab2)%?

caareal.nb

Area of a Conic Arc (General)

Exploration

For the conic arc whose control points are (0,0), (a,b) and (d,0), show that the area between
the conic arc and its chord is given by

bdp 2 1—p
A=—L ~1 1
9,3 (m”r(+p) oge(pH

where 7 = /—1+2p (p # 1/2). Assume b > 0 and d > 0.

Approach

Construct the conic arc in the given position and use integration to find the area.

Solution

Construct the conic arc.

In[1]: Cear[a, b, d, pl;
cal = Coni cArc2D[{0, O}, {a, b}, {d, 0}, pl;

Determine the coordinates of a point at parameter t.

n[2]: Cear[t];
{X1, Y1} =cal[t] //FullSinplify

(2ap (-1+t)+d (-1+p)t) 2bp (-1+t)t }

t
2 f
oue (2] | T1rp (1-20)2-2 (-1+0)t1 " “dap(1-21)2-2 (-1+1)t

Form an implicit equation of the curve by eliminating ¢.

571

572

caareal.nb

In[3]: Clear[X, yI1;
egql =Elimnate[{x == X1, y == Y1}, t]

out[3] 4a’p?y?+ap?y (4bd-8bx-4dy) ==
4b?2dp?x-4b2p?x?-4bdp?xy-d?y?+2d?py?-d?p?y?

Solve the implicit equation for x.

In[4]: ans = Sol ve[eql, x] //FullSinplify

bdp+2apy-d(py++V(bp-y) (bp+y-2py))
2bp }

« bdp+2apy+d (-py++V(bp-y) (bp+y-2py))

{x- s })

out [4] {{X -

The length, L, of an area element in terms of y is the difference between the two z locations

on the curve.

In[5]: L=(x /. ans[[2, 111) - (x /. ans[[1, 1]1]) // FullSinplify

(bp-y) (bp+y-2py)

out [5] bp

The area between the curve and the z-axis is the integral of L evaluated between the limits
on the y-axis. The curve is smooth, so we ignore the convergence warning by turning the
warning message off. The result shown in this step was computed using Mathematica Version
3.0.1. Version 4.0 produces a slightly different result that is algebraically equivalent.

In[6]: Of [Integrate::gener];
C ear [El, E2, r];
Al =Integrate[L, {y, O, bxp}] //FullSinplify

out [6] 1

I (-1+p)+/-b (-1+p) p V-b2 (-1+p) p2 Log]|
1-2p (-2+4p)

VBRE (VI-2p p <—1+p>2L09[2bp(1*ﬁm]]

This is the area formula given in the exploration statement above.

In[7]: On[lntegrate::gener];
A2 =bxdxpx (p*r + (-1 +p)*2xLog[(1l-p)/
(P+r)1) /7 (2*»r"3) /. r ->8qrt [-1+2=*p]

bdp (pvV-1+2p + (-1+p)?Log| L)

7 i
out [7] 2(—1+2P)3/2

The area under the curve is the same as the area given by the formula.

In[8]: | sZer 02D[Al - A2]

out [8] True

+

caarea2.nb

Area of a Conic Arc (Parabola)

Exploration

Show that the area between a conic arc whose projective discriminant is p = 1/2 and its chord
is given by

4=t
3

when the control points are (0,0), (a,b) and (d, 0).

Approach

Place the conic arc in the position given and use integration to find the area.

Solution

Create the conic arc.

In[1]: Cear[a, b, dI;
cal = Coni cArc2D[{0, 0}, {a, b}, {d, 0}, 1/2];

Solve for ¢ in terms of the y-coordinate.

In[2]: Cear[t];
ans = Sol ve[cal[t][[2]]1 ==Y, t] //Sinplify

out [2] {{t -

Find the z-coordinate of the left side of the rectangle.

573

574 caarea2.nb

In[3]: Xl =cal[t][[1]] /. ans[[1, 1]] //Sinplify
bd-+/bdvb-2y +2ay-dy
2b

out [3]

Find the z-coordinate of the right side of the rectangle.

In[4]: X2 =cal[t][[1]] /. ans[[2, 1]] //Sinplify

bd++bdvb-2y +2ay-dy

out [4])

Find the width of the rectangle.
In[5]: L=X2-X1 //Sinplify

dyb-2y
\/b

out [5]

Find the area by integration (p = 1/2, so the limits of integration are 0 to b/2).

Inf6]: |1 =Integrate[L, y] // Sinplify;
Al=(11 /. y->b/2)-(1 /. y->0)

out [6] b—ati

cacenter.nb

Center of a Conic Arc

Exploration

Show that the center (H, K) of a conic arc whose control points are Py(zo,¥y0), Pa(xa,ya)
and P (z1,y1) and whose projective discriminant is p is

_ —PPrat(p— D’y

H
1-2p

2
_ =P*ya+(p— 1) yu

K
1-2p

where Pys(xar, yar) is the midpoint of the conic arc’s chord and has coordinates

Yo + Y1

X
Ty = —02 and yp =
I 2

Approach

Form the quadratic equation of a conic arc and convert it to a quadratic. Find the center
point of the quadratic and simplify.

Solution
Determines the quadratic equation of a conic arc. The following steps were computed us-

ing Mathematica Version 3.0.1. Version 4.0 produces different results that are algebraically
equivalent. Both versions produce the same final step.

575

576 cacenter.nb

In[1]: Cear[a, b, k, X, y, x0, y0, xA, YA x1, y1, F];
eql=axb-k (1-a-b)*2 /.
{a-> ((y -yA) (x1-xA) - (x-xA) (yl-yA)) /F,
b -> ((y-yA) (X0-xA) - (x-XA) (YO-yA)) / (-F)} //Sinplify

Fl—z(—k (F+x0y—xly—xy0+xAy0+xy1—xAyl—x0yA+x1yA)2+
(XA (Y -y1) +x (YL-yA) +X1 (-y +YA)) (XA (-y +Y0) + X0 (y -yA) +Xx (-y0 +YA)))

out [1]

Multiply through by F?2.

In[2]: eq2 = eql*F"Z

out[2] -k (F+x0y -x1y -xy0+xAy0+xyl-xAyl-x0yA+x1yA)?+
(XA (Y -y1) +X (Y1 -YA) +X1 (-y +YA)) (XA (-y +Y0) +X0 (y -yA) +X (-y0 +YyA))

Construct the quadratic and the center points of the quadratic.

In[3]: gl = Quadratic2D[eql, {x, y}] // Sinplify;
cl = Point2D[gql] // Sinplify

out [3] Poi nt 2D]
2Fk (x0+x1-2xA) + (-1 +4k) xA (-xAy0 -x0yl+xAyl +x1l (y0-yA) +x0yA)
{ (-1+4k) (x1y0-xAy0-x0yl+xAyl+x0yA-x1yA) '
2FK (yO+yl-2yA) + (-1+4Kk) yA (-xAy0 -x0yl +xAyl +x1 (yO-yA) +x0yA)
(-1+4k) (x1y0-xAy0-x0yl+xAyl+x0yA-x1yA) H

Simplify.

In[4]: Cear [p];
c2=cl /.
{F > (y0 -yA) (x1-xA) - (X0 -xA) (y1-yA),
kK-> (1-p)"2/(4p"2),
X0 +x1 ->2%xM
yOo+yl ->2+yMy // FullSinplify

p2ZXxA- (-1+p)2xM pZyA- (_1+p>2y|\/|H

out [4] Poi nt 2D[{ T:7p T:7p

Change the signs on the numerator and denominator to get the desired formulas.

In[5]: Map[((-1=*Nunerator [#]) / (-1 +Denom nator [#]))& c2]

2 2 2 2
out (5] Point 2D[{ =P XA*1<:21p+p) XM -p VA+1<:21p+p> My

cacircle.nb

Circular Conic Arc

Exploration

Show that the conic arc with control points (0,0), (a,b) and (2a,0) will be a circular arc if

a(—a+ va? + b?)
b2 '

Approach

Create the conic arc and find the quadratic associated with it. Force the quadratic’s coefficients
to represent a circle and solve for p.

Solution

Create the conic arc.

n[1]: Clear[a, b, pl;
cal = Coni cArc2D[{0, O}, {a, b}, {2a, 0}, pl;

Construct the quadratic associated with the conic arc.

In[2]: QL = Quadratic2D[call];

Extract and simplify the coefficients.
n[3]: {al, bl, cl, di, el, f1} = Map[Toget her, List ee QL]

out [3]

1 1s2p 1 1
722 O Zpepr 25 29 ¥

Find p that makes the quadratic a circle.

577

578 cacircle.nb

In[4]: ansl =Solvelal ==cl, p] //Sinplify

oucf4] {{p>-——pr—} (P> ——pr—}}

Use the positive result.

In[5]: ans2 = Last [ans1][[1]]

a(-a++a2+h?)

out[5] p - b2

Discussion
A numerical example with a = 6 and b = 40.

In[6]: ca2=cal //. {a->6, b->20, ans2};
Sket ch2D[{ca2}];

SO P N W b

camedian.nb

Shoulder Point on Median

Exploration

Let C be a conic arc with control points Py(zo,yo), Pa(xa,ya) and Py(x1,y1) and projective
discriminant p. Let P be the point on the median PsP); associated with vertex P4 of
APyP4 Py such that |[PP,,|/|PaPy| = p (Pa(zar, yar) is the midpoint of PyPy). Show that
P is coincident with the shoulder point of C', having coordinates

(war + p(wa —20r), ym + p(Ya — yar))-

Approach

Construct the geometry and compare the coordinates of P to the shoulder point coordinates.

Solution

Create the conic arc control points.

In(1]: Cear [x0, yO, XA, YA, x1, yl1];
p0 = Poi nt 2D[PO = {x0, y0}1;
pA = Poi nt 2D[PA = {xA, yA}];
pl = Poi nt 2D[P1 = {x1, y1}1;

Construct the midpoint of the chord.

In(2]: pM= Point 2D[p0, pl]

x0+x1 y0O+yl

out 2] Poi nt 2D { 5

Construct the point on the median. This result was computed using Mathematica Version

3.0.1. Version 4.0 computes a slightly different result that is algebraically equivalent. Both
versions verify that the points are coincident in the final step.

579

580

camedian.nb

In([3]: Clear [p];
P = Poi nt 2D[pM pA, p xDi stance2D[pM pA]] // Sinplify

1

out [3] Poi ntZD[{7 (X0 -px0+x1-pxl+2pxA), % (yO-pyO+yl-pyl+2pyA)}]

Construct the shoulder point.

In[4]: Cear [XM yM];
Q= Poi nt 2D[{
XM+ p (XA - xM) /. xM-> (x0+x1) /2,
yM+ p (YA - yM /. yM-> (yO+yl) /2}] //Sinplify

1

out [4] Poi ntZD[{7 (X0 -px0+x1-pxl+2pxA), % (yO-py0+yl-pyl+2pyA)}]

The point on the median is coincident with the shoulder point.

In[5]: | sCoi nci dent 2D[P, Q]

out [5] True

Discussion
This is a plot of a numerical example.

In[6]: cal = Coni cArc2D[PO, PA, P1, pl;
Sket ch2D[{cal, p0, pA, pl, pM Q
Segnent 2D[pM pAl} //. {
x0->0, yO->0, xA->2, yA->6, x1->6, yl->0, p->0.65},
Pl ot Range -> Al | 1;

O RPN WMo o

0123456

caparam.nb

Parametric Equations of a Conic Arc

Exploration

Show that the parametric equations of a unit conic arc represent the same implicit quadratic
equation as the one underlying the conic as derived from the control points Py(0,0), Pa(a,b)
and P»(1,0) and p.

Approach

Create the unit conic arc. Eliminate ¢ from the parametric equations and construct a quadratic
from the result. Construct a quadratic directly from the conic arc. Verify that the two
quadratics are identical.

Solution

Create the unit conic arc.

n[1]: Cear[a, b, pl;
cal = Coni cArc2D[{0, 0}, {a, b}, {1, 03}, pI;

Eliminate ¢ from the parametric equations.

n[2]: Oear [xt, yt, t1;
eql =Elimnate[{xt ==First [cal[t]], yt ==Last [cal[t]]}, {t}]

out[2] ap? (4b-8bxt —4yt)yt +4a?p?yt?==
4b%p?xt -4b%2p?xt2-4bp?xtyt —yt2+2pyt?-p?yt?

Construct the quadratic represented by the parametric equations.

1n[3]: ql = Quadratic2D[eql, {xt, yt}] //Sinplify

out [3] Quadratic2D[4b%p? 4 (1-2a)bp? 1-2p+(1-2a)2p?, -4b2p? 4abp? 0]

581

582 caparam.nb

Construct the quadratic from the conic arc.

In[4]: q2 =Map[Sinplify, Quadratic2D[cal]] // Sinplify

out [4] Quadratic2D[-4b%p?, 4 (-1+2a)bp? -1+2p-(1-2a)?p? 4b%p? -4abp? 0]
Both quadratics are the same, ignoring the —1 factor.

n[5]: | sCoi nci dent2D[ql, 2]

out [5] True

carlyle.nb

Carlyle Circle

Exploration

Given a circle, Cy, passing through the three points (0, 1), (0, —p) and (s, —p), show that the
a-coordinates of the intersection points P;(z1,0) and Pa(x2,0) of C; with the x-axis are the
roots of the quadratic equation 22 — sz — p = 0.

Approach

Construct the circle through three points and intersect it with the z-axis. Solve the quadratic
equation directly and show that the roots are equal to the x-coordinates of the intersection
points.

Solution

Construct the circle through three points.

In[1]: O ear [p, S];
Cl =Circl e2D[
pl = Poi nt 2D[{0, 1}],
p2 = Poi nt 2D[{0, -p}1,
p3 = Poi nt 2D[{s, -p}1] // FullSinplify

ower Gretean| (3, 121 11 ipier]

Intersect the circle with the r-axis.
In[2]: pts = Poi nt s2D[Li ne2D[0, 1, 0], Cl] // Full Sinplify

out (2] (Point2D[{5 (s-4pis2), 0}], Point2D[({5 (s+ap:s?), 0]

Solve the quadratic directly which produces the same roots as the z-axis intersections.

583

584

carlyle.nb

In[3]: O ear [X];
Sol ve[x"2 -s*x -p==0, X]

ety ([3 (s VAPTS)) (xo 3 (s + VERTE)

Discussion

This is a plot of a numerical example with p = 2 and s = 4.

In(4]: Sketch2D[{Cl, pts, pl, p2, p3} /. {p->2, s ->4}1;

2
1

O/
-1
-2

1 2 3 4

The intersection points on the z-axis are the same as the roots of the equation.

In[5]: NSolve[x"2 -4xx-2==0, X]

out[5] {{x > -0.44949}, {x - 4.44949)})

castill.nb

Castillon’s Problem

Exploration

Let P;, P, and P; be three points inside the circle C; = 2% + y? = 1. Describe a method for
inscribing a triangle inside C such that the sides of the triangle pass through the three given
points.

Approach

Let V1, V5 and V3 be the vertex points of the inscribed triangle. Using the rational parametric
equations of the circle, express the coordinates of the vertex points in terms of parameters 1,
to and t3. Form three equations in three unknowns, t1, t2 and t3, using the condition that
each of the given points must lie on a line containing one side of the triangle. Solve the three
equations for the parameter values of the vertex points.

Solution

This is a function that returns the rational parameterization of a unit circle at the origin given
a parameter value, ¢.

In[1]: Rational Parameterization2D[t_]: =
{((L-t"2) /7 (L+t"2), 2t/ (L+t72)};

Construct three points on C; at parameters tq, to and t3.

In[2]: Cear[tl, t2, t3];
{V1, V2, V3} = Map[Poi nt 2D[Rat i onal Par anet eri zati on2D[#]]&,
{tl, t2, t3}]

2
outr2) {Pointzp[{1-t1 =~ 2t1

) 1-t2? 2t2]
1+t1%2' 1+t12

o Point20[{ T—5r a7)]

1-13? 2t3 1)

Point 200 {57 Toia?

585

586 castill.nb

Construct three lines containing the three sides of the triangle.

In[3]: L12 = Li ne2D[V1, V2] // Full Sinplify;
L23 = Li ne2D[V2, V3] //FullSinplify;
L13 = Li ne2D[V1, V3] // Full Sinplify;
(L12, L23, L13}

out[3] {Line2D[1-t1t2, t1+t2, -1-t1t2], Line2D[1-t2t3, t2+t3, -1-t2t3],
Line2D[1-t1t3, t1+t3, -1-t1t3]}

Form three equations by forcing the points Py, P> and P3 to be on the lines containing the
sides of the triangle.

In[4]: Cear [x1, y1, x2, y2, x3, y31;
P1 = Poi nt 2D[{x1, y1}1;
P2 = Poi nt 2D[{x2, y2}];
P3 = Poi nt 2D[{x3, y3}1;
eqgl = Equati on2D[L12, {x1, y1}1;
eg2 = Equati on2D[L23, {x2, y2}1;
eq3 = Equat i on2D[L13, {x3, y3}1;
eqns = {eql, eq2, eq3}
out[4] {-1-t1t2+ (1-t1t2)x1+ (t1+t2)yl==0,

S1-t2t3+ (1-t2t3) X2+ (12+t3) y2==0,
“1-t1t3+ (1-t1t3)x3+ (t1+13)y3==0)

Solve the equations for the parameter values. The resulting expressions are complicated and
uninteresting, so we suppress them and use them in the graphical illustrations below. Notice
that in general there are two solutions to the problem.

In[5]: ans = Sol ve2D[eqns, {t1, t2, t3}] // FullSinplify;
Lengt h[ans]

out[5] 2

Discussion

Example 1: Plot the solutions for the points P;(0.25,0.25), P»(0.5,—0.5) and P3(—0.5,—0.5).

1n[6]: Sketch2D[{Circl e2D[{0, 0}, 11,

Map[({V1l, V2, V3, P1, P2, P3, Segnent2D[V1, V2],
Segnent 2D[V2, V3], Segnent2D[V1, V31} /. #)&
ansl} /.

{x1->-0.25, yl->0.25,

x2 ->0.5, y2->-0.5,

x3 ->-0.5, y3->-0.5}];

castill.nb

587

©

01 O 01 &

Example 2: Plot the solutions for the points P;(0.5,0.5), P»(—0.5,0.5) and P5(0,—0.5).

n[7]: Sketch2D[{Ci rcl e2D[{0, 0}, 17,

=
S
ol
o

.51

Map [({V1, V2, V3, P1, P2, P3, Segnent2D[V1, V2],

Segment 2D[V2, V3], Segment2D[V1, V3]} /.

ansl} /.
{x1->0.5, y1->0.5,
x2 ->-0.5, y2->0.5,
x3->0, y3->-0.5}1;

©

01 O 01 P

1-0.50 0.5 1

#)&

catnin.nb

Tangent Line at Shoulder Point

Exploration

Let P be the point at parameter value ¢ = 1/2 on a unit conic arc, C, whose control points
are Py(0,0), Pa(a,b) and P;(1,0) and whose projective discriminant is p. Let L be the line
tangent to C at t. Show that L is parallel to the chord Py P; at a distance bp from PyP;. The
point P is called the shoulder point of the conic arc.

Approach

Create the conic arc and construct a point at ¢ = 1/2. Construct the quadratic underlying
the conic arc. Construct the polar of P with respect to the quadratic (the tangent, L). Show
that L is horizontal and, therefore, parallel to the conic arc’s chord.

Solution

Create the conic arc.

n[1]: Cear[a, b, pl;
cal = Coni cArc2D[{0, 0}, {a, b}, {1, 03}, pI;

Construct the point at ¢ = 1/2.
1n[2]: P=Point2D[cal[l/2]] //Sinplify
2|

out [2] Poi nt2DH7+ —%Jfa) p, bp}]

Construct the underlying quadratic.

In[3]: Q= Quadratic2D[cal] //Sinmplify

out [3] Quadratic2D[-4b2p?, 4 (-1+2a)bp? -1+2p-(1-2a)?p? 4b%2p? -4abp? 0]

589

590

catnin.nb

The tangent line at P is horizontal and at a distance bp from Py Ps.

In[4]: L =Line2D[P, Q] // Sinplify

out[4] Line2D[0, 1, -bp]

Discussion
Plot a numerical example with a =1, b =2 and p = 0.45.

In[5]: Sketch2D[{cal, P, L} /. {a->1, b->2, p->0.45},

CurvelLengt h2D->5, Pl ot Range -> {{-0.25, 1.25}, {-0.25, 1.25}}];

© o o ©
"N O N A OO ® PN

0.20 0.20.40.60.8 1 1.2

center.nb

Center of a Quadratic

Exploration
Show that applying the change in variables
o 2¢d — be and 1y — o + 2ae — bd
N b? — 4ac Y=YV T " dac

to the quadratic equation az? + bxy + cy? + dx + ey + f = 0 causes the linear terms to vanish,
implying that the center of the conic is

_ 2cd —be o — 2ae — bd

b2 —dac’ T b2 —dac’

h

Approach

Directly apply the change in variables to the equation and simplify the resulting quadratic.

Solution

Apply the specified change in variables.

m([1]: Cear[a, b, c, d, e, f, x, y];
eql=a*Xx"2+bxx*xy+Ccxy"2+dxx+exy+f /.
{X->X+(2cxd-b=xe)/ (b"2-4axc),
y->yY+ (2axe-bxd)/ (b"2-4axc)}

p(2cd-be -bd+2ae -bd+2ae 2
(b2—4ac *)(b2-4dac +y)+c(bZ2-dac +y)

Simplify the quadratic and notice that the linear terms have vanished. This result was com-
puted using Mathematica Version 3.0.1. Version 4.0 produces a slightly different result for the
constant term that is algebraically equivalent to the one shown here.

501

592 center.nb

In[2]: QL = Quadratic2D[eql, {x, y}] //FullSinplify

cd?+e (-bd+ae) +f]

outf2] Quadratic2D[a, b, ¢, 0, 0, BT 4ac

Discussion

Notice that the coeflicients a, b and ¢ are unaffected by this change in variables.

chdlen.nb

Chord Length of Intersecting Circles

Exploration

NEVAN
\

Show that the distance, d, between the intersection points of two circles is given by

\/—(D—’I“l—T2)(D+T1—T2)(D—T1+T2)(D+T1+T2)

d=)

where D is the distance between the centers of the circles, and r1 and ro are the radii of the
two circles.

Approach
Assume the radii of the two circles centered at Cy and Cs are r1 and ro, respectively, P; is
one of the intersection points, and the distance between the centers is D. The length of the

common chord, d, can be found by equating the area (squared) of AC;CyP; using Heron’s
formula and the standard area formula A = bh/2.

593

594 chdlen.nb

Solution
A; is the area (squared) by Heron’s formula.

In[1]: Clear[rl, r2, D17;
s=(rl+r2+D1)/2;
Al=s (s-rl) (s-r2) (s-D1) //Sinplify

out (1] —1%— (DL-r1-r2) (DL+r1-r2) (DL-r1+r2) (DL+rl+r2)

As is the area (squared) by the standard area formula A = bh/2 (d is the distance between
the intersection points, i.e. the length of the chord).

In[2]: Cear [d];
A2 = (Dlx(d/2)/2)"2 //Sinplify

d2 D12

out [2] 16

Set the areas equal and solve for d. Take the positive value. This result was computed using
Mathematica Version 3.0.1. Version 4.0 produces a different result involving +/—1 that is
algebraically equivalent.

In[3]: ans = Sol ve[Al == A2, d] //FullSinplify

-(DL-r1-r2) (DL+r1-r2) (DL-r1+r2) (DL+rl+r2)
out (3] {{d- - bL It
“(DL -r1-r2) (DL+rl _-r2) (DL-r1+r2) (DL+rl+r2)
{d- D1 1
Discussion

If the radii are equal the result can be significantly simplified. This result was computed
using Mathematica Version 3.0.1. Version 4.0 produces a different result involving v/—1 that
is algebraically equivalent.
In[4]: Cear[r];
ans2 = Last [ans] //. {rl1->r, r2->r} //FullSinplify;
ans2 //. Sqrt[-D174+4D17A2r 2] ->DL«Sqrt [-DLA2 + 41 ~2]

out [4] {da\/ib12+4r2}

cir3pts.nb

Circle Through Three Points

Exploration

Show that the equation of the circle through the three points (0,0), (a,0) and (0,b) is
2?2 +y? —azx—by =0.

Approach

Find the quadratic (circle) through the three points, then convert it to an equation.

Solution

Construct the quadratic.

n[1]: O ear [a, b];
Q= Quadrati c2D[Poi nt 2D[0, 0], Poi nt 2D[a, 0], Poi nt2D[0, b]]

out[1] Quadratic2D[ab, 0, ab, -a2b, -ab?, 0]

Simplify and convert the quadratic to an equation.

In[2]: dear[X, Y];
Equat i on2D[
Quadratic2Dee SinplifyCoefficients2D[Li st eeQ],

X, ¥y}

out[2] -ax+x2-by+y?==

595

circarea.nb

One-Third of a Circle’s Area

Exploration

Show that the angle, 8, subtended by a segment of a circle whose area is one-third of the full
circle is the root of the equation

E_H—sin&

32
Also, show that @ is within 1/2 percent of 57/6 radians.

Approach

Create an expression for the area, A;, of a segment in terms of a generic angular span, 6.
Create an expression for the area of a full circle, As. Solve the equation A; = As/3 for 6.

Solution

Find the area of a circle’s segment.

In[1]: Cear[r, t1];
Al = Segnent Area2D[cl = Circl e2D[{0, 0O}, r], {0, t1}]

out [1] %rz (t1-Sinft1])

Find the area of a full circle.

n[2]: A2 = Area2D[cl]

out [2] rr?

Form the equation.

597

598

circarea.nb

In[3]: eql =Al1-A2/3 ==

2
7 L2 i1 osingt1)) --0

out[3] - 3 5

Divide both sides by 2.
In[4]: eq2=eql /. r"2->1

Out [4] L L

T+5 (t1-Sin[tl]) ==0

Discussion

Solve the equation A; = As/3 for 6.

In[5]: rt = FindRoot [Pi /3 == (t1-Sin[tl]) /2,
{tl, Pi}]

out[5] {t1l-2.60533}

Show that ¢ is close to 57 /6.
In[6]: Rationalize[N[t1l/Pi] /. rt, .005]
out [6]

5
6

Perform a numerical check.

In[7]: {Segnent Area2D[Circl e2D[{0, 0}, 1], (O, t1 /.

Area2D[Circl e2D[{0, 0}, 11]1/3} //N

out[7] {1.0472, 1.0472}

rt}l,

cirptmid.nb

Circle—Point Midpoint Theorem

Exploration

yh

“Y

C:

Show that the locus of midpoints from a fixed point Py to a circle Cy of radius 71, is a circle
of radius r1/2. Furthermore, show that the center point of the locus is the midpoint of the
segment between Py and the center of Cf.

Approach

Without loss of generality, choose the point Py to be the origin and the circle C; to have
center (hy,0). Construct the locus of midpoints and examine its form.

Solution

Construct the circle and the locus of points.

599

600 cirptmid.nb

In[1]: Cear[hl, rl, tJ;
Cl =Circle2D[{h1, 0}, r17;
pts = Poi nt 2D[Poi nt 2D[0, 0], Poi nt 2D[C1[t]]]

1

1)
o (h1+r1Cos(t]), > risin(t]}]

out (1] Poi nt 2D[{ >
This locus is clearly a circle of radius 71 /2 centered at (h1/2,0), which is the midpoint of the
line segment from the point to the circle’s center.

Discussion
Here’s a function that computes the midpoint circle in the special position.

n[2]: Circle2D[Circle2D[{h_, 0}, r_1]1:=
Crcle2D[{h/2, 0}, r /2];

The first plot is a numerical example with the origin outside the circle (14 = 1), while the
second plot’s origin is inside the circle (r1 = 3).

n[3]: Map[(pO = Poi nt 2D[0, 01;
pl = Poi nt 2D[C1[Pi /6]1];
I 1 = Segnent 2D[p0, Poi nt 2D[CL[Pi /6111;
C2 =Circl e2D[C1];
P = Poi nt 2D[p0, pl];
Sket ch2D[{C1, C2, pO, pl, 11, P} /. #])&
{{hl1->2, r1->1}, {hl1->2, rl1->3}}1;

o

00.511.522.53

3

2

1

0
NG

2

-1 12345

cramer2.nb

Cramer’s Rule (Two Equations)

Exploration

Show that the solution to the system of two linear equations in two unknowns

ax+biy+c1 =0
asx +boy+c2 =0

is given by
—C1 b1 ai
B —co by du— as
T = — 5 and y =
where
. a1 b1
D= as bg
Approach

Use the Mathematica Det command to compute the appropriate determinants and then sub-
stitute the solutions back into the original equations to demonstrate that they solve the equa-

tions.

Solution

Compute the necessary determinants.

In[1]: Cear [al, bl, c1, a2, b2, c2];
dx =Det [{{-c1, bl}, {-c2, b2}}1;
dy = Det [{{al, -cl}, {a2, -c2}}];
dD=Det [{{al, bl}, {a2, b2}}1;

601

602 cramer2.nb

Compute the solutions.

Inf2]: {x1, y1} = {dx /dD, dy /dD}

-b2cl+blc2 a2cl-alc2 }

out (2] { —5FTalb2’ —a2bisalb?

Show that the solutions solve the original equations.

In(3]: Clear [X, Y1,
{alxx +blxy+cl, a2*xx+b2xy+c2} /.
{X->x1, y->yl} //Sinplify

out [3] {0, 0}

Discussion

The Solve command produces the same result in Mathematica Version 3.0.1. Version 4.0
computes a slightly different result that is algebraically equivalent.

In[4]: Solve[{al*Xx +blxy +cl==0,
a2+*X +b2xy+c2==0}, {x, y}] //Sinplify

-b2cl+blc2 a2cl-alc2 }}

out (4] {{X~> —5p1arba ¥ > “a2biialb?

cramer3.nb

Cramer’s Rule (Three Equations)

Exploration

Show that the solution to the system of three linear equations in three unknowns
ax+by+ciz+di =0
a2 + by + coz +do =0
azx + b3y +c3z+ds =0

is given by

—d1 b1 C1 al —d1 C1 a1 b1 —d1
—dQ bg C2 ag —dQ C2 as bg —dQ
. —d3 b3 C3 . as —d3 C3 ds— as b3 —d3
T = D , Y= D and z = D
where
a1 b1 C1
D = as b2 C2
a3 by c3
Approach

Use the Mathematica Det command to compute the appropriate determinants and then sub-
stitute the solutions back into the original equations to demonstrate that they solve the equa-
tions.

Solution

Compute the necessary determinants.

603

604 cramer3.nb

In[1]: O ear [al, bl, cl, d1, a2, b2, c2, d2, a3, b3, c3, d3];
dx = Det [{{-d1, b1, cl}, {-d2, b2, c2}, {-d3, b3, c3}}1;
dy = Det [{{al, -d1, cl}, {a2, -d2, c2}, {a3, -d3, c3}}1;
dz = Det [{{al, bl, -d1}, {a2, b2, -d2}, {a3, b3, -d3}}];
dD=Det [{{al, bl, cl}, {a2, b2, c2}, {a3, b3, c3}}1;

Compute the solutions.

In[2]: {x1, y1, z1} = {dx/dD, dy /dD, dz /dD}

b3c2dl -b2c3dl-b3cld2+blc3d2+b2cld3-blc2d3
-a3b2cl+a2b3cl+a3blc2-alb3c2-a2blc3+alb2c3’
-a3c2dl+a2c3dl+a3cld2-alc3d2-a2cld3+alc2d3
-a3b2cl+a2b3cl+a3blc2-alb3c2-a2blc3+alb2c3’
a3b2dl-a2b3dl-a3bld2+alb3d2+a2bld3-alb2d3
fa3b2cl+a2b3c1+a3b1027a1b3027a2blc3+a1b203}

out [2] {

Show that the solutions solve the original equations.

n[3]: Cear[X, Y];
{alxx +blxy +clxz +dl,
a2*X +b2xy +Cc2xz +d2,
a3*X +b3xy +c3xz +d3} /.
{X->x1, y->yl, z->z1} //Sinplify

out[3] {0, 0, 0}

Discussion

The Solve command produces the same result in Mathematica Version 3.0.1. Version 4.0
computes a slightly different expression that is algebraically equivalent.

In[4]: Cear[z];
Sinplify[
Solve[{alxX +blxy+clxz +dl==0,
a2*X +b2xy +c2xz +d2 == 0,
a3*X +b3xy +c3xz +d3 ==0}, {X, y, z}]
1

b3c2dl-b2c3dl-b3cld2+blc3d2+b2cld3-blc2d3
-a3b2cl+a2b3cl+a3blc2-alb3c2-a2blc3+alb2c3’
R -a3c2dl+a2c3dl+a3cld2-alc3d2-a2cld3+alc2d3
-a3b2cl+a2b3cl+a3blc2-alb3c2-a2blc3+alb2c3’
N a3b2dl-a2b3dl-a3bld2+alb3d2+a2bld3-alb2d3 }}
-a3b2cl+a2b3cl+a3blc2-alb3c2-a2blc3+alb2c3

out [4] {{X -

deter.nb

Determinants

Exploration

Determinants often provide a concise notation for expressing relationships in analytic geome-
try. Show that the expanded algebraic form for the 2 x 2 determinant

ap by
az by

is given by —agby + a1bs.

Show that the expanded algebraic form for the 3 x 3 determinant
aiq b1 C1
as bg C2

az bz c3

is given by —agbocy + asbseqr + asbica — a1bsca — asbics + aibacs.

Approach

Use the Mathematica Det command to compute the desired determinants.

Solution
The Det command produces the desired results directly.

1n[1]: O ear [al, bl, a2, b2];
Det [{{al, bl}, {a2, b2}}]

out[1] -a2bl+alb2

605

606 deter.nb

In[2]: Cear[al, bl, cl, a2, b2, c2, a3, b3, c37;
Det [{{al, b1, cl1l}, {a2, b2, c2}, {a3, b3, c3}}]

out[2] -a3b2cl+a2b3cl+a3blc2-alb3c2-a2blc3+alb2c3

elfocdir.nb

Focus of Ellipse is Pole of Directrix

Exploration

Show that the focus of an ellipse is the pole of the corresponding directrix.

Approach

Construct the directrix and the pole of the focus and verify that they are the same lines.

Solution
Construct the required geometry.

In[1]: O ear [a, b];
el =Ellipse2D[{0, 0}, a, b, 07;
f pts = Foci 2D[el];
dins =Directrices2D[el] // Sinplify

a2

out[1] {Line2D[1, 0, e
az -

], Line2D[1, 0, wil-)_z—}}

Construct the polars of the foci.

In[2]: I ns = {Line2D[fpts[[1]], el], Line2D[fpts[[2]], el]} // Sinplify

out(2] {Line2D[+/aZ-bZ, 0, -a?|, Line2D[-+/aZ-bZ, 0, -a%|}

The lines in pairs are coincident.

n[3]: {lIsCoincident2D[dI ns[[1]], I ns[[1]11],
| sCoi nci dent 2D[dI ns[[2]], Ins[[2]]]}

out[3] {True, True}

607

608 elfocdir.nb

Discussion

This is a plot of a numerical example with a = 1.5 and b = 1.

1n[4]: Sketch2D[{el, fpts, dins} /. {a->1.5 b->1},
CurveLengt h2D -> 31;

Fa—
R

2 -1 O 1

N|

elimlin.nb

Eliminate Linear Terms

Exploration

Show that applying the change in variables

=z —— and y':y—i
2a 2a

to the quadratic equation ax? + ¢y + dz + ey + f = 0 yields the quadratic

whose linear terms have vanished.

Approach

Apply the transformation rules directly to the quadratic equation.

Solution
Apply the transformation rules to the equation.

In[1]: Cear[a, c, d, e, f, x, yI;
axX"2+Cxy"2+dxx+exy+f /.
{Xx->x-d/(2a), y->y-e/(2c)} // Expand
d? e?

a e 2 2
i3 7 +f +ax“+cy

out[1] -

609

elimxyl.nb

Eliminate Cross-Term by Rotation

Exploration

Show that by rotating a quadratic az? + bxy + cy® + dz + ey + f = 0 through an angle 6 given
by

b

cC—a

tan(260) =

the xy term will vanish.

Approach

Create a quadratic and rotate it by an angle 6. Show that the coefficient of the zy term is
ZETO.

Solution

Create a quadratic.

In[1]: Clear[a, b, c, d, e, f1;
Q= Quadratic2D[a, b, c, d, e, f];

Rotate the quadratic.

In[2]: QL = Rotate2D[Q ArcTan[b/ (c -a)]/2];

Simplify the coefficient of the xy term.

In[3]: QL[[2]] //Sinplify

out[3] O

611

elimxy2.nb

Eliminate Cross-Term by Change in Variables

Exploration

Show that applying the change in variables ' = kx +y and 3’ = ky — x, where

P Gl Y (c;a>2+1,

to the equation ax? 4 bzy + cy® + dz + ey + f = 0 will cause the zy term to vanish and a new
quadratic with the following coefficients will be formed:

a =ak® —bk +c
b=0
d=ck’>+bk+a
d=dk—e
e =ck+d

=1

Approach

Create a quadratic and form a quadratic equation. Apply the change in variables and examine
the coefficients.

613

614 elimxy2.nb

Solution

Create a quadratic.

n[1]: Clear[a, b, c, d, e, f1;
Ql = Quadratic2D[a, b, ¢, d, e, f];

Form the quadratic equation and apply the change in variables.
In[2]: Cear[X, Yy, kI;

eql = Equati on2D[QL, {x, y}] /.
{X->kxx+y, y->k*y-x}

outf2] f+d (kx+y)+a (kx+y)2+e (-x+ky)+b (Kx+y) (-x+Kky) +c (-x+ky)2==0
Examine the resulting coefficients.

In[3]: Q@ =Quadratic2D[eql, {X, Yy}]

out[3] Quadratic2D[c-bk+ak? -b+2ak-2ck+bk? a+bk+ck? -e+dk, d+ek, f]
The xy term is zero.

In[4]: Q[[2]] /. k->(c-a)/b+Sqgrt[((c-a)/b)*2+1] //Sinplify

out[4] O

elimxy3.nb

Eliminate Cross-Term by Change in Variables

Exploration

Show that applying the change in variables ' = kz +y and 3 = ky — , where

poe—a) (c—a>2+17

b

to the equation ax? + bxy + cy® + dx + ey + f = 0 is equivalent to rotating the quadratic by
an angle 6 given by

1
tanf = —
an L

and scaling the quadratic by a scale factor

1
VIR

Approach

Create a quadratic and rotate and scale it as specified. Compare the result to the result of
elimxy2.nb.

Solution

Create a quadratic.

m[1]: Clear[a, b, ¢, d, e, f];
QL = Quadratic2D[a, b, c, d, e, f];

615

616 elimxy3.nb

Rotate it by the specified angle. The results shown in the next few steps were computed using
Mathematica Version 3.0.1. Version 4.0 produces similar results except the coefficients are
multiplied by a constant. Both versions produce the same result in the final step.

In[2]: O ear [K];
@ = Rot at e2D[QL, ArcTan[1/k]] //Sinplify

out[2] Quadratic2D[c+k (-b+ak), 2 (a-c)k+b (-1+k?), a+k (b+ck),
””” 1 1 »
1+ 47 k (-e+dk), 1+W-k(d+ek),f<1+k)]

As shown in elimxy2.nb, the zy term must vanish.

1n[3]: @[[2]1=0;, @

2z

out[3] Quadratic2D[c+k (-b+ak), 0, a+k (b+ck), . [1+ 2

ﬁ*kl—z K(drek), f (1+k2)]

Scale as specified.

k (-e+dk),

In[4]: B =Scal e2D[Q@, 1/Sqrt [1+k"2]] // Sinplify

out[4] Quadratic2D[(1+k?) (c+k (-b+ak)), 0, (1+k?) (a+k (b+ck)),
/1+k1_2 k (—e+dk)V1+kZ, Jl+kl—2 k (d+ek) VI+kz, f (1+k?)]

Simplify, showing the same result as elimxy2.nb.

In[5]: 4 =@ /. {Sqrt[1+k” (-2)]*k ->Sqrt[1+k~2]} //Sinplify

out[5] Quadratic2D[c +k (-b+ak), 0, a+k (b+ck), -e+dk, d+ek, f]

elldist.nb

Ellipse Locus, Distance from Two Lines

Exploration

A point moves so that the sum of the squares of its distances from two intersecting straight
lines is a constant. Prove that its locus is an ellipse.

Approach

Compute the distances from a generic point (x,y) to the lines and show that the equation
must be an ellipse.

Solution

Create the two lines and a generic point.

n[1]: O ear [Al, Bl, Cl1, A2, B2, C2, x, yI;
I'1=Line2D[Al, B1, Cl1;
12 = Line2D[A2, B2, C21;
pt = Poi nt 2D[X, y1;

Sum of distances squared is a constant, K.

In[2]: O ear [K];
eql = Di stance2D[pt, | 1172 +Di stance2D[pt, |12]"2 -K

(CL+ALx+Bly)?2 (CQ2+A2x+B2y)?

out[2] -K
uel2l -+ ALZ ; B12 N A2+ B2?

Form the quadratic equation (without loss of generality, assume the lines are normalized).

n[3]: QL = Quadratic2D[eql, {Xx, Yy}] /.
{A1"2 +B1"2 ->1, A27"2+B2"2 ->1}

out [3] Quadratic2D[A1% + A2?, 2 A1 Bl +2A2B2, B1?+B2% 2A1Cl+2A2C2,
2B1ClL+2B2C2, C1%2+C2%-K]

617

618 elldist.nb

Compute the discriminant of the quadratic, B? — 4AC.

Tnra]: disc=QL[[2]]1°2-4+QL[[1]]*QL[[3]] // Sinplify

out [4] -4 (A2 Bl - Al B2)?

The discriminant of the quadratic, B2 — 4AC, is negative; therefore, the curve is an ellipse.
Note that the expression (A3By — A132)2 cannot be zero if the lines intersect.

Discussion
This is a plot of a numerical example using three different values of K.

1n[5]: Sketch2D[{l 1, 12,
Map[(QL /. #)& {K->2, K->3, K->6}1} /. {
Al ->1, Bl1->1.5, Cl->-1,
A2 ->-0.5, B2->2.5 C->-1},
CurvelLengt h2D -> 57;

=

©
0o Uk O

elifd.nb

Ellipse from Focus and Directrix

Exploration

Show that the ellipse with focus F(x1,y1), directrix line L = px + gy + r = 0 and eccentricity,
0 < e < 1, is defined by the constants

h=x1+p“§D, k=y1+qa§D,
a:d(l%@, b=av1—e2, 6 = tan"'(p, q),
where
d_\/(px1+qy1+7“)2 and Do Pitantr
p2+q2 p2+q2
Approach

Apply the definition of an ellipse to the supplied focus and directrix for a general point (z,y)
and show that the derived locus is an ellipse.

Solution

The rotation angle of the ellipse is the angle the line perpendicular to L makes with the
+z-axis (in Mathematica ArcTanl[p, ¢] is ArcTan[g/p], the first form takes into account the
quadrant of the point (p, q)).
In[1]: Cear[p, q, r];
L = Li ne2D[p, q, r1;
theta = Angl e2D[Li ne2D[0, 1, 0], Li ne2D[Poi nt 2D[0, 0], L]];
theta //Sinplify

]

out (1] ArcTan]|

o|a

619

620 ellfd.nb

Now we must show that the lengths a and b are given by the formulas. In standard position
the distance from the focus of an ellipse to its directrix is given by d = a/e — ae. Solving
for a gives the following result in Mathematica Version 3.0.1. Version 4.0 produces a slightly
different result that is algebraically equivalent.

In[2]: Cear[d, a, el;
Solve[d==a/e-axe, a] //Sinplify

out [2] {{a» ld712 }}

Also, the eccentricity is given by e = /a2 — b2/a and solving for b gives (take the positive
result).

In[3]: Solve[e ==Sqgrt [a"2-b"2] /&, b]

oue(3] {{b-»-avi-e?}, {boa+vi-e?}}

The eccentricity is the ratio of the distance from a general point to the focus to the distance
to the directrix.

In[4]: Cear [x1, y1, X, yI;
F = Poi nt 2D[x1, y17;
P = Poi nt 2D[x, Y1;
{dF = Di st ance2DI[P, F],
dL = Di stance2D[P, L]}

2
out [4] {J(x-xl)% (y-y12, \/M}

pZ+q?

Form the equation for the eccentricity squared.
In[5]: eql=e”2xdL"2 -dF*2 // Expand // Toget her

out [5] (e2r24s2e2prx-p?x2+e?2p?x2-2x2+2p2xx1+2q2xx1-p2x1?-g2x1?+

1
p2 + o2
2e’qry+2e’pgxy-p?y?-q?y?+e?q?y?+2p?yyl+2q2yyl-p?yl® -g?y1?)

Find the coordinates (h1, k1) of the center of the quadratic.

nf6]: {hl, k1} =
Coor di nat es2D[
Poi nt 2D[
QL = Quadratic2D[eql, {x, y}] //Sinmplifyl]l //Sinplify

-(p?+g®) x1+e? (g®x1-p (r +qyl)) (p?+q?) yl+e?

(
oue 6] { (-I+e2) (P2 +) ’ (-Trez

q (r+px1) -p?yl))
) (p%+4q2?)

Find the coordinates of the center using the formula provided.

ellfd.nb 621

In[7]: C ear [Dl];
{h2, k2} = {x1l+pxaxexDl/d, yl+qxaxexDl/d} //.
{a->dxe/ (1-e"2),
b->ax»Sqrt [1-e”2],
d->Sqrt [(p*x1+q*yl+r)"2/ (p"2+q"2)],
Dl -> (px*x1+qg*yl+r)/ (p"2+9q"2)}

e2p (r +pxl+qyl) yi- e2q (r +pxl+qyl)

out (7] {x1+ 1-e7) (pIi) (I-e2) (p2+a?))

This shows that the center indeed has the same coordinates as the point from the formula.

In(8]: {h1-h2, k1-k2} //Sinplify

out (8] {0, 0}

Discussion

An example showing the construction of an ellipse from its focus, directrix and eccentricity.

n[9]: focusl =Point2D[{1/2, 1}1;
directrixl=Line2D[5, 8, -20];
eccentricityl =3/4;
el lipsel =Ellipse2D[focusl, directrixl, eccentricityl]

116 61
T 623 623

114 57

out[9] Ellipse2D[{ PooeRRe T ArcTan[%H

In[10]: Sketch2D[{focusl, directrixl, ellipsel},
CurvelLengt h2D-> 57;

/1

R O F N W

ellips2a.nb

Sum of Focal Distances of an Ellipse

Exploration

Show that the sum of the distances from the two foci to any point on an ellipse is 2a, where
a is the length of the semi-major axis.

Approach

Construct a generic point on an ellipse. Construct the two foci of the ellipse. Find the distance
from each focus to the generic point. Show that the sum of the distances is 2a.

Solution

Create the ellipse and a generic point on it.
In[1]: Clear[a, b, t];

el =Ellipse2D[{0, 0}, a, b, 07;
pl = Poi nt 2D[el [t]]

out[1] Point2D[{aCos[t], bSin[t]}]
Construct the focus points of the ellipse.

n[2]: {f1, f2} = Foci 2D[el]

Find the sum of the distances from the generic point to the foci.

In[3]: suml = Di stance2D[pl, f1] + Di stance2D[pl, f2]

out [3] J(—\/az—bz +aOos[t])2+bZSin[t]2 +J(\/a2—b2 +aCos[t])2+bZSin[t]2

623

624 ellips2a.nb

Work on the expressions under the radicals.

In[4]: {el, e2} = Map[Expand[# /. Sin[t]"2->1-Cos[t]"2]&,
{sumi[[1, 1]], suml[[2, 1]]}]

out[4] {a?-2a~/aZ-b2 Cos[t] +a?Cos[t]?-b?Cos[t]?
a?+2a~/aZ-b? Cos[t] +a®Cos[t]?-h?Cos[t]?}
This shows that both expressions factor into perfect squares.

In[5]: {(e3 = (a-Sqrt[a”"2-b"2]*xCos[t])"2) -el,
(ed = (a+Sqgrt[a”"2-b"2]xCos[t])"2) -e2} // Expand

out[5] {0, 0}

Replace the expressions under the radicals with the equivalent perfect square expressions.

In[6]: sunR =Sqrt [e3] +Sqrt [e4]

out [6] J(afvaZbe Cos[t])2 +J(a+\/a27b2 Oos[’[])2

Since a > b > 0, both expressions are clearly the square root of a squared positive number,
which simply reduces to the positive number itself.

n[7]: C ear [El];
sunR /. Sqrt [E1l_"2] ->E1

out[7] 2a

elllen.nb

Length of Ellipse Focal Chord

Exploration

Prove that the length of the focal chord of an ellipse is 2b?/a, where @ is the length of the
semi-major axis and b is the length of the semi-minor axis.

Approach

Construct an ellipse in standard position. Construct a line perpendicular to the axis of the
ellipse through one of the focal points (the line containing the focal chord). Compute the
distance between the points of intersection of the ellipse and the line.

Solution

Create the ellipse.

In[1]: Cear [al, bl];
el = Ellipse2D[{0, 0}, al, b1, O];

Construct one of the focal points.

n[2]: fpt = First [Foci 2D[el]]

Construct a line perpendicular to the z-axis through the focus.

In(3]: fln=_Line2D[fpt, Infinity]
out[3] Line2D[1, 0, -+/al?-b1?]

Intersect the line with the ellipse.

625

626 elllen.nb

In[4]: pts = Points2D[fln, el]

—————————————— — 2 — 2
out[4] {Poi ntZD[{\/alz—blz, 7%}], Poi ntZD[{\/alz—blz, %}}}

The length of the focal chord is the distance between the intersection points.
In[5]: d = Di stance2D[Sequence ee pts]

b1*
out[5] 2 YL

Notice that since a > 0 and b > 0 the solution reduces to 2b*/a.

Inf6): d /. {Sqrt[blr4/al”2] ->b1lr2/al}

2 b1?

out [6] atl

ellrad.nb

Apoapsis and Periapsis of an Ellipse

Exploration

Show that the greatest, apoapsis, and least, periapsis, radial distance of a point on an ellipse
as measured from a focus point is given by 7 = a(1 + ¢) and r = a(1 — e), respectively, where
e is the eccentricity and a is the length of the semi-major axis of the ellipse.

Approach

Create a standard ellipse centered at the origin and create an expression representing the
distance from a focus point to a point on the ellipse (in terms of the eccentricity and semi-
major axis). Find the parameter value on the ellipse where the distance is a minimum or a
maximum.

Solution
The eccentricity is given by e = v/ a? — b2/a; therefore, v/a? — b2 = ea. Find the focus points
and use this substitution.

n[1]: O ear[a, b, e];
el = Elli pse2D[{0, 0}, a, b, 07;
fptsl=Foci2D[el] /. Sqrt[a”"2-b"2] ->a=xe

out [1] {Point2D[{ae, 0}], Point2D[{-ae, 0}]}

Find a general point on the ellipse in terms parameter t.

n[2]: Cear[t];
pt = Poi nt2D[el[t]]
out[2] Point2D[{aCos[t], bSin[t]}]

Solve for b in terms of a and e, where b > 0.

627

628 ellrad.nb

In[3]: ans = Sol ve[Sqrt [a®"2-b"2] /a==¢e, D]
oue(3] {{b-»-avi-e?}, {boa+i-e?}}
Determine the distance, d, from the point to the focus.

In[4]: d =Di stance2D[fpts1[[1]], pt] /. ans[[2]] //Sinplify

The maximum value of d occurs when cos(f) = —1, or = m; the minimum value of d occurs
when cos(f) =1, or § = 0.

In[5]: {apoapsis, periapsis}=Mp[(d /. #)& {Cos[t] ->-1, Cos[t] ->1}]

out [5] {Jaz (-1-e)?, Jaz (-1+e)?}

Since e < 1, the sign must be reversed outside the radical.

In[6]: C ear [El];
{apoapsi s, periapsis} /.
Sqrt [a*2+E1_"2] ->a=« (-E1) // Factor

out[6] {a (l+e), —a(-1+e)}

ellsim.nb

Similar Ellipses

Exploration

All ellipses of equal eccentricity are essentially similar in that by a proper choice of scales
(and axes) they can be made to coincide. Show this property is true for two ellipses of equal
eccentricity centered at the origin.

Approach

Construct two ellipses with equal eccentricity. Show that one can be scaled to coincide with
the other.

Solution
Construct the two ellipses by vertex points.

n[1]: O ear [el, a, al, a2];
{E1, E2} = {ElI | i pse2D[{Poi nt 2D[-al, 0], Poi nt2D[al, 0]}, el],
El i pse2D[{Poi nt 2D[-a2, 0], Poi nt2D[a2, 0]}, el]} /.
Sgrt [a_"2] ->a

out(1] {Ellipse2D[{0, 0}, al, al~/1-el®, ArcTan[2al, 0]],
Scale the first to coincide with the second

In[2]: Scal e2D[E1l, a2/al]

629

630 ellsim.nb

Discussion

This is a plot of a pair of similar ellipses.

n[3]: Sketch2D[{El, E2} /. {al->1, a2 ->2, el ->.75}];

—~
N

o
= 01 O O -

1
N

1
=
(@)
=
N

ellslp.nb

Tangent to an Ellipse with Slope

Exploration

Show that the lines tangent to the ellipse z? / a? + > /b2 =1 with slope m are given by
y = mx + \a?m? + b2

Approach

Construct a line with slope m and use the function TangentLines2D[in, quad] to construct
the desired tangent lines.

Solution

Construct a line with slope m.

n[1]: Cear [X, y, m];
I 1 = Li ne2D[Poi nt 2D[x, y], m]

out [1] Line2D[m -1, -mx +Yy]
Construct the lines tangent to the ellipse and parallel to the line.
In(2]: Cear [a, bl;
tln=TangentLines2D[l 1, el = El | i pse2D[{0, 0}, a, b, 0]]

Show the lines in equation form.

In[3]: Map[Equati on2D[#, {x, y}1& tln]

631

632

ellslp.nb

Discussion

Plot a numerical example.

In[4]: Sketch2D[{tln, el} /.
{m->1/2, a->2, b->1}1;

eqarea.nb

Equal Areas Point

Exploration

Given AABC with vertices A(za,2zp), B(xp,yp) and C(zc,yc) show that there are four
positions of a point P, (x,y) such that AAPB, AAPC and ABPC have equal areas. The
coordinates of P, are given by

(ratxp+ac)/3,(ya+ys +yc)/3)
(—za +2B +2c, —ya +yB +YC)
(+z4 — 2B + 20, +Ya —YB +YC)
(+za +2B — 0, +ya+yB — Yo)-

P

Py is the centroid of AABC and AP, P,Ps;. AABC connects the midpoints of the sides of
AP, PP,
Approach

Construct the geometry and solve a system of equations that equates the areas of the three
triangles. Compare the centroid and midpoints as specified.

Solution
Create the points.
n[1]: O ear [XA, YA, xB, yB, xC, yC, x, yI;
Al = Poi nt 2D[xA, yA];
Bl = Poi nt 2D[xB, yBIJ;

Cl = Poi nt 2D[xC, yC];
P = Poi nt 2D[x, Yy];

Compute the areas of the triangles.

633

634 eqgarea.nb

In[2]: al = Area2D[Tri angl e2D[Al, P, B1]];
a2 = Area2DI[Tri angl e2D[A1, P, C1]];
a3 = Area2D[Tri angl e2D[B1, P, Cl1]1;

Form equations by equating the areas (squared). Squaring is required because the area calcu-
lation may produce a symbolically negative number for the area.

In[3]: {eql =al”2==a2"2, eq2 =a2”2 ==a3"2}

out [3] {211‘ (XAy -xBy - x yA+ xByA+x yB- xAyB)? ==

% (XAy -XCy - x yA+XCyA+ X yC-xAyC)?,

% (XAy - XCy - X yA+ XCyA+x yC- xAyC)? ==

% (xBy -xCy -x yB+xCyB+x yC-xByC)?}

Solve the system of equations.

In[4]: ans = Sol ve[{eql, eq2}, {X, Yy}I
out [4] {{x—>xA+xB—xQ y >YA+yB-yC}, {Xx->xA-xB+xC y->yA-yB+yC},

(X > -XA+xB+xC, y > -yA+yB+yC}, {Xa% (XA +xB +xC), ya% (YA+yB+yC) }}

Construct points at the solutions.

In[5]: {P3, P2, P1, PO} = Map[(Poi nt 2D[X, y] /. #)&
ans];
(PO, P1, P2, P3}

out (5] {Poi ntZD[{% (XA +xB +xC), % (yA+yB+yC)H,

Poi nt 2D[{-xA + xB+xC, -yA+yB+yC}], Point2D[{xA-xB+xC, yA-yB+yC}],
Poi nt 2D[{xA+XB-XxC, yA+yB-yC}]}

Show that Py is the centroid of AABC and AP P, Ps.

In[6]: Point2D[Tri angl e2D[Al, B1, Cl], Centroi d2D]

=

out [6] Poi nt 2D[{

w|

(xA+XxB+XC), 3 (YA+yB+yC) }]

In[7]: Point2D[Tri angl e2D[P1, P2, P3], Centroi d2D]

1 1

out [7] Poi ntZDH§ (xA+XxB+XC), 3 (YA+yB+yC) }]

Show that AABC connects the midpoints of the sides of AP, P, Ps.

In[8]: {Point2D[P1, P2], Point2D[P1, P3], Point2D[P2, P3]}

out [8] {Poi nt2D[{xC, yC}], Poi nt2D[{xB, yB}], Poi nt 2D[{xA, yA}]}

eqgarea.nb

635

Discussion

This is a plot of a numerical example.

In[9]: Sketch2D[{Tri angl e2D[A1, B1, Cl1],
Tri angl e2D[P1, P2, P3],
PO, P1, P2, P3} /.
{XA->-1, yA-> -1,
xB->3, yB->0,
xC->1, yC->3}1;

<.

eyeball.nb

Eyeball Theorem

Exploration

The tangents to each of two circles from the center of the other are drawn as shown in the
figure. Prove that the chords illustrated are equal in length.

Approach

Construct the chords and compare their lengths.

Solution

Without loss of generality, scale the circles so that the distance between the centers is 1.
Position them at the origin and along the positive x-axis.

637

638

eyeball.nb

In[1]: Cear[rl, r2];
cl=Circle2D[{0, 0}, rily;
c2=Circle2D[{1, O}, r2];
| 12 = Tangent Li nes2D[Poi nt 2D[c1], c2];
| 21 = Tangent Li nes2D[Poi nt 2D[c2], c1];

Compute the tangent points.

In[2]: pt1l = Tangent Poi nt s2D[Poi nt 2D[c1], c2];
pt 2 = Tangent Poi nt s2D[Poi nt 2D[c2], c1];

Show that (half) the heights of the segments are equal

In[3]: sinl=YCoordinate2D[pt1[[1]]]/
Di st ance2D[Poi nt 2D[0, 0], pt1[[1]1];
sin2 = YCoor di nat e2D[pt 2[[2]1] /
Di st ance2D[Poi nt 2D[1, 0], pt2[[2]1];
{hl1=Sinmplify[rl=*sinl],
h2 =Sinmplify[r2*sin2]}

out[3] {rlr2, rir2}

Discussion
This is a plot of a numerical example.

In[4]: exanple={rl1->0.25 r2->0.375};
Sket ch2D[
{cl, c2, 112, |21, ptl, pt2} /.
exanpl e,
Pl ot Range -> {{-1/2, 2}, {-1, 1}}1;

1

0.75
0.5
0.25

0
-0.25
-0.5
-0.75

0 0.5 1 1.5

gergonne.nb

Gergonne Point of a Triangle

Exploration

Let Q12, @13 and Q23 be the points of contact of the inscribed circle of AP, P, Ps with sides
Lqs, Ly3 and Log, respectively. Show that lines P1Q23, PoQ13 and P3(Q:12 are concurrent.
The point of concurrency is called the Gergonne Point of the triangle after J.D. Gergonne
(1771-1859), founder-editor of the mathematics journal Annales de Mathematiques.

Approach

Create the triangle in a simplified position and construct the inscribed circle. Construct the
tangency points and the prescribed lines. Show that the lines are concurrent.

Solution

Without loss of generality, create the triangle’s vertex points and the triangle itself in a
convenient position.

In[1]: Cear [a, b];
P1 = Poi nt 2D[0, 07];
P2 = Poi nt 2D[a, b];
P3 = Poi nt 2D[1, 07;
T1 = Tri angl e2D[P1, P2, P3];

Construct the circle inscribed in the triangle.

In[2]: Cl =Circle2D[T1, Inscribed2D] // FullSinplify;

Construct the lines through the sides of the triangle.
n(3]: {L12 =Line2D[P1, P2], L13 = Li ne2D[P1, P3], L23 = Li ne2D[P2, P31}

out[3] {Line2D[-b, a, 0], Line2D[0, 1, O], Line2D[b, 1-a, -b]}

639

640 gergonne.nb

Construct tangency points which are the poles of the sides with respect to the inscribed circle.

n[4]: {Ql2, Q3, @3} =
Map [Ful | Si nplify,
{Poi nt 2D[L12, C1], Point2D[L13, C1], Poi nt2D[L23, C1]}1;

Construct the lines defining the Gergonne point.
n[5]: {L1, L2, L3} =

Map [Ful | Si nplify,
{Li ne2D[P1, @3], Line2D[P2, Q13], Line2D[P3, QL2]}1;

The three lines are concurrent if the determinant of their coefficients is zero.

In[6]: Det [{ListeelLl, ListeelL2, ListeelL3}] //FullSinplify

out (6] O

Discussion

This plots a numerical example with specific points.

n[7]: Sketch2D[{P1, P2, P3, T1, C1, Q12, Q13, @3, L1, L2, L3,
Poi nt 2D[L1, L2]} //. {a->2/3, b ->1},
Pl ot Range -> {{-0. 25, 1.25}, {-0.25, 1.25}}1;

N

0.20 0.20.40.60.8 1 1.2

© o o ©
"N O N A O ® PN

heron.nb

Heron’s Formula

Exploration
Show that the area, K, of a AABC is given by
K=+/s(s—a)(s—b)(s—c)

where the semi-perimeter s = (a 4+ b+ ¢) /2 and a, b and ¢ are the lengths of the sides.

Approach

In a AABC with side lengths a, b and ¢, derive an expression for cos A (the cosine of the angle
at vertex A of the triangle) using the Law of Cosines. Using the identity (sin 4)> = 1 — (cos A)*
the area can be computed using K = (1/2)besin A. Simplify the resulting expression for the
area, K, to Heron’s formula.

Solution

Find an expression for the cos A using the Law of Cosines.

In[1]: Clear[a, b, c, s, cosA, sinA, El];
cA=Solve[a”"2 ==b"2+Cc"2-2xbxcxcosA, cosA] //Sinplify

a2+ b2 +c? }}

out (1] {{cosA- he

Find an expression for the sin A using the previous expression for cos A. Use the positive
result.

In[2]: SA=Solve[(sinA"2 +c0osA"2==1) /. cA, sinA] //Last

. 1 2az 2a? a4 b2 c2
out [2] {S|nA97J2+W~+ACT7W7C—Z-75—Z-}

641

642 heron.nb

Compute the area of the triangle from one-half the product of the base and height.

In[3]: Kl=b*cxsinA/2 /. sA //FullSinplify

1 (-a+b-c) (a+b-c) (ra+b+c) (a+b+c)
out [3] Ich— bTc?

Simplify to Heron’s formula. The following steps were computed using Mathematica Version
3.0.1. Version 4.0 produces slightly different results that are algebraically equivalent.

In[4]: K2=KLl /. Sqrt [E1l_]:> Sqrt [Factor [E1l]]

1 (-a+b-c) (a+b-c) (ra+b+c) (a+b+c)
out [4] Ich— bTc?

In[5]: K3=K2 /. Sqrt [-E1l_/ (b"2%c”2)]:>Sqrt[-E1]/ (b=xcC)

out [5] % ~-(-a+b-c) (a+b-c) (ra+b+c) (a+b+c)

In[6]: K4 =K3 //.
{a+b->2xs-c,
b+c->2%s-a,
-a-Cc->-(2xs-b)} //FullSimplify

out[6] S (-a+S) (-b+s) (-c+5s)

hyp2a.nb

Focal Distances of a Hyperbola

Exploration

Show that the difference of the distances from the two foci to any point on a hyperbola is 2a,
where a is the length of the semi-transverse axis.

Approach

Construct a generic point on a hyperbola. Construct the two foci of the hyperbola. Find the
distance from each focus to the generic point. Show that the difference of the distances is 2a.

Solution

Create the hyperbola and a generic point on it.
In[1]: Clear[a, b, t];

hl = Hyper bol a2D[{0, 0}, a, b, 01;
pl = Poi nt 2D[a = Cosh[t], b*Sinh[t]]

out [1] Point2D[{aCosh[t], bSinh[t]}]
Create the focus points of the hyperbola.

n[2]: {f1, f2} = Foci 2D[h1]

Compute the difference of the distances from the generic point to the foci.

In[3]: diffl=Distance2D[pl, f2] - Di stance2D[pl, f1]

out [3] 7J(7x/a2+b2 +aC05h[t])2+b28i nht? +J(\/a2+b2 +aOosh[t])2+bZSi nhit)?

643

644 hyp2a.nb

Work on the expressions under the radicals.

In[4]: {el, e2} = Map[Expand[# /. Sinh[t]”2->Cosh[t]"2-1]&,
{diff1rr1, 2, 111, diff1r[2, 11131

out (4] {a?-2a+/aZ+b2 Cosh[t] +a?Cosh[t]?+b?Cosh[t]?

This shows that both expressions factor into perfect squares.

In[5]: {(e3 = (a-Sqrt[a”"2+b"2]*xCosh[t])"2) -el,
(ed = (a+Sqgrt[a”"2+b"2] xCosh[t])"2) -e2} // Expand

out[5] {0, 0}

Replace the expressions under the radicals with the equivalent perfect square expressions.

nf6]: diff2=-Sqrt [e3] +Sqrt [e4]

out [6] —J(afx/a2+b2 Cosh [t])2 +J(a+\/a2+b2 Oosh[t])2

Since a > 0, b > 0 and cosh(#) > 1 the expression under the radicals are reduced as follows.

In[7]: Cear [El, E2];
diff2 /. {-Sqrt [E1_"2] +Sqrt [E2_"2] -> - (-E1) + E2}

out[7] 2a

hyp4pts.nb

Equilateral Hyperbolas

Exploration

Describe a method for finding the equilateral hyperbola(s) passing through four points. Show
that the technique produces the correct results for the points (2,1), (—=1,1), (—=2,—1) and
(4, —3) by plotting the hyperbola(s) and the four points.

Approach

Form a quadratic, parameterized by the variable k, representing the pencil of quadratics
passing through the four points. The first and third coefficients of the quadratic, a and c,
must satisfy the relationship a = —¢, if the quadratic represents an equilateral hyperbola.
Solve the equation for k.

Solution

This is a function that implements the approach.

In[1]: Quadratic2D[pl: Point2D[{x1_, y1_}]1, p2: Point2D[{x2_, y2_}1,
p3: Point 2D[{x3_, y3_}], p4: Point2D[{x4_, y4_}1,
Hyper bol a2D] : =
Modul e[{QL, k, a, b, c},

QL = Quadr ati c2D[pl, p2, p3, p4, k, Pencil 2D];

{a, b, c} =List ee Take[QL, 3];

ans = Sol ve[a == -c, Kk];

Map[(QL /. #)& ans]1;

Discussion

Here’s the plot of the solution for the four points specified.

645

646

hyp4pts.nb

In[2]: pts = {pl =Point2D[{2, 1}], p2 = Point2D[{-1, 1}],
p3 = Poi nt 2D[{-2, -1}], p4 = Poi nt2D[{4, -3}1};
gl = Quadrati c2D[pl, p2, p3, p4, Hyperbol a2D] // N

out[2] {Quadratic2D[24., -6., -24., -18., 36., -60.]}

In[3]: hypl = Map[Loci 2D, q1]

out[3] {{Hyperbol a2D[{0. 461538, 0.692308}, 1.46192, 1.46192, 3.07942]}}

1n[4]: Sketch2D[{pts, hypl}, CurvelLength2D-> 207;

4

-7.5 -5-2.5 0 2.5 5 7.5

hyparea.nb

Areas Related to Hyperbolas

Exploration

y |
\ P,
/ o -
P1
y A
\ P,
P1

Referring to the figures, use calculus to verify that the areas between two parameters ¢; and
to of a segment and a sector of a hyperbola are given by

647

648 hyparea.nb

ab .
Asegment = ? (Sll’lh(s(tg — f,l)) — S(tg — f,l))
abs
Asector = 7 (t2 - tl)
where a and b are the lengths of the semi-transverse and semi-conjugate axes, respectively,
s =cosh™' (e) and e is the eccentricity of the hyperbola (assuming the parameterization
Descartaz2D uses for a hyperbola).

Approach

Find the coordinates of 21 and x5, the coordinates of the ends of the infinitesimal rectangle.
Integrate (r3 — 1) dz from y; to ya to find the area of the segment. Find the area of the
AOP, P, from its vertex points. Subtract the area of the segment from the area of the triangle
to find the area of the sector.

Solution

The z-coordinate of a point on the hyperbola (found by solving z?/a® — 4*/b? = 1 for z) in
terms of the y-coordinate.

In[1]: Cear[Xx, ¥y, a, bl;
Xl=a*=Sqrt [1+y”~2/b"2]

2
out[1] a 1+%2—

The z-coordinate of a point on a line between (21, 1) and (22, y2) . This is found by intersecting
a horizontal line through the point on the hyperbola with the line between P; and P». This
step and the one immediately following show the results computed by Mathematica Version
3.0.1. Version 4.0 produces slightly different results that are algebraically equivalent.

In[2]: Cear [x1, y1, x2, y2];
X2 = XCoor di nat e2D[
Poi nt 2D[Li ne2D[{x1, y1}, {x2, y2}1,
Li ne2D[Poi nt 2D[x, y1, 0111 // Full Sinplify

X2 (-y +yl) +x1 (y -y2)

out [2] vi-y2

L is the length of the horizontal line segment between the hyperbola and the line through P;
and P.

In[3]: L=X2-X1 //FullSinplify

777777)’72 X2 (-y +yl) +X1 (y -y2)
out [3] —aJl+F—+ vioy2

hyparea.nb 649

Find the indefinite integral L A y, which represents an infinitesimal rectangular area.

In[4]: |1 =Integrate[l, y]l //FullSinplify

y (—x2y+2x2y1+x1 (y-2y2) va/1+ % (—yl+y2)) +ab (-yl+y2) ArcSinh[{]

out (4] 2 yl-y2)

Find the area of the hyperbolic segment between the chord and the hyperbola by evaluating
the integral at the vertical limits. Simplify.

In(5]: Al=(11 /. y->y2)-(11 /. y->yl) //FullSinplify

2 2
ayl /1+ybl2 S (Xx1+x2) (yl-y2) -ay2 /1+yb22 .

ab (ArcSi nh[%} ~ArcSi nh[%})

out [5] %'

Inf6]: A2=A1 //. {
axSqrt [1+y172/b"2] ->x1,
axSqrt [1+y2”22/b"2] ->x2}

out [6] (xlylf (x1+x2) (yl-y2) -x2y2+ab (ArcSi nh[%} ~ ArcSi nh[yz }))

b

N| =

Create the hyperbola.

In[7]: H1 = Hyperbol a2D[{0, 0}, a, b, 07;

Find the coordinates of a point at a general parameter ¢ on a hyperbola.

n[8]: O ear [S];
P=HL[t] /. ArcCosh[Sgrt [a*2+b"2]/a] ->s

out[8] {aCosh[st], bSinh[st]}

Simplify.

n[9]: Cear[tl, t2];
A3=A2 //. {
X1 -> (P[[1]]1 /. t ->t1),
x2 -> (P[[11] /. t ->12),
yl-> (P[[2]] /. t ->t1),
y2 -> (P[[2]] /. t ->t2)} // FullSinplify

out [9] —%ab (-ArcSinh[Sinh[stl]] + ArcSinh[Sinh[st2]] +Sinh[s (t1-t2)])

650

hyparea.nb

In[10]: O ear [E1l];
Ad=A3 /.
ArcSinh[Sinh[E1l_]]1 ->E1 // Full Sinplify

out [10] 7%ab (s (-t1+t2) +Sinh[s (t1-t2)])

In[11]: AreaSegment = A4 /.
Sinh[s (t1-t2)] ->-Sinh[s (t2-t1)]

out [11] -%ab (s (-t1+t2) -Sinh(s (-t1+t2)])

Find the area of the triangle OP; Ps.

In(12]: AreaTriangl e = Area2D[
Triangl e2D[{0, 0}, {x1, y1}, {x2, y2}11 /. {
x1-> (P[[1]] /. t ->1t1),
x2 -> (P[[1]1] /. t ->12),
yl-> (P[[2]] /. t ->t1),
y2 -> (P[[2]] /. t ->t2)} //FullSinplify

out [12] —%absi nhis (t1-t2)]

The area of the sector is the difference.

1n[13]: AreaSector = AreaTriangl e - AreaSegnent // Sinplify

out [13] %abs (-t1+t2)

hypeccen.nb

Eccentricities of Conjugate Hyperbolas

Exploration

Show that if e; and es are the eccentricities of a hyperbola and its conjugate, then

+4=1
ef e

Approach

Create the hyperbolas, compute their eccentricities and verify the relationship.

Solution

Create a hyperbola and its conjugate.

n[1]: Cear [a, b];
h1 = Hyper bol a2D[{0, 0}, a, b, 0];
h2 = Hyper bol a2D[h1, Conj ugat e2D];

Compute the eccentricities of the hyperbolas.

1n[2]: {el =Eccentricity2D[hl],
e2 = Eccentricity2D[h2]}

Jaiib? a2 ib?
{ }
a ’ b

out [2]

Verify the relationship.

In[3]: 1/el”"2+1/e2”2 //Sinplify

out[3] 1

651

hypfd.nb

Hyperbola from Focus and Directrix

Exploration

Show that the hyperbola with focus F(z1,y1), directrix line L = px + qy + r = 0 and eccen-
tricity e > 1, is defined by the constants

B paeD B qaeD
h = X d R k= Y1 d 3
0= dﬁ, b=ave? —1, 0=tan"'(p,q),
where
(pz1 + qy1 +7)? pu1t gy +r
d=\\|"——%_ 5 and D=—7""5—.
p*+4q pTta
Approach

Apply the definition of a hyperbola to the supplied focus and directrix for a general point
(z,y) and show that the derived locus is a hyperbola.

Solution

The rotation angle of the hyperbola is the angle the line perpendicular to L makes with the
+z-axis (in Mathematica ArcTanl[p, ¢] is ArcTan[q/p], the first form takes into account the
quadrant of the point (p, q)).
In[1]: Cear[p, q, r];
L = Li ne2D[p, q, r1;
theta = Angl e2D[Li ne2D[0, 1, 0], Li ne2D[Poi nt 2D[0, 0], L]];
theta //Sinplify

]

out (1] ArcTan]|

o|a

653

654 hypfd.nb

Now we must show that the lengths a and b are given by the formulas. In standard position
the distance from the focus of an ellipse to its directrix is given by d = ae — a/e. Solving for
a gives the following.

In[2]: Cear[d, a, el;
Solve[d==axe-a/e, a] //Sinplify

de

out [2] {{a» W}}

Also, the eccentricity is given by e = v/a2? + b2/a and solving for b gives (take the positive
result).

In[3]: Solve[e ==Sqgrt [a"2+b"2] /&, b]

The eccentricity is the ratio of the distance from a general point to the focus to the distance
to the directrix.

In[4]: Cear [x1, y1, X, yI;
F = Poi nt 2D[x1, y1];
P = Poi nt 2D[Xx, Yy1;
{dF = Di st ance2DI[P, F],
dL = Di stance2D[P, L]}
out [4] {\/(x—x1)2+ (y-yh2, Ji“ +§zx++qu>2 }

Form the equation for the eccentricity squared.

In[5]: eql=e”2xdL"2 -dF*2 // Expand // Toget her

out [5]

pZiqZ (e2r242e2prx-p?x2+e?2p?x2-2x2+2p2xx1+2q2xx1-p2x1?-g2x1?+
2e?qry+2e’paxy-p?y?-q?y?+e®q?y?+2p?yyl+2q’yyl-p?yl®-q?yl?

Find the coordinates (h1, k1) of the center of the quadratic.

nf6]: {hl, k1} =
Coor di nat es2D[
Poi nt 2D[
QL = Quadratic2D[eql, {x, y}] //Sinmplifyl]l //Sinplify

-(p?+g%) x1+e? (@®x1-p (r +qyl)) (P?+9?) yl+e? (
(-1+e?) (p?+0?) T (-1+e?

2
out [6] { v)q(r+px1)-p y1) }

(p? +0?)

Find the coordinates of the center using the formula provided.

hypfd.nb 655

In[7]: C ear [Dl];
{h2, k2} = {x1-pxaxexDl/d, yl-qxaxexDl/d} //.
{a->dxe/ (e"2-1),
b->axSqrt[e”r2-1],
d->Sqrt [(p*x1+q*yl+r)"2/ (p"2+q"2)1],
Dl -> (px*x1+qg*yl+r)/ (p"2+9q"2)}

X:I__e2p<rerx1+qy1) 1_ezq(r+pxl+qy1)}
1+e?) (p2=a?) 'Y T(FIver) (pTra?)

out (7] {

This shows that the center indeed has the same coordinates as the point from the formula.

In(8]: {h1-h2, k1-k2} //Sinplify

out (8] {0, 0}

Discussion

An example showing the construction of a hyperbola from its focus, directrix and eccentricity.

n[9]: focusl =Point2D[{1/2, 1}1;

directrixl=Line2D[5, 8, -15];

eccentricityl=5/4;

hyper bol al = Hyper bol a2D[f ocus1, directrixl, eccentricityl]
107 189 } 10 15

8
B9 89) 755 Metanlz]]

out [9] Hyper bol a2D[{ NG

In[10]: Sketch2D[{focusl, directrixl, hyperbol al},
CurvelLengt h2D-> 57;

P OFRP N WA

-1 1 2 3 4

hypinv.nb

Rectangular Hyperbola Distances

Exploration

Show that the distance of any point on a rectangular hyperbola from its center varies inversely
as the perpendicular distance from its polar to the center.

Approach

Construct a generic point on a rectangular hyperbola and compare the appropriate distances.

Solution

Create a generic point on a rectangular hyperbola.

n[1]: Cear[a, t];
hl = Hyper bol a2D[{0, 0}, a, a, 01;
pl = Poi nt 2D[a = Cosh[t], a*Sinh[t]]

out[1] Point2D[{aCosh[t], aSinh[t]}]

Compute the distances.

In[2]: pO = Poi nt 2D[O, O];
{D1, D2} =
{Di st ance2D[pO0, pl],
Di st ance2D[p0, | 1 = Li ne2D[p1, h1]1} // Sinplify

out (2] {~/a?2Cosh[2t], ~/a?Sech[2t] }

Use a trigonometric identity.

In[3]: 1/Sech[2t] // Sinplify

out [3] Cosh[21]

657

658

hypinv.nb

Therefore, since D1 D5 is a constant, D; varies inversely as Ds.

In[4]: C ear [El];
DL«D2 //. {
Sqrt [a”"2+E1_] ->a=Sqrt [E1l],
Sqrt [Cosh[E1_1] *Sqrt [Sech[E1_]] -> 1}

out [4] a?

Discussion

This is a plot of a numerical example of the geometric objects.

n[5]: Sketch2D[{h1, pl, pO, 11} /. {a->1, t ->0.5}7;

2

hyplen.nb

Length of Hyperbola Focal Chord

Exploration

Prove that the length of the focal chord of a hyperbola is 2b%/a, where a is the length of the
semi-transverse axis and b is the length of the semi-conjugate axis.

Approach

Construct a hyperbola in standard position. Construct a line perpendicular to the axis of the
hyperbola through one of the focal points (the line containing the focal chord). Compute the
distance between the points of intersection of the hyperbola and the line.

Solution

Create the hyperbola.

n[1]: Clear [al, bl];
hl = Hyper bol a2D[{0, 0}, al, b1, 0];

Construct one of the focal points.

In[2]: fpt = First [Foci 2D[h1]]

Construct a line perpendicular to the z-axis through the focus.

1n(3]: fln=Line2D[fpt, Line2D[0, 1, 0], Perpendi cul ar 2D]
out (3] Line2D[1, 0, -+/al®+b1?]

Intersect the line with the hyperbola.

659

660

hyplen.nb

In[4]: pts = Points2D[fln, hl]

—————————————— . b12

2L 11, poi nt2[{+/a1? +b1?, 2211}

al

The length of the focal chord is the distance between the intersection points.

In[5]: d1 = Di stance2D[Sequence ee pts]

b1*
out[5] 2 YL

Notice that since a > 0 and b > 0 the solution reduces to 2b*/a.

Inf6]: d1 /. {Sqrt[bl°4/al”2] ->bl”2/al}

2 b1?

out [6] atl

hypslp.nb

Tangent to a Hyperbola with Given Slope

Exploration

Show that the lines tangent to the hyperbola :UQ/a2 — yQ/b2 = 1 with slope m are given by

y = mx + \a?m? — b2

Approach

Construct a line with slope m and use TangentLines2D[In, quad] to construct the desired
tangent lines.

Solution
Construct a line with slope m.

In[1]: Clear [X, y, m];
|1 = Li ne2D[Poi nt 2D[x, y1, ml;

Construct the lines tangent to the hyperbola and parallel to the line.

1n[2]: O ear[a, b];
tl n = Tangent Li nes2D[l 1, hl = Hyper bol a2D[{0, 0}, a, b, 0]]

Show the lines in equation form.

In[3]: Map[Equati on2D[#, {x, y}1& tln]

661

662 hypslp.nb

Discussion

This is a plot of a numerical example.

1n[4]: Sketch2D[{tln, h1} /. {m->1, a->2, b->1}];

hyptrig.nb

Trigonometric Parametric Equations

Exploration

Show that the parametric equations

x = asec(f)
y = btan()
represent the hyperbola
2 2
L
a b2

Approach

Demonstrate that the parametric equations satisfy the equation of the hyperbola.

Solution
Substitute the parametric values into the equation and observe that the equation is satisfied.
n[1]: Cear[Xx, Yy, a b, t];

x"N2/anr2-y"2/b”2-1 /.
{Xx->a+Sec[t], y->b«Tan[t]} //Sinplify

out[1] O

663

intrsct.nb

Intersection of Lines in Intercept Form

Exploration

Show that the point of intersection of the lines

is

Approach

Create the two lines and intersect them.

Solution

Create the two lines.

n[1]: Cear [a, b];
11 =Line2D[{a, 0}, {0, b}1;
12 = Line2D[{b, 0}, {0, a}l;

Intersect the lines.

In(2]: Point2D[l1, 12] //Sinmplify

ab ab
a+b’ a+bH

out [2] Poi nt 2D[{

665

666 intrsct.nb

Discussion

Notice that the formula cannot be used if a = 4+b, because in both cases the two lines are
coincident. This limitation is more obvious if we do not simplify the equation for the point of
intersection (the denominators are zero when a = +b).

In[3]: Point2D[l 1, |2]

-a2b+ab? —a2b+ab2H

out [3] Poi ntZD[{ “aZz+b? ' " _aZzib?

inverse.nb

Inversion

Exploration

A point P’ (2’,y’) is said to be the inverse of a point P(x,y) in the circle
C=(@—h)’+@y—k’=r

if points O(h, k), P and P’ are collinear and |OP||OP’| = 2. Using this definition show that

A. The coordinates of P'(x',y’)) are

r?(z — h)
(x—h)?+(y—Fk)

r*(y — k)
(z—h)2+ (y — k)2

/

' =h+

5 and ¥ =k +

B. If the circle of inversion is 2% + y? = 1, the coordinates of P’ are

= —2 and y = —2
$2+y2 m2+y2'

C. If the circle of inversion is 2 + y2 =1, the inverse of the line L = Az + By + Cy =0,
assuming L does not pass through the origin, is the circle

e A (e BLY Al Bt
201 YT90,) T Tacz

D. If the circle of inversion is % + y2 =1, the inverse of the line L = Az + By + Cy =0,
assuming L passes through the origin (Cy = 0), is L itself.

E. If the circle of inversion is 72 +y? = 1, the inverse of the circle (z — h1)? + (y — k)% = r? is

668 inverse.nb

where D = h? + k? — 2.

F. If the circle of inversion is 2% + y? = 1, the inversion of C' = (z — h)? + (y — k)? = h? + k3,
which passes through the origin, is the line L = 2hyx + 2k1y = 1. L is parallel to the tangent
line to C through the origin. The equation of the tangent line is 2h x + 2k1y = 0.

G. Inversion is clearly a non-rigid transformation.

Approach

See the commentary below.

Solution

Use the definition of inversion to find the coordinates of a point (x,y) inverted in the circle
(z — h)® + (y — k)> = 2. This is the solution to proposition A as stated above.

In[1]: Cear[X, y, h, k, r];
Coor di nat es2D[
Poi nt 2D[
Poi nt 2D[h, k1,
Poi nt 2D[x, Y1,
rh2/7Sgrt[(x-h)"2+ (y-k)*211]1

r2 (-h+x) r2 (-k+y)]

h , k
out (1] {h+ (-h+x)%2+ (-k +y)? T Chex) 21 (ckry)?

Define a function for inverting coordinates.

In[2]: Inverse2D[{x_, y_}, CGrcle2D[{h_, k_}, r_11 : =
{h+ (r*2%(x-h))/((x-h)"2+(y-k)"2),
K+ (r"2x(y-Kk)) /7 ((x-h)"2+ (y-k)"2)}

Here’s the inversion in a unit circle at the origin.

In[3]: invPts =l nverse2D[{x, y}, Circle2D[{0, 0}, 111

out [3] {W, XZyT}

Determine the inverse inversion equations. This is the solution to proposition B as stated
above.

In[4]: O ear [x1, y1];
egnl = Sol ve[{x1, y1} ==invPts, {X, y}]

x1 yl }}

4 X ,
out 14 {{ 7 X124 y1? yﬁ><12+y12

inverse.nb 669

Find the inversion of a line.

In[5]: O ear [Al, Bl, Cl];
eql=Alxx +Blxy +Cl /. First[eqnl]

Alxl Blyl

out[5] Cl
ue sl T x1Z4y1? " x1Zay1?

Clear the denominators of the equations.
In(6]: eq2 =eql* (x1"2+yl1”2) //Sinplify
out [6] ALx1+Blyl+Cl (x12+y1?)
Determine the quadratic (a circle). This is the solution to proposition C as stated above.

In[7]: Circle2D[Quadratic2D[eq2, {x1, y1}1]

12 mq 2
out[7] Circl EZDH’%’ 7%}, 1 ﬁlﬂ‘}

Find a line passing through the center of inversion (0, 0).

In[8]: eq3 =Al*x +Blxy /. First[eqnl]

Al x1 Blyl

out [8]
! x12+y12 x12+y1?

Clear the denominator.
In[9]: eqd =eq3 /. {x1"2+yl"2->1}

out[9] Alx1+Blyl

The line inverts into itself. This is the solution to proposition D as stated above.

In[10]: Line2D[eqg4, {x1, y1}]

out[10] Line2D[Al, Bl, 0]

Inversion of a circle.
In[11]: C ear [h1, k1, r1];
egs=(x-h1)"2+ (y-k1)~2-r172 /. First[eqnl]
2

x1 2 yl
out[11] -r1?+ [-h1 ————) (fkl — =
uelit] B T x1Zay1z) T X124 y1?

Clear the denominators.

In[12]: eq6 =eq5* (x1"2+yl”r2)"2 // Toget her;
eq7 =eq6[[3]]

out12] -1+2h1x1-h12x1%-k12x1%2+r12x1%2+2klyl-h12y1%-k12y1%2+r12y12

670 inverse.nb

Find the circle. If the resulting denominators are zero, then the circle passes through the
center of inversion and the inversion is invalid. This is the solution to proposition E as stated
above.

In[13]: Circle2D[Quadrati c2D[eq7, {x1, y1}1]1 //Sinplify

. h1 k1, [riz
out 23 Arel e2Dl{ pry sy R 17 i 187)

A circle not passing through the origin.

In[14]: eq8 = (x -h1)"2+ (y -k1)"2 - (h172+k172) /. First[egnl] //Sinplify

1-2hl1x1-2klyl
x12 +y12

out [14]

Clear the denominator and find the line. This is the solution to the first part of proposition
F as stated above.

In[15]: eq9 = Nurrer at or [eq8];
Li ne2D[eq9, {x1, y1}]

out [15] Line2D[-2h1, -2Kk1, 1]

The line is parallel to the tangent at the origin. This is the solution to the second part of
proposition F as stated above.

In[16]: Li ne2D[Poi nt 2D[0, O],
Circle2D[{h1l, k1}, Sgrt [h172 +k1"2]1]]

out[16] Line2D[-2h1l, -2k1, 0]

johnson.nb

Johnson’s Congruent Circle Theorem

Exploration

Take any three circles C, Co and C3 which pass through the origin, have equal radii, r, and
intersect in pairs in two distinct points (one of the points is, by construction, the origin).
Prove that the circle passing through the other three points of intersection between the circles
taken in pairs is congruent to the original three circles (that is, this circle has a radius of r).

Approach

Find the coordinates of the intersection points, Py, P, and P3. Use the circle through three
points function to find Johnson’s Circle. Show that the radius of this circle is r.

Solution

Without loss of generality, assume the circles have a radius of one and one of them has its
center at (1,0). The centers of the other two circles can be written as functions of the angles
the lines through (0,0) and the centers makes with the +z axis.

In[1]: Clear [t2, t3];
P1 = Poi nt 2D[1, 07];
P2 = Poi nt 2D[Cos [t 2], Sin[t2]];
P3 = Poi nt 2D[Cos [t 3], Sin[t3]];

Create the circles.
In[2]: Cl =Circle2D[P1, 11;

C2 =Circle2D[P2, 17;
C3 =Circl e2D[P3, 17;

671

672 johnson.nb

Intersect the first and second circle to find the intersection points. The head ImPoint2D is
introduced to avoid failures during simplification when the coordinates of the points pass
through a temporary phase involving complex numbers.

In[3]: ptsl2 = Poi nts2D[Cl, C2];
ptsl2 = Map[Ful | Sinplify, Map[(I nPoi nt2D ee #)&, ptsl2]];
ptsl2 = Map[(Poi nt 2D ee #) &, ptsl2]

oue (31 [Point2D[{5 Cot [\2] (sint2) —+[sint212), 3 (sinit2) -+/sint21?)}],
Poini20{ {7 oot [7] [sinit2) eafsini2r?), g (sin2)«ofsinizi?])])

Intersect the first and third circle to find the intersection points.

In[4]: ptsl3 = Points2D[Cl, C3];
pts13 = Map[Ful | Sinplify, Map[(I nPoi nt 2D ee #) &, ptsl3]];
pts13 = Map[(Poi nt 2D ee #) &, ptsl3]

oue 41 [Point2D[{5 Cot [\2] (sin(t3) —+/sint312), 3 (sinit3)-/sin(a)?)}],
Poi t20] 7 0ot [51 (siniea) +/siniear’], g (sintta«sinitar?)}

Intersect the second and third circle to find the intersection points.

In[5]: pts23 = Poi nts2D[C2, C3];
pts23 = Map[Ful | Sinplify, Map[(I nPoi nt 2D ee #)&, pts23]];
pts23 = Map [(Poi nt 2D ee #) &, pts23]

%Cos[tzgm}cSc[tzém} [Sinit2-t3)+/sint2-13)2),
?Csc[tzét:s] (sinit2-t3] Sin[t2—t3]2)sin[£—2£—t3-}}},

Poi nt2D[{7% Cos [

out (5] {Poi nt2D[{
1

t2+t3

5]Csc[tzém] (—Sin[tZ—t3] +X/Sin[t27t3]2),

One of the intersection points must be the origin. Which one depends on whether the expres-
sion under the radical is positive or negative. We introduce the sign variables s1, so and s3
which may only take values of £1 to cover all the cases.

n[6]: O ear [s2, s3, s23];
ptsl2 =ptsl2 //. Sqrt [Sin[t2]1"2] ->S2*Sin[t2];
ptsl3 =ptsl3 //. Sqrt [Sin[t3]1"2] ->S3*Sin[t3];
pts23 =pts23 //. Sqrt[Sin[t2-t3]7"2] ->s23*Sin[t2-t3];

Each pair of intersection points must include the origin as one point. Notice that the other
point has the same coordinates no matter which sign is used.

In[7]: ptsl2 =Map[(ptsl2 /. s2 ->#)& {-1, 1}]

out (7] {{Poi ntzo[{om [%} Sin[t2], Sin[tZ]H, Poi nt 2D[{0, 0}]},
t2

{Poi nt 2D[(0, 0}], Point2D[{Cot [5—]Sin[t2], Sin[t2]}]}}

2

johnson.nb 673

In[8]: ptsl3 =Map[(ptsl3 /. s3 ->#)& (-1, 1}]

out r8] {{Poi nt 2D[{Cot [%} Sin(t3], Sin[t3]}], Point2D[{0, 0}]},
{Poi nt 2D[{0, 0}], Poi nt 2D[{Cot [%]Sin[tm, Sint31}]}}

In[9]: pts23 =Map[(pts23 /. s23 ->#)& (-1, 1}]

out (97 {{Poi nt2D[{0, 03], Poi nt2D[{Cos[t2£t3}Csc[tzétg}sin[IZ—tﬂ,
csc[2 2 sinpz 13y sin[L2213
Poi nt 2D {Cos [1213 1 csc [1213 1 gint2 13,
2 2
a2 2 sinpz 13y sin[L2123

Poi nt2D[{0, 0}]}}

Use one of the non-origin points from each of the intersection lists.
In[10]: pl2 =Union[Flatten[pts12]1]1[[2]];

pl3 = Union[Flatten[pts13]1]1[[2]];
p23 = Uni on[Fl atten[pts23]11[[2]];

Construct a circle through the three points and examine its radius. Since its radius is one,
the circle through the three points is congruent to the other three.

In[11]: Radi us2D[C123 = Circl e2D[p12, p13, p23]] // FullSinplify

out[11] 1

Discussion
This is a plot of a numerical example.

In[12]: Sketch2D[{Cl, C2, C3, C123,
p12, p13, p23} /. {t2->Pi /3, t3->-5Pi /6}1;

=

© ©

GFRLrOIOouUlkFk O

1
=

knotin.nb

Incenter on Knot Circle

Exploration

Show that the incenter of a triangle (the center point of the circle inscribed in the triangle) is
on one of the knot circles for the biarc configuration defined by the triangle.

Approach

Construct a triangle in a simplified position. Construct the incenter. Construct the knot
circles. Show that the incenter is on one of the knot circles.

Solution

Define a function to compute the knot circles.

In[1]: Knot Circl es2D[
tl: Triangl e2D[pl: {x1_, y1_},
PA: {XA_, YA_},
p2: {x2_, y2_}1] : =
Modul e[{pt 1, pt2},
pt1 = Poi nt2D[t1, I nscribed2Dj;
pt 2 = Poi nt 2D[Poi nt 2D[pA],
Poi nt 2D[p1],
-Di stance2D[p2, pAll;
Map [Ci rcl e2D[Poi nt 2D[p1],
Poi nt 2D[p2], #1&,
{ptl, pt2}11;

Create the triangle.

In[2]: Cear[a, b];
t1="Triangl e2D[{0, 0}, {a, b}, {1, 0}1;

675

676 knotin.nb

Construct the incenter of the triangle

In[3]: ptl=Point2D[t1, Inscribed2D] //Sinmplify

a++/a2 + b2 b }
1+vV(-1+a)?2+b2 + az+b2 1+ (-1+a)2+b2 ++/aZ+b?

out [3] Poi nt 2D[{

Construct knot circles for the triangle. This result was computed using Mathematica Version
3.0.1. Version 4.0 computes a different expression for the circle’s radius that is algebraically
equivalent. The result shown in the final step is not affected by this difference.

In[4]: kel =KnotCircles2D[t1]1[[1]] // FullSinplify

(-1+a)a+b2-+/(-1+a)?+b2 /a2 + b2 1
' 2b b s rmaer
V(-1+a)2+b2 Ja2+b2

N| =

out[4] Crcle2D[{

Show that the incenter is on the circle.

In[5]: eql = Pol ynom al 2D[
Quadr at i c2D[kc1],
Coor di nat es2D[pt 1]1] // Sinplify

out[5] O

Indet.nb

Line General Equation Determinant

Exploration

Show that the general equation of a line Ax + By + C = 0 is coincident with the line

T Y 1
—AC —-BC A?’+B? |=0
B —A 0

given in determinant form.

Approach

Evaluate the determinant and show that the result is equivalent to the equation of the specified
line.

Solution

Use the Det command to form the determinant.

n[1]: Oear [Xx, y, Al, Bl, Cl];
d=Det [{{x, vy, 1},
{-Al%Cl, -B1Cl, A1"2+B1"2},
{Bl, -Al, 0}}] //Sinplify

out 1] (A1?+B1%?) (Cl+Alx +Bly)

The line represented by the determinant is coincident to the given line.

In(2]: Line2D[d, {x, y}] //Sinplify

out (2] Line2D[AL, Bl, Cl]

677

678 Indet.nb

Discussion

If the constant coefficient of the line is non-zero (C # 0) then a simpler determinant represents
the line and is given by

T Y 1
-C 0 A |=0.
0 —-C B

n[3]: d=Det [{{Xx, y, 1}, {-C1, 0, Al}, {0, -C1, Bl}}]

out[3] Cl?+Al1Clx +B1Cly

In[4]: Line2D[d, {x, y}] //Sinplify

out [4] Line2D[Al, B1, Cl1]

Indist.nb

Vertical /Horizontal Distance to a Line

Exploration
Show that the vertical distance, d,, from a point (x1,%1) to a line whose equation is
Az +By+C=0

is given by

i _‘(Aa:1+By1+C)‘

B

and the horizontal distance, dy, is given by

Az + By +C)‘

b - |4

Approach

Construct a vertical (horizontal) line through the given point. Intersect the vertical (horizon-
tal) line with the given line. The required distance, d, (dp), is the distance between P; and
the intersection point.

Solution
Construct the vertical (horizontal) line through the given point.
n[1]: O ear [x1, y1];

pl = Poi nt 2D[x1, y1];
{lv =Line2D[pl, Infinity], |h=Line2D[pl, 0]}

out[1] {Line2D[1, O, -x1], Line2D[0, -1, y1]}

679

680 Indist.nb

Intersect the vertical (horizontal) line with the given line.
n([2]: Cear[a, b, c];

|1 =Line2D[a, b, cI;
{pv = Point2D[l 1, Iv], ph=Point2D[l 1, | h]};

Find the distance between the intersection point and P;. The expressions given by Mathe-
matica are equivalent to the desired results.

n[3]: {Distance2D[pl, pv], D stance2D[pl, ph]}

out [3] {J(E—Jr?ail—+yl)2, J(x;hc‘%l)z}

Discussion

If the point is on the line, then both distances are clearly zero since the point satisfies the
equation of the line. If the line has a slope of +1 (A = £B), then d,, = dj. If the given line is
vertical (horizontal), then the vertical (horizontal) distance formula is invalid (i.e. A or B is
zero). Here’s a function for vertical distance. The function for horizontal distance would be
similar.

In[4]: Di stance2D[Poi nt 2D[{x1_, y1_}],
Li ne2D[A2_, B2_, C2_],
Vertical 2D] : =
Abs[(A2 #x1 +B2xyl +C2) /B2] /;
Not [l sZer 02D[B2]]

This computes the vertical distance from (9,2) to the line 2z — 4y — 3 = 0.
In[5]: Di stance2D[Poi nt 2D[{9, 2}], Line2D[2, -4, -3], Verti cal 2D]

7
out [5] T

InIndist.nb

Line Segment Cut by Two Lines

Exploration

Let Ly and Ly be two intersecting lines and Py a point. Describe a procedure for finding the
lines through Py such that Liand Lo cut off a line segment of length S > 0. Implement the
solution as a Mathematica function.

Approach

Translate L1 and Lo so that their intersection point is at the origin. L; and Ls can then
be written as Ayjx + B1y =0 and Asx + Boy = 0. The line Lis through Py can then be
written as Ajsx + Bioy + 1 =0, since Lio cannot pass through the origin. Since Py is on
Lyo, A1ox9 + Bioyo +1 = 0. A second equation can be formed using the condition that the
distance between the points of intersection of (L; and Li2) and (L2 and Li2) must be S.
Solve the two equations for Ao and Bis. There are two or four solutions depending on the
geometric configuration and the value of S. Translate the resulting solutions back to the
original position.

Solution

Special case first, the lines intersect at the origin. The equations are solved using NSolve to
avoid complicated exact solutions.

681

682 Inindist.nb

1n[1]: Line2D[p0: Poi nt 2D[{x0_, y0_}1,
11: Line2D[Al_, B1_, Cl_ /; |sZero2D[Cl]],
12: Line2D[A2_, B2_, C2_ /; |sZero2D[C2]],
S ?lsScalar2D] : =
Modul e[{L12, Al2, B12, eql, eg2, ans},
eql = Equati on2D[L12 = Li ne2D[A12, B12, 1], {xO0, y0}1;
eg2 = Di st ance2D[Poi nt 2D[I 1, L12], Poi nt2D[l 2, L12]]"2 == S"2;
ans = Sel ect [NSol ve[{eql, eq2}, {Al2, B12}],
(Not [I sConpl ex2D[A12 /. #]] &&
Not [I sConpl ex2D[B12 /. #]1)&1;
Map[(Li ne2D[A12, B12, 1] /. #)& ansl] /;
Not [I sZer oOr Negat i ve2D[S]] && Not [I sParal |l el 2D[I 1, |2]];

Here’s the general case. It uses the special case for the core computation.

In[2]: Line2D[pO0: Poi nt 2D[{x0_, y0_}1,

11: Line2D[Al_, B1_, C1_1,

12: Line2D[A2_, B2_, C2_1,

S ?IsScal ar2D] : =

Modul e[{u, v, Ins},

{u, v} = Coordi nat es2D[Poi nt 2D[I 1, | 2]7;

I ns = Li ne2D[Tr ansl at e2D[p0, -{u, V}1,
Transl ate2D[l 1, -{u, Vv}],
Transl at e2D[l 2, -{u, v}], SI;

Transl at e2D[l ns, {u, v}11] /;

Not [I sZer oOr Negat i ve2D[S]] && Not [I sParal | el 2D[I 1, | 2]7;

Discussion

Here’s an example of the special case that has two solutions:
Ly =22 —3y=0and Ly =4z + 3y = 0 with S = 2 through the point (2, —1).

In[3]: PO = Point2D[2, -11;
L1 = Li ne2D[2, -3, 0];
L2 = Li ne2D[4, 3, 0];
L12 = Li ne2D[PO, L1, L2, 2]

out[3] {Line2D[-1.32353, -1.64706, 1], Li ne2D[0. 0466406, 1.09328, 1]}
Inr4]: Sketch2D[{PO, L1, L2, L12}7];
4

2

0
-2

4 -2 0 2 4

InIndist.nb 683

Here’s an example of the general case that has four solutions:
Li=2x4+y—2=0and Ly = -2+ 3y — 1 = 0 with S = 4 through the point (—1,2).

1n[5]: PO = Poi nt2D[1, 21;
L1 = Li ne2D[2, 1, -2];
L2 = Li ne2D[-1, 3, -11;
L12 = Li ne2D[PO, L1, L2, 4]

out (5] {Line2D[-1.39545, -0.42091, 2.23727], Li ne2D[-0.54985, -0.59003, 1.72991],
Li ne2D[-0. 086206, -0.682759, 1.45172], Line2D[0.531505, -0.806301, 1.0811]}

In(6]: Sketch2D[{PO, L1, L2, L12}7;

—
o/

Inquad.nb

Line Normal to a Quadratic

Exploration

Show that the normal line passing through the point (z1,y1) on the quadratic whose equation
is Az? + Bay + Cy* + Dx 4+ Ey + F = 0 is given by

kix — kgy — kix1 + kgyl =0
where

ki =Br1+2Cy1 + F and ke =2Ax1 + Byy + D.

Approach

Construct the polar line of the quadratic with respect to the quadratic. Construct the line
normal to the polar through the point. This is the desired normal line.

Solution
Construct the polar line (which is tangent to the quadratic if the point is on the quadratic).

n[1]: Cear [x1, y1, a, b, c, d, e, f1;
pl = Poi nt 2D[x1, y1];
gl = Quadratic2D[a, b, c, d, e, f1];
I 1 =Line2D[pl, ql]

out[1] Line2D[d+2ax1l+byl, e+bxl+2cyl, 2f +dxl+eyl]

Construct the normal line.

In(2]: |2 =Line2D[pl, 11] //Sinplify

out[2] Line2D[e+bx1+2cyl, -d-2axl-byl, yl (d+2ax1+byl)-x1 (e+bxl+2cyl)]

685

686

Inquad.nb

Discussion
Define a function for constructing the normal line.

n[3]: Line2D[
pl: Point2D[{x1_, y1_}],
ql: Quadratic2D[a_, b_, c_, d_, e_, f_1,
Nor mal 2D] : =
Si mpl i fy[Li ne2D[pl, Line2D[pl, gq1]]11;

This is the plot of a numerical example.

In[4]: ql1 = Quadratic2D[el = El | i pse2D[{0, 0}, 2, 1, 0]];

pl = Poi nt 2D[el[Pi /911;
|1 =Line2D[pl, ql1, Nornal 2D]

out[4] Line2D[2Sin[g], -Cos[g], -3Cos[g]Sin[g]]

1n[5]: Sketch2D[{el, pl, |1}, CurvelLength2D->7];

/

LT
N

Insdst.nb

Distance Between Parallel Lines

Exploration
Demonstrate that the distance, d, between two parallel lines
Ar+By+C; =0 and Az +By+Cy;=0

is given by

(Ca—C1)°

d=\|——.
A? + B?

Approach

Create two lines perpendicular to both given lines and passing through the origin. Find the
points of intersection between the original lines and the perpendicular lines. Compute the
distance between the intersection points, with is the distance between the parallel lines.

Solution

Create the two given lines.
n[1]: Cear [A B, Cl, C2];

11 =Line2D[A, B, Cl];
| 2 = Li ne2D[A, B, C27;

Construct two lines perpendicular to the given lines.

In[2]: L1 =Line2D[Poi nt 2D[0, 0], I17;
L2 = Li ne2D[Poi nt 2D[0, 0], | 2];

Intersect the lines in pairs to find the intersection points.

687

688 Insdst.nb

n[3]: pl =Point2D[l 1, L17;
p2 = Poi nt 2D[I 2, L2];

Find the distance between the intersection points.

In[4]: Di stance2D[pl, p2] //Sinplify

Discussion

Define a new function to compute the distance between two parallel lines. A more general
function could be developed that allows parallel lines whose linear coefficients are multiples
of each other.

In(5]: Di stance2D[Li ne2D[A_, B, Cl_],

Li ne2D[A_, B, C2_1]1:=
Sqrt [(Cl-C2)"2/ (A"2+B"2)1;

Find the distance between the two lines 2x + 3y +4 = 0 and 2x + 3y — 3 = 0 using the new
function.

In[6]: Di stance2D[Li ne2D[2, 3, 4], Line2D[2, 3, -3]]

7
out[6] ———
/13

Insegint.nb

Intersection Parameters of Two Line Segments

Exploration

Show that the parameter values, tjand t5, of the intersection point of two line segments in
terms of the end point coordinates is given by

tr = (z1(y3 — ya) — 23(y1 — ya) + za(y1 — y2)) /D

te = (—z1(y2 — y3) + 22(y1 — y3) — 23(y1 — y2)) /D
where

D = (21— 22) (Y3 — ya) (v3 — x4) (Y1 — ¥2).

What is the significance of the values of t;and t5 with respect to the standard parameter range
for a line segment?
Approach
Create the two line segments and express points on each parametrically. Set the x- and
y-coordinates equal to each other and solve for ¢ and t,.
Solution

Create the two line segments.

In[1]: Cear [x1, y1, x2, y2, x3, y3, x4, y4];
L1 = Segrent 2D[{x1, y1}, {x2, y2}1;
L2 = Segnment 2D[{x3, y3}, {x4, y4}1;

Find the point coordinates in terms of parameters.

689

690 Insegint.nb

n[2]: Clear[tl, t2];
{pt1=Point2D[L1[t1]], pt2 = Poi nt 2D[L2[t2]]}

out[2] {Point2D[{x1+t1l (-x1+x2), yl+tl (-yl+y2)}],
Poi nt 2D[{x3 +t2 (-x3 +x4), y3+t2 (-y3+y4)}]}

Equate the abscissas and ordinates and solve for the parameters.

In[3]: ans = Sol ve[{XCoor di nat e2D[pt 1] == XCoor di nat e2D[pt 2],
YCoor di nat e2D[pt 1] == YCoor di nat e2D[pt 2]},
{t1, t2}] //FullSinplify

x4 (y1-y3) +x1 (y3-y4) +x3 (-yl+y4)

- (x3-x4) (yl-y2) + (x1-x2) (y3-vy4)"’

X3 (yl-y2) +x1 (y2-y3) +x2 (-yl+y3)
(x3-x4) (yI-y2) - (xI-x2) (y3-y4) 1

out (3] {{t1-

t2 -

Discussion

The significance of the values of t; and t9 lies in the range of values which determine if the two
line segments actually intersect. If 0 <¢; <1 at the intersection point, then the intersection
point is on the first line segment; if 0 < to < 1 at the intersection point, then the intersection
point is on the second line segment.

Insegpt.nb

Intersection Point of Two Line Segments

Exploration

Show that the intersection point of the lines underlying two line segments P, P, and P3Py in
terms of the coordinates of the four points is given by

(3?2 - 331) ($3y4 - a?4y3) - (334 - 333) (:c1y2 - x2y1)
(rg —x3) (y1 — y2) — (22 — 1) (Y3 — Ya)

Tr =

(Y3 — ya) (T1y2 — 22y1) — (Y1 — Y2) (T3Y4 — T4y3)
(24 —23) (Y1 —v2) — (w2 —21) (y3 —ya)

y:

Approach

Construct the two lines underlying the line segments and intersect the lines.

Solution
Define the lines underlying the two line segments.
n[1]: Clear [x1, y1, x2, y2, X3, y3, x4, y4];

L1 = Li ne2D[pl = {x1, y1}, p2 = {Xx2, y2}];
L2 = Li ne2D[p3 = {x3, y3}, p4 = {x4, y4}1;

Compute the intersection point.

In[2]: pt =Point2D[L1, L2]

- (-X3 +x4) (-x2yl+x1y2) + (-x1+x2) (-x4y3 +x3y4)

out[2] Poi ntZDH (-Xx3+x4) (yl-y2) - (-x1+x2) (y3-y4)
(-x2yl+x1y2) (y3-y4) - (yl-y2) (-x4y3 +x3y4) }
(-x3+x4) (yl-y2) - (-x1+x2) (y3-y4) }

691

692 Insegpt.nb

Discussion

Notice that the denominators of the abscissa and ordinate are equal, and that these denomi-
nators cannot be zero unless the line segments are parallel, in which case the underlying lines
do not intersect. The following is a plot of a numerical example.

1n[3]: Sketch2D[{Segnment 2D[pl, p2], Segment 2D[p3, p4],
pt, Map[Poi nt2D, {pl, p2, p3, p4}1} /. {
x1->2, yl->1, x2->-2, y2->-2,
X3 ->2, y3->-2, x4->-3, y4->1}1;

~_ | 7

Insperp.nb

Equations of Perpendicular Lines

Exploration

Show that the pair of lines ax 4 by + ¢ = 0 and bz — ay + ¢ = 0 are perpendicular. Show that
the pair

ar +by+c=0 and r_
a

is also perpendicular.

Approach

The two lines Az + Byy + Cy = 0 and Asx + Boy + Co = 0 are perpendicular if the equation
A1 As+B1Bs =0 is true. The two pairs of lines given can be shown to be perpendicular by
examining this equation.

Solution
Formulate the perpendicular condition for the first pair of lines.
In[1]: O ear [Al, Bl, A2, B2, a, bl;

AlxA2 +Bl%xB2 /. {
Al ->a, Bl ->b, A2 ->b, B2->-a}

out[1] O
Formulate the perpendicular condition for the second pair of lines.

In[2]: AL*A2 +BlxB2 /. {
Al ->a, Bl->b, A2->1/a, B2->-1/b}

out[2] 0

693

694 Insperp.nb

Discussion

Notice that the second pair of lines can be derived from the first by dividing the first equation
by the quantity ab. However, this is invalid if either a or b is zero. The relationship shown for
the first pair is valid for all lines. The DescartazD function IsPerpendicular2D also verifies
that the pairs are perpendicular.

In[3]: Cear[cl];
{l sPer pendi cul ar 2D[Li ne2D[a, b, c], Line2D[b, -a, c1]],
| sPer pendi cul ar 2D[Li ne2D[a, b, c], Line2D[1/a, -1/b, c1]11}

out[3] {True, True}

Intancir.nb

Line Tangent to a Circle

Exploration

Show that the line y = m(z — a) + ay/1 +m?2 is tangent to the circle 2? 4+ y? = 2ax for all
values of m.

Approach

Show that the pole point (which is the point of tangency if the line is tangent to the circle) is
on the circle.

Solution

Construct the line.

In[1]: Cear[x, y, a, m];
I1=Line2D[y ==m(x -a) +a»Sqrt [1+m 2], {X, y}]

out(1] Line2D[-m 1, am-a+/1+n? |

Construct the circle.
n[2]: cl=Circle2D[gl = Quadrati c2D[x"2+y"2==2a=*X, {X, Y}1]

out (2] Circle2D[{a, 0}, va?]

Construct the pole point.

In[3]: pl=Point2D[l 1, c1] //Sinplify

am a H

out [3] Poi ntZD[{af ,
1+n? 1+n?

The coordinates of the pole point satisfy the equation of the circle.

695

696

Intancir.nb

In[4]: Pol ynom al 2D[ql, Coordi nat es2D[pl]] // Sinplify

out[4] O

Discussion

This is a plot of a numerical example.

In[5]: Sketch2D[{cl /. a->1,
Map[({l 1, pl} /. {a->1, m->#})&,
{0, .5, 1, 2, 5, -5, -2, -1, -.5}1},
CurvelLengt h2D -> 47;

-2 -1 1 2

Intancon.nb

Line Tangent to a Conic

Exploration
Use Mathematica to show that the relationship between the coefficients of a line
pr+qy+r=20
tangent to the conic
Az? + Bry+Cy* + Dz +Ey+F =0
is given by
(ACF — E?) p* + (4AF — D) ¢* + (4AC — B*) 1+

(BD —2AE)qr+2(BE —2CD)pr+2(DE —2BF)pq=0.

Approach

Intersect the line and the conic and force the intersection points to be coincident by setting
the appropriate terms in the resulting expression to zero.

Solution

Solve the equation of the line for y.

In[1]: Clear[p, q, r, X, y1;
ansl =Solve[p*x +qx*y +r ==0, y]

r +px}}

Out [1] {{y—>— q

Substitute y into the equation of the conic.

697

698 Intancon.nb

In[2]: Clear [Al, Bl, C1, D1, El1, F1j;
eql =Alxx"2 +Blxx*xy +Clxy”"2+Dlxx +ELlxy +F1 /. First[ansl]

EL (r+px) Blx (r+px) CL(r +px)2

out[2] F1+Dlx +Alx?- >
q q q

Solve the equation for z.

In[3]: ans2 = Sol ve[eql == 0, X]

out(3] {{x- (Elpq-Dlg?-2Clpr +Blgr —\/((—Elpq+quz+2C1pr—qur)z—
4 (Clp?-Blpq+Alg?) (F1q?-Elqr +Clr?)))/
(2 (CLlp?-Blpqg+Alg?))},
{x> (Elpg-DLg?-2Clpr +Blqr ++/((-Elpgq+DLg®+2Clpr -Blqr
4 (Clp?-Blpg+Alg?) (F1q?-Elqr +Clr?)))/
(2 (CLlp?-Blpg+Alg?))}}

)2

The line is tangent if the expression under the radical is zero (i.e. the points of tangency are
coincident).

In[4]: exprl=ans2[[1, 1, 2, 3, 5, 2, 1]]

outf4] (-Elpq+DLg2+2Clpr -Blqr)>-4 (CLp?2-Blpq+Alq?) (F1q2-Elqr +Clr2)

Put the expression into the desired form.

In[5]: expr2 =exprl // Expand // Factor

out[5] q? (E12p2-4CLF1p2-2DLElpq+4BlFl1pq+D12q2-4A1F1qg2+4ClDlpr -
2Bl1Elpr -2B1Dlqr +4A1Elqr +B1?2r2-4A1Clr?)

Divide both sides by ¢.

In[6]: expr3 =expr2[[2]]

out[6] E1°p?2-4C1F1p2-2DIElpq+4BlFlpq+D12g2-4A1F1g2+4CLDlpr -
2BLElpr -2B1Dlqr +4ALElqr +B12r2-4A1Clr?

Pick out the coefficients of each of the desired terms (multiplied by —1 to match the desired
sign).
In[7]: Map[-Coefficient [expr3, #]&
{p’\2, q"2, r"2, q*r, pxr, p*xq}]

out[7] {-E12+4CLF1, -D1? +4A1F1, -B1?+4A1Cl, 2B1Dl-4ALEl, -4C1D1L+2B1EL,
2D1E1-4B1F1}

mdcircir.nb

Medial Curve, Circle—Circle

Exploration
Show that the two quadratics whose equations are given by

Az? + Bry+Cy* + Dz +Ey+F =0

where

A:4<(h1 — hy)? —R),

B =8 (h1 — h2) (k1 — k2),

C=4((k1 ~ ky)? —R),

D =4(hi(—D1+ Dy + R) + hao(Dy1 — D2 + R)),
E =4(k1(=D1 4+ D2 + R) + ka(D1 — D2 + R)) and
F = (Dy—D3)* —2(Dy+ Dy)R+ R?

and

R=(r — 87’2)2,
Dy =hi+k,
Dy = h3+ k3 and
s==+1
are equidistant from the two circles

(x — h1)2 +(y— k1)2 = rf and (z — h2)2 +(y— k2)2 = rg.

699

700

mdcircir.nb

Approach

Create the two circles and form an equation by equating the distance to each circle from a

generic point.

Solution

Create the geometry.

In[1]: Cear [Xx, y, hl, k1, r1, h2, k2, r27;
P = Poi nt 2D[X, Y];
Cl =Circle2D[{h1, k1}, r1];
C2 =Circl e2D[{h2, k2}, r27;

Find the distances to the two circles, where s; = +1 and s = +1.

In[2]: Cear [sl];
dl =sl« (Di stance2D[P, Poi nt 2D[C1]] -r1)

out[2] sl (—rl+\/(—hl +x)2+ (-k1 +y)2

In[3]: Clear [s2];
d2 =s2« (Di stance2D[P, Point2D[C2]] -r2)

out[3] S2 (—r2+\/(—h2 +x)2+ (-k2 +y)2)

Equate the two distances and simplify by making substitutions.

In[4]: O ear [El];
eql=dl-d2 /. Sqrt [E1_]:>Sqrt [Expand[El]]

out[4] sl (7rl+\/h12+k1272h1x+x272kly+y2) -

s2 (—r2+\/h22+k22—2h2x+x2—2k2y+y2)

In[5]: Cear [D1, D2];
eq2=eql /. {(hi1”"2+kl1”2 ->D1, h2"2 +k272 -> D2}

out[5] s1 (-r1+~+/Dl-2h1x+x2-2Kk1ly+y2)-s2 (-r2++/D2-2h2x+x2-2k2y +y?)

Rearrange the equation and square both sides (twice).

n[6]: {lhs =eq2[[1]] // Expand, rhs =eq2[[2]] // Expand}

out [6] {—rlsl+sl DlL-2hlx+x2-2kly+y2, r2s2-s2 D272h2x+x272k2y+y2}

n[7]: Cear[s, R];
eq3 = ((lhs[[1]]1 +rhs[[1]]1)"2 - (I hs[[2]]1+rhs[[2]]1)"2 // Expand) //.
{s1l”2 ->1, s2"2->1, sl%xs2->s, rl"2-2xsxrl*xr2+r2"2->R}

out[7] -D1-D2+R+2hlx+2h2x-2x?+2kly+2k2y-2y?+
2s/DL-2hlx+x2-2kly+y2 /D2-2h2x +x2-2k2y +y2

mdcircir.nb 701

n[8]: eq4 =Drop[eq3, -1]"2 - Last [eq3]"2
out8] (-DL-D2+R+2hlx+2h2x-2x2+2kly+2k2y-2y2)?_
452 (DL-2hlx+x2-2kly+y?) (D2-2h2x +x2-2k2y +y?)

Form a quadratic and simplify.

In[9]: QL = Map[Factor,
Quadratic2D[eqd4 /. s"2->1, {x, y}11 //. {
sN2 ->1,
h17A2-2%hlxh2+h272 -> (h1-h2)"2,
k1M2 -2 %kl xk2 + k272 -> (k1 -k2)"2,

DLA2 -2 %Dl #«D2 + D272 -> (D1 - D2) A2}

out[9] Quadratic2D[4 ((hl1-h2)2-R), 8 (h1-h2) (k1-k2),

4 ((k1-k2)2-R), -4 (DLh1-D2h1-DLh2+D2h2 -h1R-h2R),
~4 (DLk1-D2k1-D1k2+D2k2-k1R-k2R), (DL-D2)2-2DLR-2D2 R+ R?]

By inspection, the resulting quadratic is the same as the desired one. This result was computed
using Mathematica Version 3.0.1. Version 4.0 computes a slightly different result that is
algebraically equivalent.

Tn[10]: Q =Quadratic2D[QL[[1]], QL[[2]1], QL[[3]],
Col l ect [QL[[4]1], {h1, h2}],
Col l ect [QL[[51]1, {k1, k2}1,
QL[[61]1

out [10] Quadratic2D[4 ((h1-h2)2-R), 8 (h1-h2) (k1-k2),

4 ((k1-k2)2-R), h2 (4D1-4D2+4R) +hl (-4DL+4D2+4R),
k2 (4D1-4D2+4R) +k1 (-4DL+4D2 +4R), (DL-D2)2-2DLR-2D2 R+ R]

mdincir.nb

Medial Curve, Line—Circle

Exploration
Show that the two quadratics whose equations are given by

A2® + Bay+Cy* + Dz + Ey+F =0

where
A= By,
B=-2A,B,
C =4,

D = —2(hy + A1 (Cy + sr2)),
E = =2 (k2 4+ B1(C1 + s12)),
F=h3+kj—r;—Ci(Cy+2sry) and
s ==*£1.
are equidistant from the line
Az +Biy+C1 =0
and the circle
(@ —h)*+ (y—k)* =1

assuming A7 + B} = 1.

703

704

mdincir.nb

Approach

Create the line and the circle. Form an equation of the distances from a generic point to the

line and circle.

Solution

Create the geometry.

In[1]: dear [Xx, y, Al, Bl, Cl1, h2, k2, r2];
P = Poi nt 2D[x, Y];
|1 =Line2D[Al, Bl1, C1];
c2=Circle2D[{h2, k2}, r2];

Find the distance from the point to the line, where s; = +1.

n[2]: Cear [sl, El7;
dl =sl1«Distance2D[P, 11] //.
{A1"2 +B1"2 -> 1, Sqrt [E1_"2] -> E1}

out[2] s1 (Cl+Alx +Bly)

Find the distance from the point to the circle, where sy = +1.

In[3]: Cear [s2];
d2 = s2 « (Di stance2D[P, Poi nt2D[c2]] -r2) // Expand

out [3] 7r252+52\/<7h2+x)2+ (-k2 +y)?

Rearrange the equation d; = ds and square both sides.
Inf4]: eql = (d1-d2[[1]])"2==d2[[2]]"2 /. {s1”2->1, s2°2->1}

out[4] (r2s2+sl (CL+ALx +Bly))?==(-h2+x)2+ (-k2+y)?

Form a quadratic and simplify.

In[5]: QL = Quadratic2D[eql, {x, y}] //.
{s1l”2 -> 1,
s2702 -> 1,
AlN2 -1 -> -B1" 2,
B1r2 -1 -> -A1"2}

out [5] Quadratic2D[-B1?, 2A1B1, -Al%?, 2A1Cl+2h2+2Alr2sls2,
2B1Cl+2k2+2B1r2s1s2, C12-h22-k22+r22+2Clr2sls2]
Put the quadratic into the desired form, and use s = s;s5 = £1.

In[6]: Clear[s, a, b, c1;
Q@ = (Map[Factor [-1*#]& QL] /. s1l*s2->s) /. a_*b_+a_=xc_->a (b+c)

out [6] Quadratic2D[B1?, -2 A1 B1, Al?%, -2 (h2+Al (CL+r2s)), -2 (k2+B1 (ClL+r2s)),
~C12+h22+k22-r22-2Clr2s)]

mdinin.nb

Medial Curve, Line—Line

Exploration
Show that the pair of lines whose equations are

Ayx+ Biy+Cp iz‘lgﬂzﬁLBgerCz
VA + B? VA + B3

is equidistant from the two lines A1z + Byy + C1 = 0 and Asx + Boy + Co = 0.

Approach

Create both lines. Compute the distances to an arbitrary point. Form an equation by setting
the distances equal to each other.

Solution

Create the two lines.

mn[1]: Cear[Xx, y, Al, Bl, Cl, A2, B2, C2];
P = Poi nt 2D[x, Yy]I;
|1 =Line2D[Al, Bl1, Cl];
| 2 = Li ne2D[A2, B2, C21;

Compute the distance from the first line. Use s; = &1 to eliminate the radical.

In[2]: O ear [El, E2, s1];
dl = Di stance2D[P, 1 1] /.
Sqrt [E1l_"~2/E2_]1:>s1l%xE1/Sqrt [E2]

s1 (CL+Alx +Bly)
+/A1% + B1?

out [2]

705

706 mdInin.nb

Compute the distance from the second line. Use so = 41 to eliminate the radical.

In[3]: C ear [s2];
d2 = Di stance2D[P, 1271 /.
Sqrt [E1_~2/E2_]1:>s2%xE1/Sqrt [E2]

s2 (C2+A2x +B2y)
A2? + B2?

out [3]

Form the equation.

In[4]: eql =dl ==d2

out [4] sl (CL+Alx +Bly) s2 (2 +A2x +B2y)
u —=
A1? + B1? \/A2% + B2?

Combine s; and s, into a single sign constant s = +1.

In[5]: Cear[S];
eql /. {s1l->1, s2->s}

out [5] Cl+Alx+Bly __S (C2+A2x +B2y)

A1? + B1? A2? 4+ B2?

mdptcir.nb

Medial Curve, Point—Circle

Exploration
Show that the quadratic equation
Az? + Bry+Cy* + D+ Ey+F =0
where
A=4((@1 - h2)* = 13),
B =8(x1 — ha) (y1 — k2),
C=4 ((yl — ka)? —7"5)7
D =4 (R(z1 — ho) + 2r3z1),
E =4(R(y1 — ka2) + 2r3y1),
F=R?*—4r}(z% +y}) and
R=(h3+k3) — (aF +4i) — 3
is equidistant from the point Pj(x1,y1) and the circle

(@ — ho)* + (y — k2)* =713,
Approach

Create the point and the circle. Compute the distances to an arbitrary point. Set the distances
equal to form the equation.

707

708 mdptcir.nb

Solution
Create the point and the circle.

In[1]: Cear [Xx, y, x1, y1, h2, k2, r27];
P = Poi nt 2D[X, Y];
pl = Poi nt 2D[x1, y1];
c2=Circle2D[{h2, k2}, r2];

Compute the distance between the two points.

In[2]: d1 = Di stance2D[P, p1]~2

outrz] (x-x1)2+ (y -y1)?

The distance to the circle is either D — r or » — D, where D is the distance from the point to
the center of the circle. Squaring removes the ambiguity.

In[3]: Cear[a, b];
d2 = (Di stance2D[P, Poi nt2D[c2]] -r2)"2 /.
(a_+b_)"2->a”"2+2axb+b"2

out[3] 122+ (-h2+x)2+ (7k2+y)272r2\/(7h2+x)2+ (-k2 +y)?

Simplify the equations d; = ds.

In[4]: {Isl=dl-d2[[{1, 2, 3}]] // Expand,
rsl=d2[[4]]}

outr4] {-h2?-k22-r22+2h2x-2xx1+x1%+2k2y -2yyl+yl?

72r2\/<7h2+x)2+ (-k2+y)?}

In[5]: O ear [R];
Is2=1s1 /.
{-h27"2 - k272 +x1"2 +y17r2 -r272 -> -2%r2"2 -R}

out[5] -R-2r22+2h2x-2xx1+2k2y-2yyl

In[6]: QL = Quadratic2D[l s2"2 ==rs1”2, {X, y}]

out (6] Quadratic2D[4h2?-4r22-8h2x1+4x1? 8h2k2-8k2x1-8h2yl+8x1y1l,
4k22-4r22-8k2yl+4yl1?2, —4h2R+4Rx1+8r2%2x1, -4k2R+4Ryl1+8r22y1,
RR2-4h22r22-4k2%r22+4Rr22+4r2%

n[7]: C ear [El, E2];
a=Factor [QL[[111]1 //. {
(El_-E2_) (E1_+E2_) -> E1"2 -E2" 2,
(h2 -x1)"2 -> (x1-h2) "2}

out[7] 4 (-r2%+ (-h2 +x1)?)

mdptcir.nb 709

In(8]: b =Factor [QL[[2]]1] /. (h2-x1) (k2-yl) -> (x1-h2) (y1l-k2)
out[8] 8 (-h2 +x1) (-k2 +y1l)
In[9]: ¢ =Factor [QL[[3]11] //. {

(EL_-E2) (El_+E2_) ->E1"2 - E2/2,
(k2 -y1)"2 -> (y1-k2) 72}

out[9] 4 (-r2%2+ (k2 +y1)?)
In[10]: d =Factor [QL[[4]1]1] //. {
h2*R-x1+R->R (h2 -x1),

-4 (R(h2 -x1) -2%r2"2%x1) ->
4 (R(X1-h2) +2%r2"2xx1)}

out[10] 4 (2r2°x1+R (-h2 +x1))
In[11]: e =Factor [QL[[5]1]1] //. {
k2*R-yl+R->R (k2 -y1),

-4 (R(k2-yl) -2%r27"2%yl) ->
4 (R(yl1-Kk2) +2%r272xyl)}

out[11] 4 (2r2%yl+R (-k2 +y1))
In[12]: f =Factor [QL[[6]]] /.

A%R*r272 ->4%r2"2% (h2722 +k2"2 - (x2"2+y272) -r272) // Expand;
fl=f[[1]] +Factor [f[[{2, 3}]]]

out [12] R -4r12% (x22 +y2?)

In[13]: Quadratic2D[a, b, c, d, e, f1]

out [13] Quadratic2D[4 (-r2%+ (-h2 +x1)2), 8 (-h2 +x1) (-k2+y1), 4 (-r22+ (-k2+y1)?),
4 (2r22x1+R (-h2+x1)), 4 (2r22y1+R (-k2+yl)), RR-4r22 (x2%2 +y2?)]

mdptin.nb

Medial Curve, Point—Line

Exploration

Show that the quadratic equation

A2® + Bay+Cy* + Da+ Ey+F =0

where
A= B,
B = —2A5Bs,
C = A3,

D = -2 (z1 + A2Cy),
E = —2(y; + B2Cs) and
F=ai+yi - C3
is equidistant from the point P;(z1,y1) and the line L = Ayz + By + C1 = 0, assuming that

L is normalized (A% + B2 = 1).

Approach

Create the point and the line. Compute distances to an arbitrary point. Form an equation by
setting the distances equal to each other.

711

712 mdptin.nb

Solution

Create the point and the line.

m[1]: Cear[Xx, y, x1, yl, A2, B2, C21;
P = Poi nt 2D[X, Y];
pl = Poi nt 2D[x1, y1];
| 2 = Li ne2D[A2, B2, C2];

Form an equation by setting the distances (squared) equal to each other.

In[2]: eql = Di stance2D[P, pl]"2 ==
Di stance2D[P, 12172 //Sinplify

Q2 +A2x+B2y)?
2] (X -x1)2 _y1)2 .. (C2+AZx+B2Yy)"
out [2] ()S+ (y-yl) 22?2 . B2?

Form the quadratic and simplify.

In[3]: QL = Quadratic2D[eql, {X, y}] //. {
A272 +B21N2 -> 1,
1-A272 ->B2"72,
1-B2"2 -> A2"2};
Map [Factor, QL]

out [3] Quadratic2D[B2?, -2 A2B2, A2?, -2 (A2C2 +x1), -2 (B2C2+yl), -C22+x12+y1?]

mdptpt.nb

Medial Curve, Point—Point

Exploration

Show that the line 2 (x2 — 1)z + 2 (y2 —y1) ¥y + (m% + y%) — (m% + yg) = (is equidistant from
the points Py(z1,y1) and Pa(x2,y2).

Approach

Create the points and compute distances to an arbitrary point. Form an equation by setting
the distances equal to each other.

Solution

Create the points.

In[1]: Cear[x, y, x1, y1, x2, y2];
P = Poi nt 2D[x, Yy]I;
pl = Poi nt 2D[x1, y1];
p2 = Poi nt 2D[x2, y2];

Form an equation by setting the distances (squared) to the arbitrary point equal to each other.

In(2]: eql = Di stance2D[P, pl]"2 ==
Di st ance2D[P, p2]~2

outr2] (x-x1)?+ (y-y1)? == (x -x2)%+ (y -y2)?
Construct a line from the equation and simplify.

In[3]: Map[Factor,
Li ne2D[eql, {x, y}] // Sinplify]

out [3] Line2D[-2 (x1-x2), -2 (yl-y2), x12-x2% +y1?2 - y2?]

713

mdtype.nb

Medial Curve Type

Exploration

Show that the medial curve equidistant from a point and a circle is a hyperbola when the point
is outside the circle, and it is an ellipse when the point is inside the circle. (Hint: Examine
the value of the discriminant B? — 4AC of the medial quadratic.)

Approach

Create the expression B2 —4AC from the coefficients of the medial quadratic. Consider
B? — 4AC with the circle at the origin. Show that the expression is negative when the point
is inside the circle and positive when the point is outside the circle.

Solution
Set the coefficients of the quadratic (from equations listed in the book).
In[1]: Cear [x1, y1, h2, k2, r2];
a=4%((x1-h2)"2-r272);

b =8x% (x1-h2) (yl1-k2);
c=4%((yl-k2)nr2-r272);

Find the discriminant, B2 — 4AC, at the origin.
In(2]: disc =b"2-4xaxc /. {(h2->0, k2->0} //Sinplify

out [2] 64122 (-r2%+x1%2 +y1?)

Using the distance formula, the point is outside the circle then the discriminant is positive,
implying a hyperbola; if the point is inside the circle than the discriminant is negative, implying
an ellipse.

715

monge.nb

Monge’s Theorem

Exploration

Given three circles and the external tangent lines of the circles taken in pairs, show that the
three intersection points of the three tangent pairs lie on a straight line.

Approach

Construct the three circles in a simplified position (without loss of generality). Construct the
intersection point of the tangent pairs of lines. Show that the points are collinear.

Solution

Create the three circles.

In[1]: Clear[rl, r2, r3, a, b, d];
cl=Circle2D[{0, 0}, r1];
c2=Circle2D[{d, 0}, r2];
c3=Circle2D[{a, b}, r31;

Find the intersection point of the external tangents for the first pair.

In[2]: t12 = Tangent Li nes2D[c1, c2];
pl2 = Poi nt 2D[t 12[[1]1] // Sinplify,
t12[[211// Sinplify] 7/ Sinplify

out (2] Poi ntzD[{rf%, 0}]

Find the intersection point of the external tangents for the second pair.

717

718 monge.nb

In[3]: t23 = Tangent Li nes2D[c2, c3];
p23 = Poi nt 2D[t 23[[1]1] // Sinplify,
t23[[2]11 /7 Sinmplify] //Sinplify

ar2-dr3 br2
}]

out [3] Poi nt 2D[{ T3 TIr3

Find the intersection point of the external tangents for the third pair.

In[4]: t13 = Tangent Li nes2D[c1, c3];
p13 = Poi nt 2D[t 13[[1]] // Sinplify,
t13[[2]11 /7 Sinmplify] //Sinplify

arl bri
rli-r3’ r17r3H

out [4] Poi nt 2D[{
The three points are collinear as shown by the zero value of the determinant. The function
IsCollinear?2D produces the same result.

In[5]: MakeRow$2D[Poi nt 2D[{x_, y_3}11:={Xx, vy, 1};
{Det [Map [MakeRow$2D, {pl2, p23, pl33}]1] // Sinplify,
I sCol | i near 2D[p12, p23, p13]}

out[5] {0, True}

Discussion

This is the plot of a numerical example.

1n[6]: Sketch2D[{cl, c2, c3,
t12, pl2, t13, pl3, t23, p23,
Li ne2D[pl12, p23]} /.
{r1->1,r2->2,r3->3, d->5, a->3, b->6},
Curvelengt h2D -> 357;

15
10

-5
-10
-15

-15-10-5 0 5 10 15

narclen.nb

Approximate Arc Length of a Curve

Exploration

The arc length of a smooth, parametrically defined curve can be approximated by a polygon
connecting a sequence of points on the curve. Write a Mathematica function of the form
NArcLength2D [crv, {t1, ta}, n] that approximates the arc length of a curve between two
parameter values using a specified number of coordinates at equal parameter intervals between
the two given parameters. Produce a graph illustrating the convergence of the approximation
to the Descarta2D function ArcLength2D[crv, {t1, t2}].

Approach

Sum the distances between the points on the curve.

Solution
Define a function for the arc length by polygonal approximation.

In[1]: OFf [General::spelll];
NArcLengt h2D[obj _, {t1_, t2_}, n_] : =
Modul e[{incr = (t2-t1) /n},
Sum[
Di st ance2D[
obj [t1+i xincr] // N,
obj [t1+ (i +1)*incr] //N],
{i,0 n-13}11;
On[Ceneral ::spelll];

Create an object for validating the function.

In[2]: cal = Coni cArc2D[{0, 0}, {2, 1}, {3, 03}, 3/41;

719

720 narclen.nb

Create a table of coordinates to plot. The z-coordinate is the number of points used in the
approximation and the y-coordinate is the difference between the Descarta2D function and
the polygonal approximation.

In[3]: t1=1/4,
t2=3/4
arclenl = ArcLengt h2D[cal, {t1, t2}] // N
pts = Tabl e[{n, arcl enl - NArcLengt h2D[cal, {t1, t2}, n]},
{n, 10, 100, 5}]

out[3] {{10, 0.000274241}, {15, 0.000121761}, {20, 0.0000684662}, {25, 0.0000438112},
{30, 0.0000304217}, {35, 0.0000223494}, {40, 0.0000171107},

{45, 0.0000135192}, {50, 0.0000109504}, {55, 9.0498x10°°},

{60, 7.60427x107%}, (65, 6.47933x10°}, {70, 5.58673x107°},

(75, 4.86664x10°), (80, 4.27731x10%}, (85, 3.78888x10°},

{90, 3.37958x107%}, {95, 3.03319x10°%}, {100, 2.73745x10°%}}

Plot the results.

In(4]: ListPlot[pts, PlotJoined->Truel;

0. 0001
0. 00008
0. 00006
0. 00004
0. 00002

20 40 60 80 100

normal.nb

Normals and Minimum Distance

Exploration

Given a point Py(zo,yo) and a quadratic @, find the point(s) P(z,y) on @ such that the line
PP, is perpendicular to the line tangent to @ at P. Such a line PP, is called a normal to
the quadratic. Use the points P to find the minimum distance from Py to (). Assume that P
and @ are defined numerically.

Approach

The point P(z,y) is clearly on @, so P must satisfy the equation for @). In addition, since the
normal line PP, is perpendicular to the tangent line, its slope must be the negative reciprocal
of the tangent line’s slope. The tangent line is the polar of P with respect to). These two
equations can be solved simultaneously for the (z,y) coordinates of the point P.

Solution
Define a function to construct the point(s) P based on the approach described above.

In[1]: Nor mal Poi nt s2D[
PO : Poi nt 2D[{x0_, y0_}1,
Q: Quadratic2D[a_, b_, c_, d_, e_, f_11:
Mdul e[{P, X, ¥y, In, eql, eq2, ans},
eql = Equati on2D[Q {X, y}]I;
P = Poi nt 2D[{X, Y}]I1;
I n=Line2D[P, -1/ Sl ope2D[Li ne2D[PO, P]111;
eq2 = Tangent Equat i on2D[I n, QI;
ans = Sol ve2D[{eql, eq2}, {X, Y}I;
ans = Sel ect [ans, (I sReal 2D[x /. #] &&
| sReal 2D[y /. #1)&];
Map[(P /. #)& ans]] /;
I sNurrer i ¢2D[{PO, Q}, Nor mal Poi nt s2D]

721

722 normal.nb

Define a function to construct the normal lines using the normal points.

1n[2]: Normal Li nes2D[
PO : Poi nt 2D[{x0_, y0_}1,
Q: Quadratic2D[a_, b_, c_, d_, e_, f_11:=

Map [Li ne2D[#, Q]& Nor nal Poi nt s2D[PO, Q1] /;
I sNuneri c2D[{PO, Q}, Nornal Li nes2D]

Select the minimum distance from the normal point(s).

n[3]: M nimunDi st ance2D[
PO : Poi nt 2D[{x0_, y0_}1,
Q: Quadratic2D[a_, b_, c_, d_, e, f_1]1:=
M n[Map [Di st ance2D[PO, #]& Nor mal Poi nt s2D[P0, Q111 /;
I sNuneri c2D[{PO, Q}, M ni nunDi st ance2D];

Discussion

Here we illustrate the solution with a numerical example. The following steps were computed
using Mathematica Version 3.0.1. Version 4.0 computes the same points and lines without
duplicating the solutions.

In[4]: p0 = Poi nt2D[2., 2.];
ql = Quadrati c2D[El | i pse2D[{0, 0}, 2, 1, 011;
pts = Nor mal Poi nt s2D[p0, q1]

out [4] {Poi nt 2D[{-1.92052, -0.279113}], Poi nt2D[{-1. 92052, -0.279113}],
Poi nt 2D[{1. 38564, 0.72111}], Point2D[{1. 38564, 0.72111}]}

In[5]: | ns = Nor mal Li nes2D[p0, ql]

out[5] {Line2D[-3.84103, -2.23291, -8], Line2D[-3. 84103, -2.23291, -8],
Li ne2D[2. 77128, 5.76888, -8], Line2D[2.77128, 5.76888, -8]}

1n[6]: Sketch2D[{pO, pts, Ins, ql}, CurvelLength2D->6];

N/

2
1
0
1 —/
2

In[7]: M ni munDi st ance2D[p0, ql]

out[7] 1.4188

pb3pts.nb

Parabola Through Three Points

Exploration

Show that the parabola passing through the points (0, 0), (a,b) and (b, a) whose axis is parallel
to the x-axis has vertex (h, k) and focal length f given by

(a® + ab + b?)? a® + ab + b2 ab
h = k = d —
dab(a+0b) a and f

Furthermore, show that the quadratic representing the parabola is

(a+b)y* + abx — (a® +ab+b*) y = 0.

Approach

Create the equation of a parabola in standard position with variables (h, k) for the vertex
point and f for the focal length. The three given points must satisfy the equation. Solve three
equations in three unknowns (h, k and f). Find the quadratic representing the equation.

Solution
Write the equation of the parabola in standard position.

mn[1]: Clear [x, ¥, h, k, f1;
eql=(y-k)"2==4f (x-h);

Solve for the constants.

723

724

pb3pts.nb

In[2]: Cear[a, b];
ans = Sol ve[Map[(eql /. #)&,
{{x->0, y ->0},
{Xx->a, y ->b},
{x->b, y->a}:l,
{h, k, f31 7/ Sinplify

(a2 +ab +b?)? ab a2+ab+b2}}

out[2] {{h- Zab (a+b) %’4<a+b>’k% 2 (a+b)

Form the quadratic representing the parabola.

In[3]: ql = Quadratic2D[eql /. ans[[1]], {x, y}] //Sinplify

. ab a?+ab+b?
out[3] Quadratic2D[0, 0, 1, =, -~ —p— 0]

Multiply through by (a + b) to arrive at the desired form of the equation.

In[4]: Equati on2D[Map[(#* (a+b))& qgl], {X, y}]

out[4] abx+ (-a?-ab-b%)y+ (a+b)y2==0

Discussion

This is a plot of a numerical example with ¢ =2 and b = 3.

In(5]: Sket ch2D[{Poi nt 2D[{0, 0}], Poi nt2D[{a, b}],
Poi nt 2D[{b, a}], ql1} /. {
a->2, b->331;

\

S P N W

pb4pts.nb

Parabola Through Four Points

Exploration

Describe a method for finding the two parabolas passing through four points. Show that the
technique produces the correct results for the points (2,1), (—=1,1), (=2,—1) and (4, —-3) by
plotting the parabola and the four points.

Approach

Form a quadratic, parameterized by the variable k, representing the pencil of quadratics
passing through the four points. The first three coefficients of the quadratic, a, b, and ¢ must
satisfy the relationship b = 4ab because the quadratic is a parabola. Solve the equation for

k.

Solution

Define a function that implements the approach.

In[1]: Quadrati c2D[

pl: Point2D[{x1_, y1_ }1,

p2: Poi nt 2D[{x2_, y2_}1,

p3: Point2D[{x3_, y3_1}1,

p4: Point2D[{x4_, y4_1}1,

Par abol a2D] : =

Modul e[{ql, k, a, b, c},

ql = Quadrati c2D[pl, p2, p3, p4, k, Pencil 2Dj];
{a, b, c} =List ee Take[ql, 3];
ans = Solve[b"2 ==4xaxc, k];
Map[(ql /. #)& ans]];

725

726

pb4pts.nb

Discussion

The following is a numerical example using the points specified.

In[2]: pts = {pl =Point2D[2, 1],
p2 = Poi nt 2D[-1, 1],
p3 = Poi nt 2D[-2, -1],
p4 = Poi nt 2D[4, -31};
ql = Quadrati c2D[pl, p2, p3, p4, Parabol a2D] // N

out[2] {Quadratic2D[-71.4965, -6., -0.12588, 77.4965, -154.993, 298.112],
Quadr ati c2D[-0. 503521, -6., -17.8741, 6.50352, -13.007, 31.8882]}

In[3]: parl = Map[Loci 2D, ql]

out[3] {{Parabol a2D[{0. 411031, 2.0156}, 0.551872, 4.75432]},
(Par abol a2D[{-3. 94012, 0.337128}, 0.116538, 6.11689]})

In[4]: Sketch2D[{pts, par1l}, CurvelLength2D-> 207;

2
1
0

pbang.nb

Parabola Intersection Angle

Exploration

Show that the parabolas y? = ax and 2® = by will cut each other at an angle § given by
1al/3 pL/3
_ —1 -1
0— —tan (im) +tan (2m>

Approach

Find the (real) intersection points of the two parabolas (the origin point is an intersection,
but the cut angle at the origin is 7, so use one of the other (real) angles). Construct the polars
to each parabola at the intersection point (the polars are the tangent lines). Find the angle
between the polars.

Solution
Intersect the two parabolas.

In(1]: Clear[X, y, a, bl;
ans = Solve[{y"2==axX, x"2==bxy}, {X, y}]

out (1] {{Xx -0, y >0},
{X%a1/3 b2/3, y_)az,/3 b1/3}, {X—)—(—l)l/?’ al/3 b2/3’ y - (—1)2/3 a2/3 bl,/3}’
(X o (-1)2/3a13p23 y , _(_1)1/3 23 h1i3},

The first solution is the origin, so it is excluded. The third and fourth solutions are imaginary,
so they are ignored. The second solution is the desired one.

In[2]: pO =Point2D[x, y] /. ans[[2]]

out (2] Poi nt 2D[{al/® b?/3, a?/3pl/3})

727

728 pbang.nb

Construct the two parabolas.
In[3]: {parabl =Loci 2D[ql = Quadratic2D[y"2 ==a=*X, {X, Y}11,
parab2 = Loci 2D[q2 = Quadrati c2D[x"2 ==b=*y, {X, y}11}

out 3] {{Parabol a2D[(0, 03, %, OH {Par abol a2D[(0, 03}, % g}}}

Construct the tangent lines at the points.

In[4]: {l1=Line2D[p0, g1], |2 =Line2D[p0, q2]}

out[4] {Line2D[-a, 2a%®b'3 -a*3b??2], Line2D[2al®b?3, -b, -a?2b*3])
Find the angle between the tangent lines.

In[5]: eql = Angl e2D[I 1, | 2]

alns 2 al/s
SBT3] +ArcTan[W]

out[5] -ArcTan|

Discussion

Here’s an example with a =1 and b = 2.

1n[6]: Sketch2D[{parabl, parab2, 11, 12, p0} /. {a->1, b->2}1;

4
3
2
1
0
-1
-2
-2-1 1 2 3 4
The angle is about 36 degrees.
n[7]: eql /. {a->1, b->2}
out [7] 7ArcTan[22171/3} + ArcTan [22/3]

In[8]: (eql /. {a->1, b->2})/Degree //N

out[8] 36.145

pbarch.nb

Parabolic Arch

Exploration
yA (2.1)
h
© -—
a—— b 44\ X

Find the equation of the parabolic arch of base b and height i as shown in the figure. Assume
that b and h are positive.

Approach

Create a parabola rotated —7/2 radians with variables (h, k) and f for the vertex point and
focal length. Find the quadratic equation of the parabola. The three given points (0,0),
(b/2,h) and (b,0) must satisfy the equation. Solve three equations in the three unknowns h,
k and f.

Solution

Construct the parabola.

729

730 pbarch.nb

n[1]: O ear[h, k, f1;
par 1 = Par abol a2D[{h, k}, f, -Pi /27;

Create the equation of the parabola.

1n[2]: Clear[x, YI1;
eql = Equati on2D[Quadr ati c2D[par 1], {X, Y}]

out[2] h?-4fk-2hx+x?+4fy==
The three points must satisfy the equation of the parabola.
In[3]: Cear [B, HI;
ans = Sol ve[Map[(eql /. #)&,
{{x->0, y->0}, {(x->B/2, y->H}, {x->B, y->0}}1],
{f, h, k3]

out [3] {{k%H, f 91:2—2}? haAzB‘}}

Here’s the equation of the parabolic arch.
In[4]: eql /. First [ans]

out[4] -Bx +x2+ B

Discussion

This is an example of the arch with B =4 and H = 3.

In[5]: Sketch2D[{parl /. First[ans] /. {B->4, H->3}},
CurvelLengt h2D-> 97;

pbarclen.nb

Arc Length of a Parabola

Exploration
Show that the arc length, s, of a parabola whose parametric equations are
r=ft? and y = 2ft

is given by s = f(S2 — S1) where

Sp =tn/1+12 4+ sinh ™! (tn).

Approach

Directly apply the integral definition of arc length.

Solution

Compute the indefinite integral first. The results shown in the next few steps were computed
using Mathematica Version 3.0.1. Version 4.0 computes slightly different results that are
algebraically equivalent. Both versions compute the same final step.

In[1]: Cear[f, t];
Il=Integrate[
Sqrt [D[f *t "2, t172+
D[2«f %t, t]172],
t] //7Sinplify
Nrarpwsiy ArcSinhit]
out[1] f2 (1+t2) t+7\/ﬁ

Evaluate the indefinite integral at the limits.

731

732 pbarclen.nb

In[2]: Clear[tl, t2];
sl=(1/ t->t2) - (11 /. t->tl) //7Sinplify

outf2] -+Jf2 (1+112) (t1+5'-%h—[_;ﬂ]+ f2 (1+1t22) (t2+A'—°fi_i—h[—t_2i

The focal length, f, is positive

n[3]: Clear [El];
s2=s1 /. Sqrt[f~"2%E1l_] ->f *Sqrt [E1]

outr31 -f \[1+112 [tl+ M‘h_“l_]] cfaf1et2? (t2+ ArcSinh[t2)

Simplify.

In[4]: s3 = Factor [s2]

out r4] -f (tl\/l+t12 “t2+/1+t22 ArcSinh[t1] - ArcSi nhit2])

In(5]: s4=f »Map[(-1+#)& s3[[3]]]

out[s] f (41\/1”12 +12+/1+t22 “ArcSinh[t1] + ArcSi nh(t2))

pbdet.nb

Parabola Determinant

Exploration

Show that the determinant

y 22 =z 1
Y1 x% rp 1 -0
Yo x5 my 1 |
Y3 x§ xr3 1

represents a parabola Az? + Dx + Ey + F = 0 passing through the points (z1,71), (z2,¥2)
and (z3,Y3).

Approach

Expand the determinant. Convert it to a quadratic and show that the three points satisfy the
equation.

Solution

Expand the determinant and form a quadratic.

In(1]: Clear[x, y, x1, y1, x2, y2, x3, y3];
eql =Det [{{y, x"2, x, 1},
{y1, x1~2, x1, 1},
{y2, x272, x2, 1},
{y3, x372, x3, 1}}1;
gl = Quadrati c2D[eql, {X, Y}]

out [1] Quadrati c2D[-x2yl +x3yl+x1y2-x3y2-x1y3+x2y3,
0, 0, x22y1 -x32y1 -x12y2 +x32y2 + x12y3 - x22y3,
x12x2 - x1 x22 - x12x3 + x22 x3 + x1 x3% - x2 x32,
-x22x3y1 +x2x3%y1 +x12x3y2 - x1x32y2 - x12x2y3 +x1 x2%y3]

733

734 pbdet.nb

Form an equation of the quadratic.

In[2]: polyl = Pol ynom al 2D[ql, {x, Yy}]

out [2] (x1%x2 -x1x2% -x1%2x3 +x22x3 +x1x32-x2x3%) y -x22x3yl +x2x3%y1l +x12x3y2 -
x1x3%2y2 - x12x2y3 +x1x22y3 +x2 (-x2y1l +x3yl +x1y2 -x3y2-x1y3+x2y3) +
X (x22y1 -x3%2y1 -x1%2y2 +x32y2 + x12y3 - x22 y3)

Check if each of the points is on the quadratic.

n[3]: Map[(polyl /. #)& {{Xx ->x1, y ->yl},
{X ->Xx2, y->y2},
{X ->x3, y->y3}}] //Sinplify

out[3] {0, 0, 0}

Discussion

This is a plot of a numerical example.

In[4]: pl =Point2D[{x1, y1}];
p2 = Poi nt 2D[{x2, y2}1;
p3 = Poi nt 2D[{x3, y3}1;
Sket ch2D[{p1, p2, p3, ql} //. {
x1->1, yl->1, x2->6, y2->-1,
x3 ->4, y3->211;

pbfocchd.nb

Length of Parabola Focal Chord

Exploration

Prove that the length of the focal chord of a parabola is 4f, where f is the focal length.

Approach

Construct a parabola in a standard position. Construct a line perpendicular to the axis of the
parabola through the focus point (the line containing the focal chord). Compute the distance
between the points of intersection of the parabola and the line.

Solution
Create the parabola.

In[1]: Cear [f1l];
par 1 = Par abol a2D[{0, 0}, f1, OJ;

Construct the focus point.

In[2]: fpt = First [Foci 2D[par1]]

out [2] Point2D[{f1, 0}]

Construct a line perpendicular to the x-axis through the focus.

n[3]: fln=Line2D[fpt, Line2D[0, 1, 0], Perpendi cul ar 2D]

out[3] Line2D[1, 0, -f1]

Intersect the line with the parabola.

735

736 pbfocchd.nb

In[4]: pts = Poi nts2D[fl n, par1]

out[4] {Point2D[{f1, -2f1}], Point2D[{f1, 2f1}]}

The length of the focal chord is the distance between the points.

1n(5]: Di stance2D[Sequence @e pts] /.
Sqrt [f1r2] ->f1

out[5] 4f1

pbslp.nb

Tangent to a Parabola with a Given Slope

Exploration

Show that the line tangent to the parabola y? = 4pz with slope m is given by y = ma + p/m.

Approach

Construct a line with slope m and use the function TangentLines2D[in, quad] to construct
the desired tangent line.

Solution

Construct a line with slope m.

In[1]: Cear [X, Yy, m];
| 1 = Li ne2D[Poi nt 2D[x, y], m]

out [1] Line2D[m -1, -mx +Yy]

Construct a line parallel to the line and tangent to the parabola. The tangent line has the
form expected.

In[2]: O ear [p];

| 2 = Tangent Li nes2DJI 1,
pl = Parabol a2D[{0, 0}, p, 01]

outfz] {Line2D[m -1, %}}

Discussion

This is the plot of a numerical example.

737

738 pbslp.nb

In(3]: Sketch2D[{l 2, pl1} /. {p->1/2, m->2}1;

-2-101 2 3 4

pbtancir.nb

Circle Tangent to a Parabola

Exploration

Any line through the point (—3a, 0) cuts the parabola y? = 4az in the points P and Q. Prove
that the circle through P, @ and the focus is tangent to the parabola.

Approach

Construct the geometry and show that the lines tangent to the parabola and the circle at the
intersection point are coincident.

Solution
Construct the point, parabola and a line through the point.

1n[1]: O ear [a, m];
pl = Poi nt 2D[-3 &, 0];
parabl = Par abol a2D[{0, 0}, a, 0];
11 =Line2D[pl, m]

out[1] Line2D[m -1, 3am)
Intersect the lines in pairs to find the intersection points, P and Q.

In(2]: {P, Q} = Points2D[l 1, parabl] //Sinplify

2+/aZ (1-3n?) +a (2-3nd) 2 (-a++a? <1—3m?>)H
n? L il

out (2] {Poi nt 2D[{

2+vaz (1-3n?) +a(2-3m) 2 (a++aZ (1-3nd)) 0

Poi nt 2D[{ e o

Construct the circle through P, @ and the focus.

739

740 pbtancir.nb

In[3]: fpt = Foci 2D[parabl1][[1]];
cl=Circle2D[P, Q fpt] //Sinmplify

out [3] OrcleZD[{a(g:ﬁ_n?), afzanaﬁn?}‘ % =

Intersect the circle and the parabola.

In[4]: pts = Points2D[cl, parabl] //Sinplify

out (4] {Poi nt2D[{%—, 72_;‘}],
””””””””” o _ 22 1 3m
Poi ntzo[{*zJaz (173n:?> +a (2-3n?) ’ 2 a+\/am(1 3ne)) 1,
22 1 3me N
PoinIZD[{Z\[aZ (173n?n)?+a(273n?> K (a++/a n[<11 3n?)) 1)

Two of the points are P and @, as expected; the third must be the tangency point.

In[5]: pts = Points2D[cl, parabl] //Sinplify

out [5] {Poi ntZD[{%, 7%}],
_ ~ T Ie ~ CasNAaZ (1 3
Poi nt 2D { 2+/a? (1 3nl1;> +ra (2 Sn?)y 2(-a am<1 3n?))H’
- 2 (13m0
PointzD[{zx/a2 (173n"?n)?+a(273n'?>’ 2 (a++a r’r<11 3n?)) 1)

Two of the points are P and @), as expected; the third must be the tangency point

In[6]: {lsCoincident2D[pts[[2]], P], |sCoincident2D[pts[[3]], Ql}

out[6] {True, True}

Construct the tangents to the circle and the parabola at the intersection point.

In[7]: {tlnl=_Line2D[pts[[1]], c1],
tIn2 =Line2D[pts[[1]], parabl]} //Sinplify

out[7] {Line2D[-n?, -m -a], Line2D[-n?, -m -a]}
The tangents are coincident, therefore, the parabola and the circle are tangent.

In[8]: Map[Si nplifyCoefficients2D[List ee #]&,
{tInl, tIn2}]

out[8] {{-nf, -m -a}, {-nf, -m -a}}

Discussion

This is the plot of a numerical example.

pbtancir.nb 741

In[9]: Sketch2D[{cl1, fpt, pl, parabl, 11, P, Q pts[[1]]} /.
{a->2/3, m->1/2},
Pl ot Range -> {{-3, 10}, {-7, 7}},
CurvelLengt h2D -> 257;

-20 2 46 810

pbtnins.nb

Perpendicular Tangents to a Parabola

Exploration

Show that if L1 and Ly are two lines tangent to a parabola that intersect on the directrix of
the parabola, then L, and Lo are perpendicular to each other.

Approach
Since the shape (not the position or orientation) of the parabola is relevant, pick a parabola
in standard position and a point on the parabola’s directrix. Construct the tangent lines from

the point to the parabola and show that the lines are perpendicular (i.e. their slopes are
negative reciprocals).

Solution
Create the parabola and its directrix.

n[1]: Oear [f];
parabl = Par abol a2D[{0, 0}, f, 0];
din=First [Directrices2D[parabl]]

out[1] Line2D[1, 0, f]

Construct a general point on the directrix.

In[2]: Clear[y];
pl = Poi nt 2D[-f, y1;

Construct the two tangent lines from the point.

743

744 pbtnins.nb

n[3]: {1, |2} = Tangent Li nes2D[pl, parabl] // Sinplify
out[3] {Line2D[2f \/4f2+y2, 4f2.+y (y-+/4f2+y2),

Show that the slopes are negative reciprocal (therefore the lines are perpendicular to each
other).

In[4]: Sl ope2D[l 1] =Sl ope2D[l 2] // Sinplify

out[4] -1

Discussion
This is the plot of a numerical example.
1n[5]: Sketch2D[{parabl, din, p1, I1, |2} /.

{f->1,y->2},
CurvelLengt h2D -> 207;

10

-10

-4-202 468

polarcir.nb

Polar Equation of a Circle

Exploration
Show that the polar equation of a circle centered at P(ry,61) with radius R is given by

4+ r% —2rrycos(f —01) = R2.

Approach

Represent the circle in rectangular coordinates. Convert the equation to polar coordinates.

Solution

Define a function to convert from polar coordinates to rectangular coordinates.

In[1]: Point2D[Pol ar Poi nt 2D[r_, theta_]] : =
Poi nt 2D[{r *Cos[theta], r *Sin[theta]}];

Create the circle.

n[2]: Cear[rl, t1, RI];
P = Poi nt 2D[Pol ar Poi nt 2D[r 1, t1]1;
Cl =Circl e2D[P, R]

out[2] Circle2D[{r1Cos[tl], r1Sin[tl]}, R]
Convert to a polynomial in polar coordinates.
In[3]: Cear[x, y, r, tl;

eql = Pol ynom al 2D[Quadr ati c2D[C1l], {Xx, y}] /.
{X->r *Cos[t], y->r«Sin[t]} //FullSinplify

out[3] r2-R+r1?2-2rr1Cos[t -t1]

745

polarcol.nb

Collinear Polar Coordinates

Exploration

Show that the points Py (ry,61), Pa(r2,602) and Ps(r3,03) in polar coordinates are collinear if
and only if

—ryrasin(f; — 62) 4+ rirgsin(f; — 63) — rorssin(f — 63) = 0.

Approach

Convert the given polar coordinates of the points to rectangular coordinates and then apply
the condition for collinearity

X1 Y1 1
X9 Y2 1 = 0
3 ys 1

Solution
This is a function for converting a polar point to rectangular coordinates.

In[1]: Point2D[Pol ar Poi nt 2D[r_, theta_]]: =
Poi nt 2D[{r *Cos[theta], r *Sin[theta]}];

Define three arbitrary points in polar coordinates.
In[2]: Clear[rl, r2, r3, thetal, theta2, theta3];
pl = Poi nt 2D[Pol ar Poi nt 2D[r 1, thetal]];

p2 = Poi nt 2D[Pol ar Poi nt 2D[r 2, t heta2]];
p3 = Poi nt 2D[Pol ar Poi nt 2D[r 3, t heta3]];

Apply the condition for collinearity.

747

polarcol.nb

748
In[3]: Sinplify]
Det [{
{XCoor di nat e2D[p1], YCoordi nate2D[pl], 1},
{XCoor di nat e2D[p2], YCoordi nat e2D[p2], 1},
{XCoor di nat e2D[p3], YCoordi nat e2D[p3], 1}
13|
]
out[3] -rlr2Sin[thetal-theta2] +r1r3Sin[thetal -theta3] -r2r3Sin[theta2-theta3]
Discussion

Here’s a function based on the equation above that returns True if three points in polar

coordinates are collinear.

1n[4]: 1sCol|linear2D[
pl: Pol arPoi nt2D[r1_, thetal_],
p2: Pol ar Poi nt 2D[r2_, theta2_],
p3: Pol arPoint 2D[r3_, theta3_]1]: =
| sZero2D[-r1*r2xSin[thetal -theta2] +
rl+=r3*Sin[thetal -theta3] -
r2xr3*=Sin[theta2-theta3]]

Show that the polar coordinate points (1,7/3), (3,7/3) and (5,4m/3) are collinear using the
new function.
In[5]: pl = Pol ar Poi nt 2D[1, Pi /3];
p2 = Pol ar Poi nt 2D[3, Pi /3];

p3 = Pol ar Poi nt 2D[5, 4+ Pi /3];
I sCol | i near 2D[pl, p2, p3]

out [5] True

polarcon.nb

Polar Equation of a Conic

Exploration

Let the focus F of a conic be at the pole of a polar coordinate system and the directrix D be
perpendicular to the polar axis at a distance p to the left of the pole. Show that the polar
equation of the conic is

ep

"= 1 —ecosf

where e is the eccentricity of the conic.

Approach

Use the definition of eccentricity e = PF/PD and substitute the expressions for distances.
Solve the resulting equations for 7.

Solution

Use the definition of eccentricity.

in(1]: Cl ear [e, PF, PD];
eql =e == PF/PD

PF

Out[1] € == D

Substitute the distances for the segment lengths.

In[2]: Clear[r, p, t];
eq2 =eql /.
{PF->r, PD->p+r «Cos[t]}

r

Out[2] € == [)”T[t]

749

750 polarcon.nb

Solve for r.
In[3]: Solve[eq2, r] //Sinplify

e
out [3] {{I’ - ﬁ}}

polardis.nb

Distance Using Polar Coordinates

Exploration

The location of a point in the plane may be specified using polar coordinates, (r,8), where r
is the distance from the origin to the point, and 6 is the angle the ray to the point from the
origin makes with the +a-axis. Show that the distance, d, between two points (r1,61) and
(rq,02) given in polar coordinates is

d= \/r% + 12 — 2ry7r9 cos(f1 — 6s).

Approach

Convert the given polar coordinates of the points to rectangular coordinates and then apply
the Distance2D function to the converted points.

Solution

This is a function for converting a polar point to rectangular coordinates.

In[1]: Point2D[Pol ar Poi nt 2D[r_, theta_]]: =
Poi nt 2D[{r »Cos[theta], r *Sin[theta]}];

Define two arbitrary points in polar coordinates.

In[2]: Cear[rl, r2, thetal, theta2];
pl = Poi nt 2D[P1 = Pol ar Poi nt 2D[r 1, thetal]];
p2 = Poi nt 2D[P2 = Pol ar Poi nt 2D[r 2, theta2]];

Find the distance between the two points.

In(3]: d = Di stance2D[pl, p2] // Sinplify

out [3] \/r12+r2272r1r2C05[thetalftheta2]

751

752 polardis.nb

Discussion

Distance2D can be defined to handle polar coordinates directly as shown here.
In[4]: Di stance2D[Pol arPoi nt 2D[r1_, thetal_],

Pol ar Poi nt 2D[r2_, theta2_]]: =
Sgrt [r1”"2+r2722-rl1xr2xCos[thetal -theta2]]

Try out the new Distance2D function.

n[5]: Di stance2D[P1, P2] // Sinplify

out [5] \/rlz+r227r1r2005[theta17theta2]

polarell.nb

Polar Equation of an Ellipse

Exploration

Show that the polar equation of an ellipse with a horizontal major axis and centered at (0, 0)
is given by
B ab

\/a2511129 + bZcos20

r

where a and b are the lengths of the semi-major and semi-minor axes, respectively.

Approach

Create the ellipse in rectangular coordinates. Convert the equation to polar coordinates.

Solution

Create a quadratic representing the ellipse.

In(1]: Clear [a, b];
Ql = Quadrati c2D[El | i pse2D[{0, 0}, a, b, 0]]

out [1] Quadratic2D[b?, 0, a%, 0, 0, -a?b?]
Convert the rectangular equation to a polar equation.
In[2]: Cear[Xx, Yy, r, thetal

eql = Equati on2D[QL, {x, Yy}] /.
{x ->r xCos[theta], y ->r »Sin[theta]}

out[2] -a?b?+b2r2Cos[theta]?+a?r2Sin[theta]?==0

Put into the desired form by solving for r (taking the positive result).

753

754 polarell.nb

In[3]: Solve[eql, r]

ab
out (3] {{r -
: tr- bZOos[theta]2+aZSin[theta}z}
{r- 28 })

b2 Cos[theta]?+a2Sin[theta]?

polareqn.nb

Polar Equations

Exploration

A curve in polar coordinates may have more than one equation. A given point may have either
of two general coordinate representations

(r,0 + 2km)
(=r, 0+ (2k+1)m)
for any integer k. Hence a given curve r = f(#) may have either of the two equation forms
r = f(0 + 2kn)
—r=f(0+ (2k+1)m).
The first equation reduces to r = f(f) when k=0, but may lead to an entirely different
equation of the same curve for another value of k. Similarly, the second equation may yield
other equations of the curve. Show that in spite of the potential for multiple equations in
polar coordinates, a linear equation Az + By + C' = 0 has only one representation in polar

coordinates given by

r(Acosf + Bsinf) + C = 0.

Approach

Derive an equation for a linear equation in polar coordinates using the primary form (r,@).
Investigate and compare the primary form to the equation derived from the forms (r, 8 + 2k)
and (—r, 0 + (2k + 1) 7).

755

756 polaregn.nb

Solution

Create the primary form of a linear equation in polar coordinates.

In[1]: Cear [Al, Bl, Cl, x, y1;
Al*X +Bl*y +CL /.
{x->r xCos[t],
y->r*=Sin[t]}

out[1] CL+Alr Cos[t] +Blr Sin[t]

Compare to the form (r, 0 + 2k), using two trigonometric identities.

n[2]: Cear[r, t, ki;

Alxx +Blxy +CLl //.
{X->rxCos[t +2k=*Pi],
y->r*=Sin[t +2k=Pi],
Cos[t +2k*Pi] ->Cos[t],
Sin[t +2k*Pi]->Sin[t]}

out[2] CL+Alr Cos[t] +Blr Sin[t]

Compare to the form (—r,0 + (2k + 1)), using two trigonometric identities.

In[3]: AL*Xx +Bl+y +Cl //.
{X->-r=*Cos[t+(2k+1)=*Pi],
y->-r*Sinft+ (2k+1)%Pi],
Cos[t + (2k +1) xPi] -> -Cos [t],
Sin[t+ (2k+1) «Pi]->-Sin[t]}

out[3] CL+Alr Cos[t] +Blr Sin[t]

polarhyp.nb

Polar Equation of a Hyperbola

Exploration

Show that the polar equation of a hyperbola with a horizontal transverse axis and centered
at (0,0) is given by
ab

r= .
\/b200829 — a?sin’f

Approach

Create the hyperbola in rectangular coordinates and convert the equation to polar coordinates.

Solution

Define a quadratic representing the hyperbola.

n[1]: O ear [a, b];
Ql = Quadr ati c2D[Hyper bol a2D[{0, 0}, a, b, 0]]

out [1] Quadratic2D[b?, 0, -a? 0, 0, -a?b?]

Convert from rectangular to polar coordinates.

n[2]: Cear[x, Yy, r, thetal;
eql = Equati on2D[QL, {X, y}] /.
{Xx ->r xCos[theta], y ->r *Sin[theta]}

out[2] -a?b?+b2r2Cos[theta]?-a2r2Sin[theta]?==0
Solve for r to put the equation into the desired form. This result was computed using Math-

ematica Version 3.0.1. Version 4.0 produces a slightly different result that is algebraically
equivalent with v/—1 already factored out.

757

758

polarhyp.nb

In[3]: ans = Sol ve[eql, r]

I ab
out (3] {{r - .
: tr- -b2Cos[theta]?+a2Sin[theta]? J
I ab
{r- =

-b2Cos [theta]?+a2Sin[theta]

Multiply the fraction by i = +/—1 to get the desired form.

In[4]: Cear [El, E2];
Last [ans] /. {l «E1_/Sqrt[E2_] ->El1/Sqrt [-E2]}

ab }

out [4] {I’ - 5
b2 Cos[theta]?-a2Sin[theta]

polarpb.nb

Polar Equation of a Parabola

Exploration

Show that the polar equation of a parabola opening to the right with vertex at (0,0) is given
by

4f cost
T=T 2,
sin“6

where f is the focal length of the parabola.

Approach

Create the parabola in rectangular coordinates. Convert the equation to polar coordinates.

Solution
Construct the quadratic representing the parabola.

n[1]: O ear [f];
Ql = Quadr ati c2D[Par abol a2D[{0, 0}, f, 0]]

out[1] Quadratic2D[0, 0, 1, -4f, 0, 0]
Convert the equation from rectangular coordinates to polar coordinates.
n[2]: Cear[x, Yy, r, thetal;

eql = Equati on2D[QL, {X, y}] /.
{Xx ->r xCos[theta], y ->r *Sin[theta]}

out[2] -4fr Cos[theta] +r2Sin[theta]?==0

Solve for 7 to get the desired form of the equation.

759

760 polarpb.nb

n[3]: Solve[eql, r]
out[3] {{r -0}, {r -4f Cot [theta] Csc[theta]}}
The trigonometric identity 4f cot(6) csc(d) = 4f cos(f) /sin? (§) completes the demonstration.

In[4]: 4f «Cos[theta] /Sin[theta]”2 //Sinplify

out[4] 4f Cot [theta] Csc[theta]

polarunqg.nb

Non-uniqueness of Polar Coordinates

Exploration
Show that the polar coordinates of a point (r,f) are not unique as all points of the form
(r,0 +2kmr) and (—r,0 + (2k+ 1))

represent the same position in the plane for integer values of k.

Approach

Convert the given polar coordinates of the points to rectangular coordinates and demonstrate
that the rectangular coordinates are coincident.

Solution

This is a function for converting a polar point to rectangular coordinates.

In[1]: Point2D[Pol ar Poi nt 2D[r_, theta_]]: =
Poi nt 2D[{r »Cos[theta], r *Sin[theta]}];

Convert the two points to rectangular coordinates.
In[2]: Clear[r, theta, kJ;

pts = {Poi nt 2D[Pol ar Poi nt 2D[r, theta+2k *Pi 1],
Poi nt 2D[Pol ar Poi nt 2D[-r, theta+ (2k +1) Pi11};

Simplifying shows that the points are identical for all values of k.

In[3]: pts //Sinplify

out[3] {Point2D[{r Cos[2k mr+theta], r Sin[2k r+theta]}],
Poi nt 2D[{r Cos[2k mt+theta], r Sin[2k r+theta]}]}

761

762 polarung.nb

Discussion

The principal polar coordinates of a point (r,) are given when r > 0 and 0 < 6 < 27. These
functions convert a PolarPoint2D to principal coordinates.

In[4]: Pol arPoi nt 2D[r _?1sNegative2D, theta_]: =
Pol ar Poi nt 2D[-r, theta +Pi];
Pol ar Poi nt 2D[r _, theta_]: =
Pol ar Poi nt 2D[r, Pri maryAngl e2D[t heta]] /;
theta =!=PrimaryAngl e2D[t het a]

Convert some polar points to principal form.

In[5]: {Pol arPoi nt2D[-1, Pi /2], Pol arPoi nt2D[2, -Pi /3]}

57TH

out [5] {Pol ar Poi nt2D[1, 32—”} Pol ar Poi nt2D[2, -5

pqguad.nb

Parameterization of a Quadratic

Exploration

Show that the quadratic Q = az® + bxy + cy? + dx + ey = 0, that passes through the origin,
can be parameterized by the equations

d+et B t(d+et)

W=—Fiora YO =" her

where —oo < t < +o0.

Approach

Let the parameter, ¢, be the slope of a line, L, passing through the origin. The coordinates
of the point P(z(t),y(t)), which is the desired parameterization, is the intersection point of L
with @ that is not coincident with the origin.

Solution

Define a function that returns parametric equations of a quadratic, given a point on the
quadratic, in terms of a parameter, t.

In[1]: Parameterize2D[Q: Quadratic2D[a_, b_, c_, d_, e_, f_1,
P: Poi nt 2D[{x0_, y0_}1,
t_Synbol]: =
Coor di nat es2D[Fi r st [Sel ect [Poi nt s2D[Li ne2D[P, t], QI,
Not [I sCoi nci dent 2D[P, #]11&]111;

If the point on the quadratic is the origin, (0,0), then the equations are given by the following.

763

764 pquad.nb

n[2]: Clear[a, b, c, d, e, t];
Par anet eri ze2D[Quadr ati c2D[a, b, c, d, e, 0], Point2D[{0, 0}], t] //Sinplify

out (2]

d+et t (d+et)
{_a+t (bxct)’ a+t (b+ct) }

Discussion

As an example, parameterize the quadratic 522 — 3v/3zy + 4y* — 82 — 14y = 0.

In[3]: Cear[t];
Q= Quadratic2D[5, -3xSqrt [3], 4, -8, -14, 0];
Xt Yt = Paraneterize2D[Q Poi nt 2D[{0, 0}], t]

2 (4+71) 2 (4t +712) }

out [3] — , =
: {5—3\/—3t+412 5. 331t 412

Plot the quadratic using the parametric equations. Notice the gap in the graph as the para-
meter, t, approaches f+oo.

In[4]: ParametricPl ot [Eval uate[XtVYt], {t, -25, 25},
Aspect Rati o -> Aut omatic];

OO

Determine the locus of the quadratic in standard form.
In[5]: crv = Loci 2D[Q] // N
out[5] {Ellipse2D[{2.58012, 3.42583}, 4.30102, 2.19094, 0.880461]}
An identical graph is produced from the equation in standard form. The gap is not present in

this plot because the trigonometric parameterization of the ellipse, used to plot the standard
form, avoids passing through infinity.

In[6]: Sketch2D[{crv}];

ORLNWAOIOON

12345

ptscol.nb

Collinear Points

Exploration

Show that the three points (3a,0), (0,3b) and (a, 2b) are collinear.

Approach

Three points Pi(z1,y1), Pe(x2,y2) and Ps(x3,ys) are collinear if the determinant
1 oy 1
T2 Y2 1
z3 ys 1

is zero.

Solution

Use the Mathematica Det command to evaluate the determinant.

In[1]: O ear [a, b];
Det [{{3a, O, 1},
{0, 3b, 1},
{a, 2b, 1}}]

out[1] 0O

Discussion

The function IsCollinear2D also reveals if three points are collinear.

765

766 ptscol.nb

In[2]: | sCollinear2D[
pl = Poi nt 2D[3 &, 0],
p2 = Poi nt 2D[0, 3 b],
p3 = Poi nt 2D[a, 2b]]

out [2] True
This is the plot of a numerical example.

In(3]: Sketch2D[{pl, p2, p3,
Li ne2D[pl1, p31} /. {a->2, b->1.75}7;

N

OFR NWMUITO

.
-101 23456

radaxis.nb

Radical Axis of T'wo Circles

Exploration

Show that the two circles 22 + y? 4+ az + by + ¢ = 0 and 22 + 4% + bz + ay + ¢ = 0 have the
radical axis x —y = 0.

Approach

Convert the equations to circles and find the radical axis of the circles.

Solution
Construct the circles from the equations.

In[1]: Cear[a, b, cJ;
{Cl, C2} = {Gircl e2D[Quadratic2D[1, O, 1, a, b, c]1,
Circle2D[Quadratic2D[1, 0, 1, b, a, c11}

. a b 1 . b a 1
out [1] {OrcIeZD[{f?, 77}, 7\/a2+b274c}, OrcIeZD[{fi, 77}, 7\/a2+b274c}}
Construct the radical axis.

Tnf2]: L1=Line2D[CL, C2] //Sinplify

out[2] Line2D[1, -1, 0]

Convert the line to an equation.

In[3]: Clear[Xx, yI;
Equati on2D[L1, {X, Y}]

out[3] X -y ==

767

768 radaxis.nb

Discussion

This is a plot of a numerical example with a =1, b =5 and ¢ = —1.

In[4]: Sketch2D[{Cl, C2, L1} /. {
a->1, b->5 ¢->-1}1;

radcntr.nb

Radical Center

Exploration

Prove that the radical axes of three circles taken in pairs intersect in a common point. This
point is called the radical center of the three circles.

Approach

Create the three radical axes, intersect them in pairs and show that the coordinates of the
points of intersection are equal.

Solution
Create three general circles.
In[1]: Cear [hl, k1, r1, h2, k2, r2, h3, k3, r37;
Cl =Circle2D[{h1, k1}, rl7;

C2 =Circl e2D[{h2, k2}, r2];
C3 =Circle2D[{h3, k3}, r3];

Construct the radical axis lines in pairs.
Tn[2]: L12 = Li ne2D[CL, C2];

L13 = Li ne2D[C1, C3];
L23 = Li ne2D[C2, C3];

Intersect the lines in pairs to find the intersection points.
n[3]: pl = Poi nt2D[L12, L13];

p2 = Poi nt 2D[L12, L23];
p3 = Poi nt 2D[L13, L237;

769

770

radcntr.nb

Show that the coordinates of the intersection points are equal.

In[4]: {XCoor di nat e2D[pl] - XCoor di nat e2D[p2],
XCoor di nat e2D[p1] - XCoor di nat e2D[p3],
YCoor di nat e2D[p1] - YCoor di nat e2D[p2],
YCoor di nat e2D[p1] - YCoor di nat e2D[p3]1} // Full Sinmplify

out[4] {0, 0, 0, 0}

Discussion
This is the plot of a numerical example.

In[5]: Sketch2D[{Cl, C2, C3, L12, L13, L23, pl, p2, p3} /.
{hl1->-2, k1->0, r1->1,
h2 ->3, k2->3, r2->1.5,
h3 ->5, k3 ->-2, r3->2},
CurvelLengt h2D -> 147;

2RO

-6-4-20 2476

raratio.nb

Radical Axis Ratio

Exploration

Show that the point of intersection of the radical axis and the line of centers of two circles of
radii r; and ro divides the segment between the two centers into the ratio

24 .2 2
d”+ry—rj3
dz —r?+7r2

where d is the distance between the centers.

Approach

Create the two circles in a simplified, but sufficiently general, position. Construct the radical
axis and intersect it with the line segment between the centers. Inspect the appropriate ratio.
Solution

Create the two circles, one with center at the origin, the other with center at (d,0).

n[1]: Cear[rl, r2, d];
cl=Crcle2D[{0, 0}, r1];
c2=Circle2D[{d, 0}, r27;

Construct the radical axis of the two circles.

n[2]: |1 =Line2D[cl, c2]

out[2] Line2D[2d, 0, -d?-r1?+r2?]

Intersect the radical axis with the z-axis to find the point of division.

771

772 raratio.nb

In[3]: pt =Point2D[l 1, Line2D[0, 1, 0]]
. d2+r12-r2?
out [3] Poi ntZD[{——z—d——, 0}]

Form the desired ratio.

In[4]: ratiol = Di stance2D[Poi nt 2D[0, 0], pt]/
Di st ance2D[pt, Poi nt2D[d, 0]] // Sinplify

\/ (212 r22)2
N T

(d2-r12.r22)2
d2

Out [4]

Since all the expressions under the radical are positive, we can simplify the radicals.

In[5]: Cear [El, E2];
ratio2=ratiol //. {
Sqrt [El_~2/E2_"2] ->E1/E2,
1/Sqrt [El_~2/E2_"2] ->E2/El}

d2+r12-r2?

Out [5] =
d2-r1%2+r2?

reccir.nb

Reciprocal of a Circle

Exploration

Given a circle C; = (z — h)> 4 (y — k)* = r? show that its polar reciprocal in the auxiliary
conic z? + y? = 1 is given by the quadratic

QE(rQ—hQ)a:Q—tha:y—l-(r2—k2)y2+2hm+2ky—120.

Furthermore, show that @ is an ellipse if the origin (0,0) is inside C; a parabola, if the origin
is on C'; and a hyperbola, if the origin is outside C.

Approach

Create a general circle and the auxiliary conic. Construct five points on the circle. Construct
five tangent lines at the points. Construct reciprocals of the lines (five points). Construct a
quadratic through five points. Examine the discriminant of the quadratic.

Solution

Create a general circle and an auxiliary circle.

n[1]: Cear[h, k, r1;
cirl=Circle2D[{h, k}, r];
cl=Crcle2D[{0, 0}, 11;

Define five points on the circle.

In[2]: pts = Map[
Poi nt 2D[cir1[#]]&,
{0, Pi /4, Pi /2, Pi, 3Pi /2}] //Sinplify

. . r r
[2] {Point2D[{h +r, k}], Point2D|{h + , k+
out (2] { [} [7z 7z
Poi nt2D[{h -r, k}], Point2D[{h, k-r}]}

}], Point2D[{h, k+r}],

773

774 reccir.nb

Determine the tangent lines at the points. This result was computed using Mathematica
Version 3.0.1. Version 4.0 computes a simpler result that is algebraically equivalent to this
one.

In[3]: I nsl=Mp[Line2D[#, cirl]& pts] //Sinplify
out(3] {Line2D(1, O, -h-r], Line2D[2, v/2, -v/2h-+2 k-2r], Line2D[0, 1, -k-r],

Li ne2D[-1, 0, h-r], Line2D[0, -1, kfr]}

Define the reciprocal function.
In(4]: Reci procal 2D[
Line2D[Al_, Bl_, Cl_],

Crcle2D[{0, 0}, 1]1] : =
Poi nt 2D[{-A1/Cl1, -B1/Cl1}];

Find the reciprocal points.

In[5]: ptsl = Map[Reciprocal 2D[#, c1]& Insl] //Sinplify

: : \2 \2
[5] {Point2D , 01|, Point2D - - s = — s
eut(s) {Point 2Dl [O} Poimt2D[{ o o Jane vz koar)
. 1 . 1 . 1
Poi nIZD[{O, ﬁ}] Poi ntZD[{h_r , O}] Poi ntZD[{O, T }]}
Find the quadratic through the points.
In[6]: gl = Quadrati c2D[Sequence @@ ptsl] // Sinplify;
Map[(-1%#/2)& ql]
out[6] Quadratic2D[(h-r) (h+r), 2hk, -(-k+r) (k+r), -2h, -2k, 1]

Discussion

Examine the discriminant, d.

In[7]: discl=ql[[2]]"2-4%ql[[1]1]*qQl[[3]] // Sinplify

out[7] 1612 (h2 +k2-r?)

If d < 0 the quadratic is an ellipse and (0,0) is inside the circle; if d =1 the quadratic is a
parabola and (0,0) is on the circle; and if d > 1 the quadratic is a hyperbola and (0,0) is
outside the circle.

recptin.nb

Reciprocals of Points and Lines

Exploration

Show that the polar reciprocal of A;z + Biy + C1 = 0 in the auxiliary conic C' = %+ y2 =1
is the point (—A4;/C1,—B;1/C1), assuming that the line does not pass through the origin.
Also, show that the line z +y — 1 = 0 is the polar reciprocal of the point (z,y) with respect
to C.

Approach

Create the auxiliary conic, C. The pole point is the reciprocal of the line. The polar line is
the reciprocal of the point.

Solution

Define the auxiliary conic (circle), C.

In[1]: ¢l =Circle2D[{0, 0}, 11;

The pole point is the reciprocal.

In[2]: O ear [Al, Bl, Cl];
Poi nt 2D[Li ne2D[A1, B1, Cl], cl]

out (21 Point2D[(- AL, - 21}]
The polar line is the reciprocal.

In[3]: dear[X, Y];
Li ne2D[Poi nt 2D[x, y], c¢1] //Sinplify

out[3] Line2D[x, y, -1]

775

recquad.nb

Reciprocal of a Quadratic

Exploration

Given the general quadratic Q = ax? + bzy + cy® + dz + ey + f = 0, show that the reciprocal
of @ in C' is the quadratic

(def — e*)a? + (2de — 4bf) xy + (4af — d2) yi+
(4cd — 2be) z + (4ae — 2bd) y + (dac — b*) =0

when the auxiliary conic C' = 2% +y2 = 1.

Approach

Create a general conic, @, and the auxiliary conic. Construct a point P;(z1, 1), assumed to
be on Q. Construct the tangent line, L, at P;. Take the reciprocal of L with respect to C,
producing P,. Show that P; is on the postulated quadratic.

Solution

Create a general quadratic.

In[1]: Clear[a, b, c, d, e, f1;
gl = Quadratic2D[a, b, ¢, d, e, f1;

The point Py (z1,y1) is a point on @, and L is tangent to @ at P;.

n[2]: O ear [x1, y1];
pl = Poi nt 2D[x1, y1];
I 1 =Line2D[pl, ql]

out[2] Line2D[d+2ax1+byl, e+bxl+2cyl, 2f +dxl+eyl]

w7

778 recquad.nb

Find the auxiliary conic (a unit circle at the origin).

In[3]: cl=Circle2D[{0, O}, 17;

Define the reciprocal function.

In[4]: Reci procal 2D[
Li ne2D[A1_, B1_, Cl1_],
Crcle2D[{0, 0}, 111 : =
Poi nt 2D[-A1 /Cl, -B1/Cl];

Find the reciprocal of L.

In[5]: p2 = Reciprocal 2D[l 1, c1]

d+2axl+byl e+bx1+20y1H

out [5] PO ntZDH_Zf +dxI+eyl’ 2f rdxl+eyl

Find the reciprocal quadratic.

In[6]: g2 = Quadrati c2D[
4xcxf -en2, 2xdxe-4xbxf,
4xaxf -d"2, dxcxd-2xbxe,
4xaxe-2xdxb, 4xaxc -b"2];

Construct a polynomial.
In[7]: eql = Pol ynom al 2D[q2, Coordi nat es2D[p2]] // Toget her

out [7] 7%(4 (cd?f -bdef +ae?f +b2f2-4acf?2+cd3xl-bd2exl+
(2f +dx1+eyl)
ade?x1+b?df xl-4acdf xl+acd®x1?2-abdex1?+a?e?x1?+ab?f x12-
4a2cfx1?+cd?eyl-bde?yl+aedyl+b2efyl-4acefyl+
bcd?xlyl-b?dexlyl+abe?xlyl+b3fxlyl-4abcfxlyl+
c2d?y1?-bcdeyl®?+ace?yl?+b2cfyl?-4ac?f yl?))

Ignore the denominator and the constant (the numerator will be shown to be zero).

In[8]: eq2 = Numerator [eql] [[2]]

out[8] cd*f -bdef +ae?f +b?f2-4acf?+cd®xl-bd?exl+ade?xl+b2df x1-
4acdfxl+acd?x1?-abdex1?2+a2e?x1?+ab?f x12-4acf x12+cd?eyl -
bde?yl+aedyl+b’efyl-4acefyl+bcd?xlyl-b?dexlyl+abe?xlyl+
b%f xlyl-4abcfxlyl+c?d?yl?-bcdeyl?+ace?yl?+b?cfyl?-4ac?fyl?
Factor.
In[9]: eq3 = Factor [eq2]

out[9] (cd?2-bde+ae?+b?f -d4acf) (f +dxl+axl?+eyl+bxlyl+cyl?)

One of the terms is zero, therefore the expression is zero.

In{10]: eq3 /.
(f+dxl+axl”2+eyl+bxlyl+
cylnr2) ->0

out[10] O

reflctpt.nb

Reflection in a Point

Exploration

A point P’ (2/,%) is said to be the reflection of a point P(z,y) in the point C(H, K) if C is
the midpoint of the segment PP’. Using this definition show the following.

A. The transformation equations for a reflection in a point are

¥ =2H —x and z=2H — 2,

y =2K —y and y=2K —/;
B. The reflection of the line ax + by + ¢ = 0 in the point (H, K) is

ax + by — (2aH + 20K +¢) = 0;
C. The reflection of the quadratic az? + bry + cy® + dx + ey + f = 0 in the point (H, K) is

azx® + bxy + cy® — (4aH 4 20K + d) x — (2bH + 4cK + e) y+
4aH? + 4bHK + 4cK? + 2dH + 2eK + f = 0.

Also, verify that the reflection in a point transformation is equivalent to a rotation of 7 radians
about the reflection point (H, K).
Approach
Solve the midpoint relationship for the coordinates of the transformation. Substitute the
reflected coordinates into the equation of a line to produce a reflected line. Substitute the

reflected coordinates into the equation of a quadratic to produce the reflected quadratic. Apply
the proposed rotation to show it is equivalent to the reflection.

779

780 reflctpt.nb

Solution

(H, K) is the midpoint of PP’. Solve for (x,y) and (2’,%’). This is the solution to proposition
A.

In[1]: Cear[X, Yy, x1, y1, H Ki;
{{Solve[(x +x1) /2 ==H, x11],
Solve[(y +y1) /2 ==K, y11},
{Solve[(x +x1) /2 ==H, x],
Solve[(y +yl) /2 ==K, y]}}

out[1] {{{{x1->2H-x}}, {{y1->2K-y}}}, {{{x->2H-x1}}, {{y->2K-yl}}}}

Reflect a line through a point. This is the solution to proposition B.

n[2]: Clear[a, b, cI;
eql=axx+bxy+c /. {X->2H-X, y->2K-y};
Map [Ti mes[-1, #]& Line2D[eql, {x, y}]]

out (2] Line2D[a, b, -c-2aH-2bK]

Reflect a quadratic through a point. This is the solution to proposition C.

n[3]: Clear[d, e, f];
eg2 =axx"2+bxx*xy+cxy"2+daxx+exy+f /. {Xx->2H-%X, y->2K-y};
Quadratic2D[eq2, {X, Y}]

out[3] Quadratic2D[a, b, ¢, ~-d-4aH-2bK -e-2bH-4cK,
f+2dH+4aH +2eK+4bHK+4cK?)

The reflection is the same as the specified rotation. This is the solution to the final proposition.

In[4]: Rotate2D[{x, y}, Pi, {H K}]

out[4] {2H-x, 2K-y}

rtangcir.nb

Angle Inscribed in a Semicircle

Exploration

Show that an angle inscribed in a semicircle is a right angle.

Approach

Find the parametric coordinates of the points that define the angle and use the Pythagorean
Theorem to show they form a right angle.

Solution

Create a circle at the origin.

In[1]: Clear[r];
Cl =Circl e2D[{0, 0}, r];

Construct the points on the semicircle. P; and P; are the end points of the semicircle, P, is
the (right) angle vertex.
In[2]: Clear[t];
P1 = Cl[0];

P2 =Cl[t];
P3 = CL[Pi];

Apply the Pythagorean Theorem. First compute a? + b? and then show it is equal to ¢? and
independent of the parameter value of the vertex point (it turns out that it is a function of
the circle’s radius only).

1n[3]: {Di stance2D[Pl, P2]1"2 + Di stance2D[P2, P31"2,
Di stance2D[P1, P3172} // Sinplify

out (3] {4r? 4r?

781

rttricir.nb

Circle Inscribed in a Right Triangle

Exploration

Show that if r is the radius of a circle inscribed in a right triangle with sides a and b and
hypotenuse ¢, then r = (a + b —¢) /2.

Approach

Position the triangle so that the sides of length a and b align with the z- and y-axes and the
vertex opposite the hypotenuse is at the origin. Create the circle inscribed in this triangle and
examine its radius.

Solution

The radius of the inscribed circle is found here.

In[1]: O ear [a, b];
rl = Radi us2D[
Circl e2D[
Triangl e2D[{a, 0}, {0, b}, {0, 0}1,
Inscribed2D]] // Sinplify

\Ja2 b2 a2 /b7 —~/a? a2+ b2 — /b7 /a2 + b?
NS

out[1]

Simplify the expression for the radius.

783

784 rttricir.nb

In[2]: Cear[c];
r2=rl //. {
Sqrt [a”2] -> a,
Sqrt [b”A2] -> b,
Sgrt [c"2] ->¢c,
ar2+b"2->c”2y //7Sinplify

out [2]
Since 9 and r are clearly positive we can square each of them and compare the squared values
for equality.

In[3]: r2"2 // Expand

This is clearly the same as 2.

Inf[4]: r = (a+b-c) /2
Expand[r~2] /. b*"2->c”2-a”2 // Expand

a
out[4] —5— - —5— - —5— + 75—

shoulder.nb

Coordinates of Shoulder Point

Exploration

Show that the coordinates of the shoulder point of a conic arc with control points Py(xo,yo),
Pa(za,ya) and Py(x1,y1) and projective discriminant p are given by

(v +p(xa —2m),ym + p(Ya — ym))
where Pys(xar, yar) is the midpoint of the conic arc’s chord and has coordinates
To + 21

ry = ———— and yM:M
2 2

Approach

Create the conic arc and construct the point at parameter ¢ = 1/2.

Solution

Create the conic arc.

In[1]: O ear [x0, y0, XA, yA, x1, y1, pl;
cal = Coni cArc2D[{x0, y0}, {xXA, yA}, {x1, yi}, pl;

Find the point at parameter ¢t = 1/2.
In(2]: ptl=Point2D[cal[l/2]] //Sinplify
out [2] Poi ntZD[{% (X0 -px0+x1-pxl+2pxA), % (yO-py0+yl-pyl+2pyA)}]

This is the same as the specified point, when simplified.

785

786 shoulder.nb

In[3]: pt2 = Point2D[
(X0 +x1) /2 + p (XA - (x0+x1) /2),
(YO+y1) /2 + p (YA - (yO+yl)/2)] //Sinplify

1

out [3] Poi ntZD[{7 (X0 -px0+x1-pxl+2pxA), % (yO-pyO+yl-pyl+2pyA)}]

In[4]: SameQ[pt1l, pt2]

out [4] True

stewart.nb

Stewart’s Theorem

Exploration

m D n
AB=c

Show that for any AABC' as shown in the figure the relationship between the lengths of the
labeled line segments is given by

a*m + b*n = c(d® + mn).

Approach

Without loss of generality, place the triangle in a convenient position and use the distance
formula repeatedly to verify the relationship.

Solution

Create points A, B, C' and D in a convenient position.

In[1]: Clear[c, m X, YI;
pt A = Poi nt 2D[{0, 0}];
pt B = Poi nt 2D[{c, 0}1;
pt C = Poi nt 2D[{X, Y}1;
pt D= Poi nt 2D[{m 0}];

787

788

stewart.nb

Compute the distances between the points.

In(2]: a = Di stance2D[ptB, ptC];
b = Di st ance2D[pt A, ptC];
d = Di stance2D[pt C, ptDj;

Verify that the relationship is an identity.

In[3]: a”"2*m+b"2xn-c* (d*2+mxn) /.

out[3] O

n->c-m// Expand

tancirl.nb

Circle Tangent to Circle, Given Center
Exploration
Show that the radii of the two circles centered at (hi, k1) and tangent to the circle
(2= h2)* + (y — ka)* =13
are given by
r=|d+ro|

where

d= \/(m — h)® + (k1 — k2)?.

This formula is a special case of TangentCircles2D [{pt| In| cir}, point].

Approach

Fix the center point using the equations h = hy and k = k;. The circles are tangent if

(d=(ra=r)(d = (ra+7))* =0

where d = \/(h1 — h2)2 + (ky — k;g)2. Solve the three equations for 7.

Solution

Solve the three equations.

789

790 tancirl.nb

n[1]: Cear [h, hl, k, k1, d, r, r27;
ansl = Sol ve[{h == hl &&
k == k1,
dA2-(r2-r)"2) %« (d"2-(r2+r)"2) ==0},
{h, k, ry1 /7/Sinplify
out(1] {{h-hl, k-kl, r - -d-r2}, {h-hl, k-kl, r -d-r2},
{th-hl, k-kl, r - -d+r2}, {h->hl, k>Kkl, r -d+r2}}

Assuming d > 0 and ro > 0: (1) r = —d — ry is always negative, hence invalid; (2) r = d — ro
is positive if d > rq, i.e. (h1, k1) is outside circle ¢g; (3) r = —d + ro is positive if d < ro, i.e.
(h1, k1) is inside circle co; and (4) r = d + ro is always positive and valid.

tancir2.nb

Circle Tangent to Circle, Center on Circle, Radius

Exploration

Show that the centers (h, k) of the two circles passing through the point (z1,y1) with center
on the circle 22 4+ y? = 1 and radius r = 1 are given by

2 2d1 ’ 2 2d1

(h,k)—(ﬂiyl 1=di n “V“_d%)

where dy = (/2% + y?. This is a special case of TangentCircles2D[{obj}, in| cir, r], where
the object is a point.

Approach

The radius is given, r = 1, so the center point (h,k) needs to be found. The equation
(x1 — h)2 + (y1 — k)2 = 1 is formed noting that the given point is on the circle. The equation
h? + k? =1 is formed noting that the center is on this circle. Solve two equations in two
unknowns.

Solution

Solve the two equations.

791

792 tancir2.nb

n[1]: Cear [h, k, x1, y1, d17;
ansl =Solve[{(x1-h)"2+ (yl-k)*2==1, h"2+k"2==1},
th, k¥y1 77, {
X172 +y17r2 ->d1”2} // Full Sinplify

d1® -yl (x12y1+y1®+/-x1% (-4 +x1% +y1%) (x1% +y1%))

Oout [1] {{h -

2d12x1 '
Ko x12y1 +y1% +/-x1? (-4 + x1% + y1%) (x1% +y1?))
2d1? '
(ho d1* -yl (x12y1+y1® - +/-x1% (-4 +x1% + y1%) (x1% +y1?%))
2d12x1 '
Ko x12y1 +y1% - +/-x1? (;;sz12+y12) (x12 +y12) 1

Simplify. Without loss of generality, assume all the point coordinates are positive.

In[2]: Clear [El];
ans2 =ansl //. {
X172 %yl +yl”"3 ->ylxdl”2,
X172 +y1h2 > d1n2,
Sqrt [d172+E1_] ->dl«Sqrt [El],
Sqrt [x1"2%E1_] ->x1%Sqrt [EL]1} // FullSinplify

d1® - +/4 -d1? x1y1-d1y1? V4 -di1? x1 +dlyl

outt2] {{h- 2dix1 ke 2dl b
h d1® + /4 - d1% x1y1 -d1y1? " V4 -d1% x1+dly1l
{h- 2dIx1 PR 2d1 H

In[3]: ans3 =ans2 //. {
d173 -dl+y1r2 -> dls (d172 -y172),
d172 -y172 -5 x172}

d1x1? -4 -d1? x1y1 V4 -d1? x1+d1yl
outts1 {{h- 2dix1 ke 2d1 5
o d1x1%+v4-d1% x1yl V4 -d1% x1 +dlyl
{h- 2dix1 n R 2dl H
In[4]: ans4 = Map[Apart, ans3, 3]
x1 V4-di2y1 V4 -di1? x1 y1
outtal {{hoF - —5gr ko —ga 3 h
x1 V4a-d1? y1 Va—di? x1 oyl
thoZ—g k> —za 2!

tancir3.nb

Circle Tangent to Two Lines, Radius
Exploration
Show that the centers (h, k) of the four circles tangent to the perpendicular lines
Ajx+ Biy=0 and — Bz + A1y=20
with radius r = 1 are given by
(A1 — B1, A1 + By),

(A1 + B1,— A1 + By),

(=A; — B1, Ay — By),

(=A1+ B1,—A1 — By).

Assume that the two lines are normalized, A? + B? = 1.

Approach
A circle (z — h)® + (y — k) = 7% tangent to a line Az + By + C = 0 implies that
(A% + B?)1? = (Ah+ Bk + C)*

giving two equations. The fixed radius 7 = 1 is a third equation. Solve three equations in
three unknowns.

793

794 tancir3.nb

Solution

Solve the three equations.

In[1]: Clear[r, h, k, Al, Bl];
ansl =Solve[{r"2 == (Alxh+Blxk)"2,
rA2==(-Blxh+Alxk)"2,

r==1},
{h, k, r}1]
_AL-B1 Al - BL Al - BL Al + Bl
out [1] h- - , k> - , r->1!, {h-- , k> - ,r -1},
welt) {{he g Ko e T e A Y
_AL +B1 _AL-B1 Al + Bl _Al +B1
h- - , - , r->1t, {h-- , k> - ,r-1
themzme o mzme "W e < me Y

Simplify.

In[2]: ans2 =ansl //. A1"2+B1"2 ->1

out(2] {{h-A1+Bl, k--A1+B1, r -1}, {h--A1+B1, k--A1-B1, r -1},
{h-A1-Bl, k-AL+Bl, r -1}, {h--A1-Bl, k-A1-B1, r - 1}}

tancir4.nb

Circle Through Two Points, Center on Circle

Exploration

Show that the radii of the two circles passing through the points (0, a) and (0, —a) with centers

on the circle 22 4+ y? = r% are both given by

r=1/a?+r3.

This is a special case of TangentCircles2D[{obj1, obja}, line| circle] where the two objects
are points.

Approach

Two equations can be formed using the fact that points (0,a) and (0, —a) are on the circle.
A third equation can be formed since the center is on a given circle. Solve three equations in
three unknowns.

Solution

Solve three equations in three unknowns. The solutions with negative radii are invalid and
discarded.

795

796

tancir4.nb

n[1]: Cear [h, k, r1;
ansl=Solve[{(0-h)*"2+ (a-k)"2==r"2,
(0-h)"2+ (-a-k)y"2==r"2,
h"2 + kN2 ==12"2},
th, k, r}1]

r »7\/02+r22720x+x2+y2, h--r2, k-0},

raf\/cz+r2272cx+x2+y2, h-r2, k-0},

{
{
{r—>\/c2+r22—20x+x2+y2, h--r2, k—>0},
{

rA\/02+r2272cx+x2+y2, h->r2, k-0}}

tancirb.nb

Circle Tangent to Three Lines

Exploration

Show that the radii of the four circles tangent to the lines x = 0, y = 0 and Ax + By + C = 0,
are given by

B c
"Tllxaxc

taking all four combinations of signs and assuming that the lines are normalized. This is a
special case of TangentCircles2D[{obj1, obja, objs}] where all three of the objects are lines.

Approach
A line az + by + ¢ = 0 is tangent to a circle (z — h)? + (y — k)* = r? if the equation
(a® + %) r* = (ah + bk +)?

holds. Form three equations in three unknowns from this equation and solve.

Solution

Solve three equations in three unknowns.

In[1]: Cear[r, h, k, Al, Bl, Cl];
ansl =Solve[{r"2==h"2,

rn2 ==k"2,
r"2==(Alxh+Blxk+Cl)"2},
th, k r}] /.

{AL72 +B172 -> 1};

Extract the value of 7.

797

798

tancirb.nb

In[2]: ans2 =Map[(r /. #)& ansl]

out (2] Cl Cl Cl Cl Cl
¢ {7—1+A1—B1’ “1+A1-Bl' 1+Al-Bl' 1+A1-Bl' -1+Al+BIl’
Cl Cl Cl

-1+Al+Bl’ 1+Al+BIl’ 1+A1+Bl}

Put all the negative signs in the denominator.

In[3]: Cear [El];
ans3 =ans2 //. Times[-1, Power [E1l_, -1], Cl1]:>
Ti mes [Power [Expand[-E1], -1], Cl]

out (3] Cl Cl Cl Cl Cl
¢ {l—Al+Bl’ -1+A1-B1’ -1-A1+B1’ 1+A1-Bl1' 1-Al-Bl1’
Cl Cl Cl

-1+A1+B1’ -1-Al-Bl’ 1+A1+Bl}

Change all the minus signs to positive.

In[4]: ans4 =ans3 //. Times[Power [Plus[-1, E1__], -1], C1]: >
Ti mes [Power [Pl us[1+El], -1], -Cl1]

out [4] Cl Cl Cl Cl Cl
¢ {l—Al+Bl'7l+Al—Bl’71—A1+Bl' 1+A1-B1'" 1-Al-B1"’
Cl Cl Cl

"1+A1+B1' 1-Al-Bl’ 1+A1+Bl}

Take the absolute value and return only the unique terms.

In[5]: Union[Abs[ans4]]

Cl Cl Cl Cl

out (5] {Abs]], Abs|], Abs|

1-Al-B1 1+Al-B1 l—A1+Bl}’Abs[l+Al+Bl

I}

tancirpt.nb

Tangency Point on a Circle

Exploration

Show that if a line Az 4+ By + C = 0 is tangent to a circle (z — h)* + (y — k)> = 72 then the
coordinates of the point of tangency are

b Ar? b Br?
Ah+ Bk+C’ Ah+Bk+C)’

Approach

The pole (point) of the line is the point of tangency.

Solution

Create the line, circle and pole point. This result was computed using Mathematica Version
3.0.1. Version 4.0 computes a different result that is algebraically equivalent. Both versions
produce the same final step.

1n[1]: Cear [Al, B1, C1, h, k, r1;
pl = Poi nt 2D[
|1 =Line2D[Al, B1, Cl1],
cl=Circle2D[{h, k}, r]1] //Sinmplify

Clh+Blhk+Al (h2-r2) Clk+Alhk+Bl(k2—r2)H

out 1] Poi nt 2D Cl-ATh:BIK ' Cl- AR+ BIK

Simplify to the desired form.

In[2]: Map[Apart, pl]

Alr? K Blr2 }
" CI+Alh+BIk’ 7C1+A1h+Blk}

out [2] Point2D[{h

799

tetra.nb

Area of a Tetrahedron’s Base

Exploration
A tetrahedron is a three-dimensional geometric object bounded by four triangular faces. Given

a tetrahedron with vertices O(0,0,0), A(a,0,0), B(0,b,0) and C(0,0,c) show that the areas
of the triangular faces are related by the equation

(Aapc)® = (Asos)? + (Aaoc)’ + (Apoc)?

where A, is the area of the triangle whose vertices are z, y and z. Note the similarity to
the Pythagorean Theorem for right triangles.

Approach

Compute the area of AABC using Heron’s formula and compare it to the areas of the other
triangles.

Solution
Compute the semi-perimeter, s, of AABC.

In[1]: O ear [AB, AC, BC];
s = (AB+AC+BC) /2

out [1] % (AB + AC + BC)

Compute the areas of AABC using Heron’s formula. Replace the lengths of each side by
expressions in a, b and ¢, the coordinates on the axes.

801

802

tetra.nb

n[2]: Cear[a, b, cI;
Al = Expand[s (s -AB) (s-AC) (s-BC)] //. {
ABN2 ->a”2 +b"2, ABMN -> (a”"2+b"2)"2,
ACN2 ->a”2+c"2, ACN -> (ah2+C"N2)N2,
BCr2 ->b”"2+c”™2, BC"4 -> (b"2+cN2)N2}

i (a2+c2)2+ 1 (a2+b2) (b2+cz) +

out [2] 7% (a2+b2)2+% (a? +b?) (a?+c?) - 16 T
1 2 2 2. .2 1 2 2,2
g(a+c)(b “C%) - 15 (b% +c%)

Replace certain expressions with the areas of the triangles involved.

In[3]: A2 = Expand[Al] //. {
ar2xb"2 -> (2 Area[AOB]) "2,
a”"2%xc”™2-> (2 Area[AOC]) " 2,
br2xc”2 -> (2 Area[BOC]) "2}

out[3] Area[AOB]? + Area[AOC]? + Ar ea[BOC]?

tncirtri.nb

Circles Tangent to an Isosceles Triangle

Exploration

A circle is inscribed in an isosceles triangle with sides a, a and 2b in length. A second, smaller
circle is inscribed tangent to the first circle and to the equal sides of the triangle. Show that
the radius of the second circle is

(a—b)°

r=by |
(a+b)

Assume that a > b.

Approach

Construct an isosceles triangle whose sides are the given lengths. Construct the circle inscribed
in the triangle. The point of tangency between the first and second circle is at the parameter
6 = 7/2 on the first circle. Construct a second triangle from the equal-length sides and a line
tangent to the first circle at the tangency point. The second circle can then be inscribed inside
the second triangle. Find and simplify the radius of the second inscribed circle.

Solution
Construct the isosceles triangle with the proper side lengths.

n[1]: O ear [a, b];
T1 =Triangl e2D[{a, a, 2b}] // FullSinplify

Construct the first inscribed circle and simplify the result.

803

804 tncirtri.nb

In[2]: O ear [El, E2];
Cl = (Circle2D[T1, Inscribed2D] // FullSinplify) //.
{Sqrt [a”~2] ->a, Sqrt [b"2] -> D,
Sgrt [El_+«b”"2/E2_]1 ->b*Sqrt [E1/E2]} // FullSinmplify

b +/az - b2 } bJ_l+ 2a }

out (2] Circle2D[{b,

a+b

Construct the point of tangency between the first circle and the second.

In(3]: P1=Point 2D[CL[Pi /2]] //FullSinplify

N(@-b) (a+b) 4

. 2a
out [3] Poi ntZD[{b, b a7 b 2. b

H

Construct the second triangle. The results are complicated, so we define and use some sim-
plification rules that are applied to the result.

In[4]: rulesl = {
-1+2a/(a+b) -> (a-b)/ (a+bh),
Sgrt[(a-b) (a+b)]/ (a+b) ->Sart[(a-b)]/Sart[(a+h)],
Sgrt[(a-b)/ (a+b)] ->Sqgrt[a-b]/Sqgrt [a+Db],
l/Sgrt[a”"2-b”"2] ->1/(Sqrt[a-b]*=Sgrt[a+b]),
Sqrt [a”2-b”2] ->Sqrt [a-b] *Sqrt [a+Db]};
L1 = Li ne2D[Segnent 2D[T1, 2, 311 // Full Sinplify;
L2 = Li ne2D[Segnent 2D[T1, 1, 31] // FullSinplify;
T2 = Triangl e2D[L1, L2, Line2D[P1, 0]1;
T2=(T2 //. rulesl //Sinplify) //. rulesl

2ab 2-/a-bb 2 b2 2Jz;1fbbH

out (4] Triangle2D[{b, vJa-b +a+b}, { ab’ yalh oo 2 b Vaib

Construct the circle inscribed in the second triangle and find the radius. The results are
complicated, so we define and use some simplification rules that are applied to the result.

In[5]: rules2 = {
Sqrt [a”"2% (a-b)*2/ (a+b)"2] ->a (a-b) / (a+h),
Sgrt[(a-b)*2xb”"2/ (a+b)"2] ->b (a-b) / (a+b),
Sgrt[(a-b)*3%xb”"2/ (a+b)"3] ->bxSqrt[(a-b)*3/ (a+b)"31};
R2 = ((Radi us2D[C2 = Ci rcl e2D[T2, Inscribed2D1] // Sinplify) //.
rules2 7/ Simplify) //. rules2

Mathematica Version 3.0.1 produces the desired result in the previous step. Version 4.0 needs
the following additional step to produce the desired result. This step doesn’t change the
expression generated by Version 3.0.1.

tncirtri.nb 805

mf6]: R2 //. {
Sqrt [El_=«b”2/ (E2_)"3] ->b+Sqrt [E1l/E2"3],
Sqgrt [E1_]:> Sqrt [Factor [E1]1]1}

(a-h)®
out [6] b\/(a+b)3

Discussion

This is the plot of a numerical example with ¢ = 10 and b = 3.5.

n[7]: Sketch2D[{T1, C1, P1, T2, C2} /. {a->10, b ->3.5}1;

0

01234567

This is another example with a = 10 and b = 6.

Inrs8]: Sketch2D[{T1, Cl, P1, T2, C2} /. {a->10, b ->6}1;

8

6
4
2
0

0O 2 4 6 8 10 12

tnincir.nb

Construction of Two Related Circles

Exploration

Prove that if OP and OQ are the tangent lines from (0, 0) to the circle
22+ 4+ 292+ 2fy+c=0

then the equation of the circle OPQ is

2+ >+ gz + fy=0.

Approach

Create the circle from the given quadratic and construct the polar (line) of the origin with
respect to the circle. Intersect the polar with the circle to find P and (). Construct a circle
through O, P and @ and find its equation.

Solution
Create the origin point and the circle from the given equation.
In(1]: Clear[g, f, cI;

PO = Poi nt 2D[0, 07;
Cl =Circl e2D[Quadratic2D[1, 0, 1, 2g, 2f, c]] //Sinplify

Construct the polar line.

In(2]: L1 =Line2D[PO, Cl] //Sinplify

out [2] Line2D[g, f, c]

807

808

tnincir.nb

Find the intersection points.

In[3]: pts = Points2D[L1, Cl] // FullSinplify

cg fyc- g et 9yc-]
f2eg?2 fzigz “frigr * Vizeg? H
2 2
Ccg fye-fe cf _gvc“ﬂc‘—gfm
f2+92 Vizigz | f2eg? Viz i g2

out (3] {Poi nt 2D[{

Poi nt 2D[{

Construct the circle through the three points.
In[4]: C2=Circle2D[PO, pts[[1]], pts[[2]]] //FullSinplify
out[4] Crcl eZD[{fg, 7%} % VfZig?]

Convert the circle to an equation.

In[5]: Cear[X, YI;
Equat i on2D[Quadr ati c2D[C2] // Sinplify, {X, y}]

out[5] gx+x2+fy+y2==0

Discussion

Construct the circle related to 2% +y* — 6z — 4y + 12 = 0.

1n[6]: PO = Poi nt 2D[0, 01;

Cl=Circle2D[Quadrati c2D[x"2+y"2-6Xx -4y +12==0, {X, Y}11;

L1 = Tangent Li nes2D[PO, Cl1];

P1 = Poi nt 2D[Fi rst [L1], Cl];

P2 = Poi nt 2D[Last [L1], C1];

C2 =Circl e2D[Quadrati c2D[x"2 +y"2-3x-2%y ==0, {X, Y}11;
Sket ch2D[{PO, C1, L1, P1, P2, C2}1;

4

2

triallen.nb

Triangle Altitude Length

Exploration

Show that the length, L, of a triangle’s altitude (from vertex V3 to side s1) is given by

L2 — S$283 1-— i
(s2 + s3)2

where s1, so and s3 are the lengths of the triangle’s sides.

Approach

Construct a triangle in a convenient, yet sufficiently general position. Then construct the
triangle’s altitude. Show that the length of the altitude is given by the expression. Since the
length of each triangle side, s,,, is positive, v/$2 = sy,.

Solution

Construct a triangle with sides s1, s and s3. By default, the triangle’s first vertex is located
at the origin.

In[1]: Cear [sl, s2, s3, El];
T1 =Triangl e2D[{s1, s2, s3}] /. Sqrt[-El1_/s3"2] ->Sqrt [-E1] /s3

out[1] Triangl e2D[{0, 0}, {s3, 0},

-s1%2 4522 +53? ~(s1-s2-53) (S1+52-53) (S1-52+53) (s1+s2+s3)]
{ 2s3 ! 2s3 }

The length of the altitude is the distance from the triangle’s third vertex to the x-axis. This re-

sult was computed using Mathematica Version 3.0.1. Version 4.0 computes a slightly different
result that is algebraically equivalent.

809

810 triallen.nb

In[2]: Lx =Line2D[0, 1, 0];
al titude = Di stance2D[Poi nt 2D[T1, 3], Lx] /. Sqrt[El_/s3”2] ->Sqrt [E1l] /s3

(s1+s2-53) (s1-52+s3) (-s1+s2+s3) (s1+s2+s3)

out [2] 5353

trialt.nb

Altitude of a Triangle

Exploration

The altitude from vertex A of AABC' is a line segment from A perpendicular to side BC' (or
the extension of BC'). Show that the equation of the line containing the altitude from A is

(3 —@2) 2+ (y3 —y2) y — v1(x3 — 2) —y1(ys —y2) =0

where the coordinates of the vertices are A(z1,y1), B(x2,y2) and C(zs3,ys).

Approach

Construct the altitude and show that the line containing it is the line given.

Solution

Construct the line BC.

In[1]: O ear [X2, y2, x3, y3];
BC = Li ne2D[{x2, y2}, {x3, y3}];

Construct the altitude from A perpendicular to BC.

n[2]: O ear [x1, y1];
alt = Li ne2D[Poi nt 2D[x1, y1], BC]

out [2] Line2D[-x2 +x3, -y2+y3, -x1 (-x2 +x3) +y1l (y2-y3)]
Convert the line to an equation.

In[3]: Clear[Xx, yI;
Equation2D[al t, {x, Yy}]

out[3] X (-X2+x3) -=X1 (-x2 +x3) +yl (y2-y3) +y (-y2+y3) ==

811

812

trialt.nb

Discussion

This defines a new function that constructs all the lines underlying the altitudes of a triangle.

In[4]: Al titudes2D[Tri angl e2D[{x1_
{Al titude$2D[{x1, y1}, {x2, y2}, {x3, y3}],
Al titude$2D[{x2, y2}, {x3, y3}, {x1, yl1}1,
Al titude$2D[{x3, y3}, {x1, yl1}, {x2, y2}1};

Al titude$2D[{x1_, y1_}, {x2_, y2_}, {x3_, y3_}]:=

Li ne2D[x3 -x2, y3-y2, -x1 (x3-x2) -yl (y3-y2)1;

This is the plot of a numerical example.
In[5]: T1 =Triangl e2D[{-1, -2}, {-2, 3}, {4, 0}1;

Sket ch2D[{T1, Al titudes2D[T1],
Map [Poi nt 2D, List ee T1]}1;

4

» Y1}, {x2_, y2_}, {x3_, y3_}1]:=

triarea.nb

Area of Triangle Configurations

Exploration

2 St

aQ a

V]_ S3 V2

For the triangle illustrated in the figure, show that the area, A;, associated with the AAS
(angle-angle-side) configuration whose parameters are a1, as and s7 is given by
52 sin(az) sin(a; + as)

2sin(a;) '

A=

Show that the area, As, associated with the ASA (angle-side-angle) configuration whose pa-
rameters are aq, s3 and ag is given by

53 sin(ay) sin(az)

2sin(a; + az)

Ay =

Show that the area, As, associated with the SAS (side-angle-side) configuration whose para-
meters are si, as and sg is given by

s183sin(ag)

Az = 5

Approach

Construct the triangle associated with each configuration, and then compute the expression
for the area and simplify.

813

814 triarea.nb

Solution

Construct the triangle for the AAS configuration.

In[1]: Cear[al, a2, a3, sl1, s2, s3];
T1 = (Triangl e2D[{{s1, Null, Null}, {al, a2, Null3}3}1 //FullSinplify) //.
Sgrt [s172%Sin[a2]"2] ->s1%Sin[a2]

out[1] Triangl e2D[{0, 0}, {slCsclal] Sin[al+a2], 0},
{slCot [al] Sin[a2], slSin[a2]}]

Compute the area for the AAS configuration and simplify. The sine function is introduced to
prevent simplification back to the cosecant form.

In[2]: Al = Area2D[T1] //. Csclal] ->1/sine[al]

s1?Sinfa2] Sin[al +a2]

out (2] 2sinefal]

Construct the triangle for the ASA configuration.

n[3]: Cear [al, a2, a3, sl1, s2, s3];
T2 = (Triangl e2D[{{Nul |, Null, s3}, {al, a2, Null}}1 //FullSinplify) //.
Sqrt [s3"2xCsc[al +a2]"2*Sin[al]"2*Sin[a2]"2] ->
s3xCsc[al +a2] *Sin[al] *Sin[s2]

out [3] Triangl e2D[{0, 0}, {s3, 0},
{s3Cos[al] Csc[al +a2] Sin[a2], s3Csc[al+a2] Sin[al] Sin[s2]}]

Compute the area for the ASA configuration and simplify. The sine function is transformed
to lower case to prevent simplification back to the cosecant form.

In[4]: A2 = Area2D[T2] //. Csc[al+a2] ->1/sine[al +a2]

s32Sinfal] Sin[s2]

out [4] 2sinefal +a2]

Construct the triangle for the SAS configuration.
In[5]: Clear[al, a2, a3, sl1, s2, s3];
T3 = (Triangl e2D[{{s1, Null, s3}, {Null, a2, Null}}] 7/ FullSinmplify) //.
Sgrt [al”2xSin[a2]"2] ->s1%Sin[a2]

out (5] Triangle2D[{0, 0}, {s3, 0}, {s3-sl1Cos[a2], \/s1®Sin[a2]®}]

Compute the area for the SAS configuration and simplify.
In[6]: A3 = Area2D[T3] //. Sqrt [s1l”2xSin[a2]”2] ->slxSin[a2]

out [6] % s1s3Sin[a2]

triarlns.nb

Area of Triangle Bounded by Lines

Exploration

Show that the area of the triangle bounded by the lines
y=mir+c, y=moxr+cy and x =0

is given by

PR c)?

2 (m1 — m2)2

Approach

Create the triangle and compute the area.

Solution

Create the triangle.

n[1]: Oear [, c1, n2, c2];
t1=Triangl e2D[Li ne2D[ml., -1, c1],
Li ne2D[n2, -1, c2],
Li ne2D[1, O, 0]1]

cl-c2 7c2ml+cln2}

out (1] Triangl e2D[{ ——, e

, {0, c1}, {0, c2}]

Get the vertex points of the triangle.

Inr2]: {pl, p2, p3} = Map[Poi nt2D[t 1, #1& {1, 2, 3}]

cl-c2 -c2m +clnk

out (2] {Poi nt 2D[{ ——-, — 1 TD

}], Point2D[{0, c1}], Point2D[{0, c2}]}

815

816 triarlns.nb

Compute the area of the triangle using Heron’s formula.

In[3]: Clear[S];
a = Di stance2D[pl, p2];
b = Di st ance2D[p2, p3];
c = Di stance2D[p3, pl];
s=(a+b+c) /2
Al =Sgrt[s (s-a) (s-b) (s-c)] //FullSinplify

1 [(e1-c2)*
oner ?{W

Since (¢ — 02)2 is positive, the formula simplifies to the desired result.

Tnf4]: AL /. Sqrt [El_~4/E2_A2] ->
E172/Sqrt [E272]

(cl-c2)?

out [4] =
2V (ml -n2)?

tricent.nb

Centroid of a Triangle

Exploration
v P(a, b)
5
TT/ ‘Q"
—
Qd, 00 x
l——— X2 — X] ————

Show that the centroid of a triangle, as illustrated in the figure, is on a line at a distance
y = b/3 from the base of the triangle.

Approach

Place the triangle in a convenient position as shown in the figure. Create equations for the
moments of inertia of infinitesimal areas on either side of the centroid line. Use integration to
find the ordinate of the line.

Solution

Create lines for two sides of the triangle whose vertices are (0,0), (d,0) and (a,b).

817

818 tricent.nb

n(1]: Clear[a, b, dI;
L1 = Li ne2D[{a, b}, {0, 0}1;
L2 = Li ne2D[{a, b}, {d, 0}1;

Construct a horizontal line at a general coordinate, y, which is the height of the centroid.

n(2]: Clear[y];
L = Li ne2D[Poi nt 2D[0, y]1, O1;

The width of the triangle, W is the difference between the abscissa of the intersection points
of the sides and the horizontal line.

In[3]: W= XCoor di nat e2D[Poi nt 2D[L, L2]] -
XCoor di nat e2D[Poi nt 2D[L, L1]] // Sinplify

dy

out[3] d- b

The moments of inertia on each side of the horizontal line must be equal.

In[4]: Cl ear [yB];
Sol ve[l ntegrate[Ws« (yB-y), {y, 0, yB}] ==
Integrate[Wx (y -yB), {y, yB, b}1, yB]
out [4] {{yBa%}}

Discussion

Notice that the centroid only depends on the height of the triangle, b. The centroid’s height
does not depend on the horizontal location of the apex point, a, nor on the width of the base,
d.

tricev.nb

Triangle Cevian Lengths

Exploration

Prove that the length of the altitude, hi, from vertex V; of a triangle to the opposite side of
the triangle (whose length is s1) is given by

VPS

281

hi =

where S =1+ 2+ 53, P=(—81+ 82+ 53) (s1 — s2 + 83) (851 + 82 — s3) and s1, s2 and s3
are the lengths of the triangle’s sides. Prove that the length of the median, my, from vertex
V1 is given by

1
my = 5\/—8%4—2(83 + s2).

Prove that the length of the angle bisector, by, from vertex V; is given by

by — \/58283(—51 +82—|—83)
e S2 + S3 '

Also show that the formulas for the lengths of the cevians from vertices Vo and V3 can be
found by cyclic permutation of the subscripts given in the formulas above.

Approach

Construct a triangle with the given side lengths. Construct the associated cevians (altitude,
median and angle bisector) and compute and simplify the expressions for their lengths.

819

820

tricev.nb

Solution

Construct a triangle with the given side lengths and simplify.

n[1]: Cear[s, sl, s2, s3, S, P, el];
T= (Triangl e2D[{s1, s2, s3}] // FullSinplify) /.
Sqrt [-el_/s_Synbol 2] ->Sqrt [-el] /s

out[1] Triangl e2D[{0, 0}, {s3, 0},

-s12 + 522 + 532 ~(s1-s2-s3) (s1+s2-s3) (sL-s2+s3) (s1+s2+s3)]
{ 2s3 ! 2s3 }

The altitude of a triangle is the cevian perpendicular to the opposite side. These functions
return the length of the altitude (the height) for each vertex, 1, 2 or 3. The perpendicular is

found by projecting the vertex on the line containing the opposite side.

n[2]: Hei ght2D[Tri angl e2D[pl: {x1_, y1_ 3}, p2: {x2_, y2_}, p3: {x3_, y3_}1,
n_/, (n==2 1| n==3)]:=
Hei ght 2D[Tri angl e2D[p2, p3, pl], n-1];

1n[3]: Hei ght 2D[Tri angl e2D[pl: {x1_, y1_3}, p2: {x2_, y2_}, p3: {x3_, y3_}1, 11:=
Di st ance2D[pl, Coor di nat es2D[Poi nt 2D[p1], Li ne2D[p2, p3111];

Compute the length of each altitude (the height) using the functions defined above and sim-

plify.

Inf4]: (Map[Hei ght 2D[T, #1& {1, 2, 3}] //FullSinplify) //.
{Sqrt [-el_/s_Synbol 2] ->Sqrt [-el] /s,
Sqrt [el_/s_Synbol ~2] ->Sqrt [el] /s,
sl1+s2+s3->S,
(s1-s2-s3) (s1+s2-s3) (s1l-s2+s3) ->-P,
(-s1+s2-s3) (s1+s2-53) (-s1+s2+s3) ->-P,
(sl+s2-s3) (s1-s2+s3) (-s1+s2+s3) ->P}

VPS +PS +/PS

2s1l’ 2s2 ' 2s3 }

out [4] {

The median of a triangle is the cevian connecting a vertex to the midpoint of the opposite

side. These functions return the length of the median for each vertex, 1, 2 or 3.

In(5]: Medi an2D[Tri angl e2D[pl: {x1_, y1_}, p2: {x2_, y2_}, p3: {x3_, y3_}1,
n_/; (n==2 || n==3)]:=
Medi an2D[Tri angl e2D[p2, p3, pl], n-17;

1n[6]: Medi an2D[Tri angl e2D[pl: {x1_, y1 3}, p2: {x2_, y2_}, p3: {x3_, y3_}1, 11:=
Di stance2D[pl, (p2+p3)/2];

Compute the length of each median using the functions defined above and simplify.

In[7]: Map[Medi an2D[T, #]& {1, 2, 3}] //FullSinplify

out [7] {% o812 12 (s22 4 532) %Jz s12 522 12532, %Jz (s12 +522) - 53)

tricev.nb 821

The angle bisector of a triangle is the cevian bisecting the angle of the vertex. These functions
return the length of the angle bisector for each vertex, 1, 2 or 3. Note that the angle bisector
must pass through the center of the inscribed circle.

In[8]: Bisector2D[Triangl e2D[pl: {x1_, y1_}, p2: {x2_, y2_}, p3: {x3_, y3_1}1,
n_/;, (n==21]| n==3)]:=
Bi sect or 2D[Tri angl e2D[p2, p3, pl], n-17;

In[9]: Bisector2D[T: Triangl e2D[pl: {x1_, y1_ 3}, p2: {x2_, y2_}, p3: {x3_, y3_}1, 11:=
Modul e[{pt, I n},
pt = Coor di nat es2D[Ci rcl e2D[T, I nscribed2D]];
I'n =Line2D[pl, pt];
Di st ance2D[pl, Coordi nates2D[I n, Li ne2D[p2, p3]1]1] 1;

Compute the length of each angle bisector using the functions defined above and simplify.

In[10]: (((Map[Bisector2D[T, #1& {1, 2, 3}]1 //FullSinmplify) //.
{Sqrt [s_Synbol 2] ->s} //Full Sinplify) /.
(1-s3722/(sl+s2)72):>Factor[(sl+s2)"2-s3"2]/(sl+s2)"2) //.
{Sqrt [el_/ (s1l_Synbol +s2_Synbol)~2]:>Sqgrt [el] / (sl +s2),
(sl+s2+s3) ->S}

Ss2s3 (-s1+s2+s3) Ss1s3 (sl-s2+s3) Ssl1s2 (s1l+s2-s3) }

out 107 { s2+s3 ' s1+s3 ' s1+s2

triconn.nb

Concurrent Triangle Altitudes

Exploration

Show that the three altitudes of any AABC are concurrent in a single point (z,y) whose
coordinates are given by

/ /
z=2 and Y= LA
D D
where
a' = — (Y1 —v2) ($1$2 + y%) + (y1 — y3) ($1$3 + y%) — (Y2 —y3) ($2$3 + yf)
Y =+ (z1 — 22) (y1y2 + x%) — (21 — 3) (y1y3 + x%) + (w2 — x3) (y2y3 + xf)
and
1 oy 1
D = To Y2 1
xz ys 1

and the coordinates of the vertices are A(z1,y1), B(2z2,y2) and C(x3,y3). This point is called
the orthocenter of the triangle.

Approach

From the exploration trialt.nb the altitude from vertex A of AABC to side BC (or the
extension of BC) is the line

(3 —@2) x4+ (y3 —y2) y — v1(x3 — 2) —y1(ys —y2) =0

where the coordinates of the vertices are A(z1,y1), B(x2,y2) and C(z3,ys). Use this formula
to show that the three altitudes are concurrent and intersect one pair of the altitudes to find
the coordinates of the orthocenter.

823

824 triconn.nb

Solution

Define a function for constructing the altitude line of a triangle (the altitude from the first

vertex).

In[1]: Altitude2D[Triangl e2D[{x1_, y1_ 3}, {x2_, y2_}, {x3_, y3_}11:=
Li ne2D[x3 -x2, y3-y2, -x1% (x3-x2) -yl* (y3-y2)]

Define a function for constructing the orthocenter.

1n[2]: Orthocenter2D[Triangl e2D[{x1_, y1_ 3}, {x2_, y2_}, {x3_, y3_}11:=
Modul e[{X1, Y1, D1},
Point2D[X1 /D1, Y1/D1] //. {
X1 ->-(yl-y2) (X1 xx2+y3"2)
+ (Yl-y3) (X1 *x3 +y2"2)
- (y2-y3) (X2*x3+yl"2),
Y1 -> (Xx1-x2) (Yylxy2+x3"2)
- (X1 -x3) (ylxy3 +x2"2)
+ (X2 -x3) (Y2*y3 +x1"2),
D1 -> Det [{{x1, y1, 1}, {x2, y2, 1}, {x3, y3, 1}}1} 1;

Create the three vertex points.

In(3]: Cear [x1, y1, x2, y2, x3, y3];
Al = Poi nt 2D[x1, y11;
Bl = Poi nt 2D[x2, y2];
Cl = Poi nt 2D[x3, y3];

Construct the three altitudes.

In(4]: | nA=Atitude2D[Tri angl e2D[Al, B1, Cl]1;
InB=Altitude2D[Tri angl e2D[B1, C1, Al]l];
InC=Altitude2D[Tri angl e2D[C1, Al, Bl]];

Show that they are concurrent by showing that the determinant of their coefficients is zero.

In[5]: Det [{Li st ee | nA,
Li st ee | nB,
Li st ee | nC}]

out[5] 0

Find the coordinates of the orthocenter by intersecting a pair of altitudes.

In[6]: pl = Poi nt 2D[l nA, | nB]

out (6] Poi nt 2D]
{ (-x2 (x1-x3) -y2 (y1-y3)) (-y2+y3) - (y1-y3) (-x1 (-x2+x3) -yl (-y2+y3))
(-x2 +x3) (yl-y3) - (x1-x3) (-y2+y3)
(- (-Xx2 +x3) (-X2 (X1 -x3) -y2 (yl-y3)) +
(X1 -x3) (-x1 (-x2+x3) -yl (-y2+y3))) /
((-x2+x3) (y1-y3) - (x1-x3) (-y2+y3))}]

triconn.nb 825

Compute the orthocenter using the formula.

In[7]: p2 = Orthocenter2D[Tri angl e2D[Al, Bl, Cl]]

(X1 x3+y2%) (yl-y3) - (x2x3 +y12) (y2-y3) - (yl-y2) (x1x2+y3?)
-X2y1l+x3yl+x1y2-x3y2-x1y3+x2y3 ’
(X1 -x2) (x82+yly2) - (x1-x3) (x22+yly3) + (x2-x3) (x1%2 +y2y3)]
-x2y1l+x3yl+x1ly2-x3y2-x1y3+x2y3 }

out (7] Poi nt 2D[{

The z- and y-coordinates of the intersection point and the orthocenter are identical.

n[8]: {XCoordi nat e2D[pl] - XCoor di nat e2D[p2],
YCoor di nat e2D[p1] - YCoor di nat e2D[p2]} // Full Sinplify

out (8] {0, 0}

Discussion
This is the plot of a numerical example.

In[9]: Sketch2D[{Tri angl e2D[Al1, Bl1, Cl], I nA InB, InC p2} //.
{x1->-1, yl->-2, x2->4, y2->0, x3->-2, y3 ->3}1;

tridist.nb

Hypotenuse Midpoint Distance

Exploration

Prove that the midpoint of the hypotenuse of a right triangle is equidistant from the vertices.

Approach

Without loss of generality, create a triangle in a convenient position with the right angle
vertex at the origin and the other two vertices at (a,0) and (0,). Create the midpoint of the
hypotenuse and then examine the distance from the midpoint to each of the vertices.

Solution

Create the points defining the triangle’s vertices.
In[1]: Cear [a, b];
pl = Poi nt 2D[0, 0];

p2 = Poi nt 2D[a, 0];
p3 = Poi nt 2D[0, b];

Construct the midpoint of the hypotenuse.
In(2]: P=Point2D[p2, p3]

out (2] Poi ntZDH%, %}}

The distances from the midpoint to the vertices are equal by inspection.

In[3]: Map[Di stance2D[P, #1& {pl, p2, p3}]
2 2 2 2 2 2
et (5 e T)

827

828 tridist.nb

Discussion
This is the plot of a numerical example.

In(4]: Sketch2D[{pl, p2, p3, P,
Segnent 2D[p1, PJ,
Segnent 2D[p2, p3]} /.
{a->3, b->2}71;

[

o o~k 0N

0 0.5 1 1.5 2 2.5 3

trieuler.nb

Euler’s Triangle Formula

Exploration

If T is a triangle, and P and r are the center and radius of the circle inscribed in T', and @
and R are the center and radius of the circle circumscribing 7', show that

d*> = R*-2rR

where d is the distance from P to Q.

Approach

Construct the required geometry using a triangle in a special, but sufficiently general, position.
Show the equation is true by showing that the difference of the left and right side of the
equation is identically zero.

Solution
Construct the required geometry and find symbolic expressions for d, r and R.

In[1]: Cear [a, b];
P1 = Poi nt 2D[0, 07;
P2 = Poi nt 2D[1, 07;
P3 = Poi nt 2D[a, b];
T =Tri angl e2D[P1, P2, P3];
C =Crcle2D[T, Inscribed2Dy;
Cc =Circle2D[T, G rcunscri bed2Dj;
{P, r} = {Point2D[C], Radi us2D[C 1};
{Q R} = {Poi nt2D[Cc], Radi us2D[Cc]};
d = Di stance2D[P, Ql;

829

830 trieuler.nb

In this step we take a slight diversion to show that b + (a —a? - b2)2 = A?B?. We will use
this substitution in a subsequent step. Variables A and B are the lengths of the sides of the
triangle, that is a® + b? = A% and (1 — a)® + % = B2

n[2]: Cear [A, B];

Factor [b"2+ (a-a”2-b"2)"2] //. {
l1-2xa+a™2->(a-1)"2,
(-1l+a)"2+b"2 ->B"2,
ar2+b"2 -> Ar2}

out [2] A B?

The expression d? — (R2 — ZTR) should be zero if the equation d? = R? — 2rR is true, so we
will apply a series of simplifications to show that the expression is identically zero. Notice
throughout expressions of the form v Z2 = Z whenever Z is known to be positive.

In[3]: el=d""2- (R*"2-2xr xR) //. {
ar2+b"2 ->AN2,
l1-2a+a”2+b*2->(1-a)*2+b"2,
(1-a)*"2+b"2->B"2,
Sqrt [AN2] -> A,
Sqrt [BA2] -> B,
br"2+ (a-an2-b"2)"2 -> A*2xB"2}
2
N

A2 B? 1 a+A 2 ja-a%2-b? b
()+
+ +

D2 "2 "17AYB 2D "17AYB

N A2 B2 (-1+3 (1+A+B)) (-A+ % (1+A+B)) (-B+ 1 (1+A+B))
b2 1+A+B

out[3] -

Make substitutions to remove some of the radicals. S is the semi-perimeter of the triangle,
S=(1+4+A+B)/2.

In[4]: C ear [S];
e2=el //. {
1+A+B->2x%S,
Sqrt [A2%xB"2/b"2] -> AxB/b}

(-1+S) (-A:S) (-B+S)
S

A2 B2 1 a+A\2 ja-a2-b2 b AB
o)+)
b

outldl -z * (-3 * 75 56 " 2§

This is the crucial substitution. Using Heron’s formula for the area of a triangle,

Area =/S(S — A) (S — B) (S - C)
(C' =1 in this case) and the standard formula for area,
Area = base x height = 1 x /2 =b/2,

we can eliminate the remaining radical.

trieuler.nb 831

In[5]: e3=e2 //. {
Sqrt[(-1+S) (-A+S) (-B+S) /S] ->Areal/S,
Areal ->b/2}

2 AB

Out [5] - 55

A2 B2 1 a+A\2 ja-a%2-h? b
4b2*(‘7+ 25)*(2D +23)

If the expression is a fraction, we don’t care what value the denominator is, so long as the
numerator is zero.

In[6]: e4 = Nuner at or [Toget her [e3]]

outf6] a?b?+2aAb?+A2b%+b*-2a2b2S-2Ab?S-2b*S+2Ab?BS+a2S?-2a%S%+
ats?+b?2S?-2ab?S?+2a%h?S? +b* S - B2 S?

Repeated expansions and substitutions confirm that the expression is zero and that the original
equation is an identity.

In(7]: Fi xedPoi nt [
(Expand[(# //. {A"2 ->a"2+b"2,
Br"2 -> (1-a)"2+b"2,
S->(1+A+B) /2,
AN4 -> (@a”2+b"2)"2}1) 1) &,
e4]

out[7] 0O

trirad.nb

Triangle Radii

Exploration

Prove that the radius, r, of a circle inscribed in a triangle is given by

where S = s1 + 52+ 53, P =(—s1 + 52+ 83) (51 — s2 + 83) (51 + s2 — s3) and s1, s2 and s3
are the lengths of the triangle’s sides. Furthermore, prove that the radius, R, of the circle
circumscribing the triangle is given by
51828
p o 515253
VPS

Approach

Construct a triangle with the given side lengths. Construct the associated inscribed and
circumscribed circles and examine the radius of these circles.

Solution

Construct the triangle with the given side lengths.

n[1]: Cear[sl, s2, s3, S, P, el, e2];
T = (Triangl e2D[{s1, s2, s3}] //FullSinplify) //.
{Sqrt [-el_/s_Synbol ~2]:>Sqrt [-el] /s}

out[1] Triangl e2D[{0, 0}, {s3, 0},

-s1%2 4522 +53? ~(s1-s2-s3) (S1+52-53) (S1-52+53) (s1+s2+s3)]
{ 2s3 ! 2s3 }

Construct the inscribed circle and compute its radius. Simplify the resulting expression using
appropriate substitutions.

833

834 trirad.nb

In[2]: ((Radi us2D[Ci rcl e2D[T, Inscribed2D]] //FullSinmplify) //.
{Sqrt [s_Synbol ~2] ->s} /.
Sqrt [-el_/e2_]1:>Sqrt [el/Factor [-e2]]) //.
{(s1-s2-53) (s1+s2-5s3) (s1-s2+s3) ->-P,
sl+s2+s3->S}

v

2

out [2]

Construct the circumscribed circle and compute its radius. Simplify the resulting expression
using appropriate substitutions.

In[3]: (Radi us2D[Ci rcl e2D[T, Circunscribed2D]] // FullSinplify) //.
{Sqrt [-s1"2%s2"2%s3"2/el_]1:>s1l%»s2xs3/Sqrt [Factor [-el]],
-(s1-s2-s3) (s1+52-53) (S1-52+s3) (S1+s2+s3) ->PxS}

out 3y S15288

trisides.nb

Triangle Side Lengths from Altitudes

Exploration

Prove that the lengths of a triangle’s sides whose altitudes are of lengths h1, ho and hg are
given by

C2mH, 2hoH
- H ' H
where H1 = hghg, HQ = hlhg and H3 = hlhg, and

 2hyHjy
T H

S1 and s3

52

H = \/(H, + Hy — H3) (H, — Hy + H3) (—H, + Hy + Hs) (H, + Ho + H3).

Approach

Construct a triangle with the formulas given for the side lengths and show that the altitude
lengths are hi, ho and hs.

Solution

Construct the triangle with the given side lengths.

n[1]: O ear [h1l, h2, h3, Hl, H2, H3, H];
T=Triangl e2D[2 * {h1*HL"2, h2«H2"2, h3xH3"2} /H] // Full Sinplify

2 h3 H3? 0) ~h1? H1* + h22 H2* + h32 H3*

out (1] Triangle2D[{0, 0}, { a— b Hh3 12

J h1% HL® + (h22 H2% - h32 H3*)2 - 2 h12 H1* (h22 H2? + h32 HBY) 1]
- H h3Z H3*

Compute the lengths of each altitude (squared), which is the distance from the vertex to the
opposite side.

835

836 trisides.nb

In[2]: altsl={
Di st ance2D[Poi nt 2D[T, 1], Line2D[T, 2, 311”2,
Di st ance2D[Poi nt 2D[T, 2], Line2D[T, 1, 311”2,
Di st ance2D[Poi nt 2D[T, 3], Line2D[T, 1, 21172} //FullSinplify

’

h1% H18 + (h22 H2? — h32 H3%)% — 2 h12 H1* (h22 H2* + h32 Ha%)
out [2] {f

H h1? H1*

_ h1* H1® 4 (h22 H2* - h3? H3%)2 2 h12 H1* (h22 H2* + h32 Ha%)
H h22 H2*

_ h1* H1® 4 (h2? H2* - h3? H3%)2 2 h12 H1* (h22 H2* + h32 H%))
H2 h32 H3*

’

A few substitutions verify that the altitude lengths (squared) are the expected values.

In[3]: alts2 =
altsl //. {HL ->h2+h3, H2 ->h1+h3, H3 ->hl1+h2} //FullSinplify // Factor

out [3] {—%(hlz (h1 h2 -h1h3-h2h3)
(h1h2 +h1h3 -h2h3) (h1h2 -h1h3 +h2h3) (h1h2 +h1h3 +h2h3)),
-5 (h2? (h1h2 -h1h3 -h2h3)
(h1h2 +h1h3 -h2h3) (h1h2 -h1h3 +h2h3) (h1h2 +h1h3 +h2h3)),
7$<h32 (-h1h2 -h1h3 +h2h3) (h1h2 -h1h3+h2h3) (-h1h2+hlh3+h2h3)

(h1h2+h1h3+h2h3))}

Inf[4]: alts3=alts2 //. {h2xh3 ->Hl, hlxh3 ->H2, hlxh2 -> H3}

{_h12 (-HL-H2 + H3) (HL-H2 + H3) (—HL +H2 + H3) (HL + H2 + H3)

out [4] 7 y
h22 (-H1 - H2 + H3) (H1 - H2 + H3) (-H1 + H2 + H3) (H1 + H2 + HB)
_ 2)
h32 (H1 - H2 - H3) (HL + H2 - H3) (HL - H2 + H3) (H1+H2+HS)}
- H

In[5]: altsd4 =alts3 /. {
(HL-H2-H3) (HL+H2-H3) (HL-H2 +H3) (HL+H2 + H3) -> -H"2,
(-H1 -H2 +H3) (H1 -H2 + H3) (-Hl1 + H2 + H3) (H1 + H2 + H3) -> -H" 2}

out [5] {h1?, h22, h3?}

Part IX

Epilogue

Installation Instructions

To make full use of the files provided on the CD-ROM, two software applications need to be
installed on your computer: Adobe’s Acrobat Reader and Wolfram Research’s Mathematica.
Acrobat Reader is used to view and print the PDF (Portable Document Format) files on the
CD-ROM. The PDF files contain typeset text reproducing all the material in the book Ez-
ploring Analytic Geometry with Mathematica. Mathematica is used to view the notebook files
and execute the Descarta2D packages. If Mathematica is not available, Wolfram Research’s
MathReader application may be used to view the notebook files, although the Descarta2D
packages cannot be interactively executed using MathReader.

Installing Acrobat Reader and Viewing PDF Files

Acrobat Reader is a licensed product of Adobe Systems Incorporated. It is available as a
free download from Adobe’s web site, www.adobe.com. For Windows systems, a version of
Acrobat Reader is provided on the CD-ROM and may be installed by double-clicking the
ar302.exe file icon in the AcrobatReader folder. For other computer systems, you should
download the appropriate files from Adobe’s web site and follow the installation instructions
provided. Acrobat Reader may already be installed on your computer system since PDF files
are commonly used as a format for typeset files downloaded from the World Wide Web.

The entire typeset text of this book is stored on the CD-ROM in the Book folder. Double-
clicking any PDF file in the Book folder will cause Acrobat Reader to open the file and will
allow viewing or printing of the typeset text and illustrations. The PDF files can be read
directly off the CD-ROM using Acrobat Reader, or they can be copied to any convenient
location on your computer’s hard disk drive.

Installing Mathematica and Viewing Notebook Files
This book is designed around Mathematica, a product developed and licensed by Wolfram
Research Incorporated. To gain maximum benefit from the book and the files provided on the

CD-ROM, Mathematica should be installed on your computer. Information about licensing
Mathematica is available at Wolfram’s web site, www.wolfram.com. Instructions for installing

839

840 Installation Instructions

Mathematica are provided with Mathematica itself. Mathematica should be installed before
installing the Descarta2D files provided on the CD-ROM.

If Mathematica is not installed on your computer system, you can still view the contents
of the notebook files on the CD-ROM using Wolfram’s MathReader application (notebook
files have the extension .nb). MathReader is also a licensed product of Wolfram Research
Incorporated. It is available as a free download from Wolfram’s web site, www.wolfram. com.
For Windows systems, a version of MathReader is provided on the CD-ROM and may be
installed by double-clicking the Setupex.exe file icon in the MathReader folder on the CD-
ROM. If Mathematica is installed on your computer system, do not install the MathReader
software. Mathematica provides all the capabilities of MathReader.

By using Mathematica or MathReader you can view any notebook file directly off the
CD-ROM. However, it is recommended that you install the files in the folder Descarta2D as
described in the next section prior to viewing them. Generally, you will not be able to follow
the hyperlinks in the notebook files unless they are installed on your computer’s hard disk
drive as described in the next section.

Installing the Descarta2D Files

When Mathematica or MathReader is installed on your computer system, a directory structure
is created providing a standard location for installing applications such as Descarta2D. On a
Windows system the standard Mathematica installation creates a directory structure whose
path name is

c:\Program Files\Wolfram Research\Mathematica\3.0\AddOns\Applications\

Mathematica and MathReader will search this directory when trying to locate packages (.m
files) and notebook files (.nb files). In order to install Descarta2D and related documentation
so that Mathematica can find these files, copy the Descarta2D folder and all its contents from
the CD-ROM into the Applications folder of the directory path named above.

If you plan to use Descarta2D on a different operating system, refer to the installation in-
structions for your Mathematica system to determine the name of the proper directory path for
add-on applications. This information is also provided in Wolfram’s Mathematica book. For
example, the high-level directory name for Mathematica on a Macintosh is Mathematica 3.0.
On a Unix or NeXT system the high-level directory name is /usr/local/Mathematica3.0.

Mathematica Help Browser

The interactive Front End program that serves as the user interface for Mathematica provides
a Help Browser for accessing Mathematica documentation (in fact, the entire text of Stephen
Wolfram’s Mathematica book can be accessed using the Help Browser). The Help Browser is
activated by clicking the Help>Help. .. item on the Front End’s menu bar. The Descarta2D
documentation and this entire book can also be linked into the Mathematica Help Browser.
This is accomplished by clicking the Help>Rebuild Help Index... item on the Front End’s

Installation Instructions 841

menu bar after the Descarta2D folder has been copied into the proper folder. After the help
index is rebuilt, the Descarta2zD documentation and the notebooks representing this book can
be accessed by clicking the Add-ons radio button on the Help Browser dialog. The high-level
category name that opens access to the Descarta2D categories is Descarta2D.

Package Loading

In order to initialize the Descarta2D software in any Mathematica session enter the command
<<Descarta2D‘. This command will load the initialization file for Descarta2D and will enable
Mathematica to find and load any other Descarta2D package as it is needed.

Bibliography

[1]

Bowyer, Adrian and John Woodwark, A Programmer’s Geometry, First Edition, Butter-
worths, London, UK, 1983.

Bowyer, Adrian and John Woodwark, Introduction to Computing with Geometry, First
Edition, Information Geometers Ltd., Winchester, UK, 1993.

Copland, Sr., Arthur H., Geometry, Algebra, and Trigonometry by Vector Methods, First
Edition, The Macmillan Company, New York, 1962.

Dorrie, Heinrich, 100 Great Problems of Elementary Mathematics, Second Edition, Dover
Publications, Inc., New York, 1965.

Eisenhart, Luther Pfahler, Coordinate Geometry, Dover Edition, Dover Publications, Inc.,
New York, 1960.

Gasson, Peter C., Geometry of Spatial Forms, Revised Edition, Ellis Horwood Limited,
Chichester, West Sussex, England, 1983.

Gellert W., H. Kiister, M. Hellwich, H. Késtner (editors), The VNR Concise Encyclopedia
of Mathematics, First Edition, Van Nostrand Reinhold Company, New York, 1977.

Gray, Alfred, Modern Differential Geometry of Curves and Surfaces, First Edition, CRC
Press, Boca Raton, Florida, 1993.

Gullberg, Jan, Mathematics From the Birth of Numbers, First Edition, W. W. Norton &
Company, New York, 1997.

It6, Kiyosi (editor), Encyclopedic Dictionary of Mathematics, Second Edition, The MIT
Press, Cambridge, Massachusetts, 1987.

Lee, Eugene T. Y., Gerald E. Farin (editor), Geometric Modeling: Algorithms and New
Trends, First Edition, Society for Industrial and Applied Mathematics, Philadelphia,
Pennsylvania, 1987.

Lehmann, Charles H., Analytic Geometry, Third Printing, John Wiley & Sons, Inc., New
York, 1947.

843

844 Bibliography

[13] Meserve, Bruce E., Fundamental Concepts of Geometry, First Edition, Dover Publica-
tions, Inc., New York, 1983.

[14] Mortenson, Michael E., Geometric Modeling, First Edition, John Wiley & Sons, New
York, 1985.

[15] Oakley, C. O., An Outline of Analytic Geometry, First Edition, Barnes & Nobel, Inc.,
New York, 1949.

[16] Ogilvy, C. Stanley, Fzxcursions in Geometry, First Edition, Oxford University Press, New
York, 1969.

[17] Peck, William G., An Treatise on Analytical Geometry, First Edition, A. S. Barnes &
Company, New York and Chicago, 1873.

[18] Pedoe, Dan, Geometry: A Comprehensive Course, Dover Edition, Dover Publications,
Inc., New York, 1988.

[19] Salmon, George, A Treatise on Conic Sections, Sixth Edition, Chelsea Publishing Com-
pany, New York, date unknown.

[20] Selby, Samuel M. (editor), Standard Mathematical Tables, Nineteenth Edition, The Chem-
ical Rubber Co., Cleveland, Ohio, 1971.

[21] Smith, Charles, An Elementary Treatise on Conic Sections by the Methods of Coordinate
Geometry, New Edition, Macmillan and Co., Limited, London, 1927.

[22] Smith, Edward S. and Meyer Salkover and Howard K. Justice, Analytic Geometry, Fifth
Edition, John Wiley & Sons, Inc., London, 1943.

[23] Smith, Percey F. and Arthur S. Gale and John H. Neelley, New Analytic Geometry,
Revised Edition, Ginn and Company, Boston, 1928.

[24] Thomas, Jr., George B., Calculus and Analytic Geometry, Alternate Edition, Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts, 1972.

[25] Underwood, R. S. and Fred W. Sparks, Analytic Geometry, First Edition, Houghton
Mifflin Company, Boston, 1948.

[26] Weisstein, Eric W., CRC Concise Encyclopedia of Mathematics, First Edition, CRC Press
LLC, Boca Raton, Florida, 1999.

[27] Wells, David, The Penguin Dictionary of Curious and Interesting Geometry, First Edi-
tion, Penguin Books, London, England, 1991.

[28] Wolfram, Stephen, Mathematica, A System for Doing Mathematics by Computer, Second
Edition, Addison-Wesley Publishing Company, Inc., Redwood City, California, 1991.

Index

[INDEX USAGE: see footnote !]

altitude
triangle, 128-130
angle
arc end angle, 105
arc start angle, 105
bulge factor arc, 109
triangle, 117
two lines, 55
angle bisector
triangle, 128, 130
two lines, 73
Angle2D
Arc2D, 389
Ellipse2D, 423
example, 53, 56, 117, 138
help, 341
Hyperbola2D, 448
Line2D, 460
Parabola2D, 481
Triangle2D, 547
usage, 457
Apex2D
ConicArc2D, 419
help, 341
usage, 415

INDEX UsAaGE: The keyword index is set up
with main and sub-entries. If a keyword cannot
be found as a main entry, one should try to find
it as a sub-entry of some more general term. Page
numbers in normal times font refer to sections in
the main body of the book. Page numbers in sans
serif font refer to entries in the Descarta2D Com-
mand Browser. Page numbers in slanted font are
references in the Descarta2D Packages.

845

arc length, 232
bulge factor, 107
center point, 105
centroid, 115
complement, 108
definition, 105
description, 328
end angle, 105
end point, 105
midpoint, 115
overview, 15
parametric equations, 111, 112
radius, 105

ray points, 113
reflection, 108
sector, 106
sector area, 241
segment area, 242
semicircle, 105
span, 105, 232
start angle, 105
start point, 105
three—point, 110

arc length

approximate, 236
arc, 232

conic arc, 236
definition, 229
ellipse, 234
general curve, 233
hyperbola, 234
overview, 20
parabola, 234, 236

846

Index

summary of functions, 236
Arc2D
Angle2D, 389
ArcLength2D, 396
Area2D, 399
Bulge2D, 390
Circle2D, 391
Complement2D, 391
construction, 392, 393
description, 328
evaluation, 388
example, 106, 108, 110-113
graphics, 388
help, 342
IsValid2D, 389
Point2D, 391
PrimaryAngleRange2D, 390
Radius2D, 390
Reflect2D, 390
representation, 387
Rotate2D, 390
Scale2D, 391
Span2D, 395
Translate2D, 391
usage, 387
validation, 388, 389
ArcLength2D
Arc2D, 396
Circle2D, 396
ConicArc2D, 396
Ellipse2D, 397
example, 229, 230, 232-235
help, 342
Hyperbola2D, 397
Line2D, 397
Parabola2D, 398
Segment2D, 397
usage, 395
area
arc sector, 241
arc segment, 242
circle, 240, 251
conic arc, 248, 250, 251

definition, 237
ellipse, 242
ellipse sector, 244
ellipse segment, 243
Heron’s formula, 238, 249
hyperbola, 250
hyperbola sector, 245
hyperbola segment, 245
overview, 20
parabola segment, 246
polygon, 231
rectangle, 237
square, 237
summary of functions, 249
triangle, 237, 238, 249-251
Area2D
Arc2D, 399
Circle2D, 400
ConicArc2D, 400, 401
Ellipse2D, 401
example, 240, 242, 243, 248
help, 342
Triangle2D, 403
usage, 399
AskCurveLength2D
command, 513
help, 343
usage, 511
asymptote
curve, 47
hyperbola, 159
Asymptotes2D
help, 343
Hyperbola2D, 413
usage, 411

biarc
carrier circles, 311
configuration parameters, 311
defining constants, 313
definition, 311
entry direction, 114
exit direction, 114
knot circle, 314, 316

Index 847

knot point, 314 Castillon, 103
knot point, incenter, 322 center, 85
number of solutions, 313 circumference, 231
radii ratio, 313 circumscribed, 122
radius sign constant, 311 coaxial, 96
bulge factor coincident, 87
arc, 107 concentric, 87
associated angles, 109 definition, 85
complement arc, 108 description, 329
reflected arc, 108 from diameter, 89
semicircle, 107 from quadratic, 178
Bulge2D general equation, 88
Arc2D, 390 inscribed, 123, 128
help, 343 overview, 14
usage, 387 parametric equations, 99
OD-ROM pencil, 96 .
organization, 4 pol‘(.zr equ&.mtlon, 101
conter ’ radical axis, 97, 102, 103
radical center, 98, 101
arc, 105 .
. radius, 85
circle, 85

rational parameterization, 100
reciprocal, 310
standard equation, 85

ellipse, 146
hyperbola, 159

centroid

arc, 115 tangent, 283, 285-288, 290, 291

triangle, 120, 129 tangent line, 255, 264, 280
Centroid2D three points, 90, 102

example, 121 Circle2D

help, 343 Arc2D, 391

usage, 545 ArcLength2D, 396
cevian Area2D, 400

triangle, 128, 130 Circumference2D, 396
ChopImaginary2D construction, 409, 410, 509

computation, 477 description, 329

help, 343 evaluation, 406

usage, 477 example, 85, 88, 90, 96, 99, 100, 106,
chord 122, 123

parameters, 235 graphics, 406, 497
circle help, 343

Apollonius, 102 IsValid2D, 406

area, 240, 251 Parameters2D, 455

biarc carrier, 311 Pencil2D, 486

biarc knot circle, 314, 316 Point2D, 408

Carlyle, 103 Quadratic2D, 405, 409

Index

radical axis, 408
Radius2D, 407
Reflect2D, 407
representation, 405
Rotate2D, 407
Scale2D, 407
SectorArea2D, 400
SegmentArea2D, 400
Translate2D, 408

Triangle2D, 553

usage, 405

validation, 406
circumference

circle, 231

ellipse, 234
Circumference2D

Circle2D, 396

Ellipse2D, 397

example, 232

help, 344

usage, 395
Circumscribed2D

example, 122

help, 344

usage, 545
coaxial

circles, 96
coincident

circle, 87

line, 54
collinear

point, 36, 38, 58
complement

arc, 108
Complement2D

Arc2D, 391

help, 345

usage, 387
concentric

circle, 87
concurrent

line, 74

configuration parameters

biarc, 311

conic

center point, 184, 192
classification, 184

conic arc, 197
construction, 185
description, 330
intersection points, 189
MedialEquations2D, 473
pencil, 189

polar equation, 192
tangent, 293, 296, 298, 301
tangent line, 266, 271, 273
tangent line segment, 272
translate, 191

vertex equation, 186

conic arc

arc length, 236

area, 248, 250

center point, 200

conic, 197

defining points, 193

definition, 193

equation, 194

parametric equations, 198, 200
projective discriminant, 193, 196
rho, p, 193, 196

shoulder point, 200

ConicArc2D

Apex2D, 419
ArcLength2D, 396
Area?2D, 400, 401
description, 330
evaluation, 416
example, 194, 198, 199
graphics, 416

help, 345
IsValid2D, 417
Loci2D, 419
Point2D, 419
Quadratic2D, 416
Reflect2D, 418
representation, 415

Index

Rho2D, 417
Rotate2D, 418
Scale2D, 418
Span2D, 396
Translate2D, 418
usage, 415
validation, 416, 417
conjugate
hyperbola, 164
conjugate axis
hyperbola, 160
Conjugate2D
example, 165
help, 345
Hyperbola2D, 450
usage, 445
coordinates
rectangular, 28
Coordinates2D
help, 345
Point2D, 490
usage, 489
coords
XCoordinate2D, 491
YCoordinate2D, 491
Cramer’s Rule
three equations, 49
two equations, 49
curve

approximated by polygon, 231

asymptotes, 47
definition, 46
extent, 47
intercepts, 47
symmetry, 47
CurveLength2D
help, 345
option, 512
usage, 511
CurveLimits2D
command, 513
help, 346
usage, 511

Directrices2D
Ellipse2D, 413
example, 140, 151
help, 346
Hyperbola2D, 413
Parabola?2D, 413
usage, 411

directrix
ellipse, 145
hyperbola, 159
parabola, 135

distance
between points, 30
line, 82
parallel lines, 81
point to circle, 95
point to line, 68
point to quadratic, 281
polar coordinates, 38

Distance2D
example, 32, 69, 95
help, 346
point to circle, 407
point to line, 460
two coordinates, 491
two points, 491
usage, 489

eccentricity
ellipse, 145
hyperbola, 159, 173
parabola, 135

Eccentricity2D
Ellipse2D, 412
example, 140, 165
help, 346
Hyperbola2D, 412
Parabola?2D, 412
usage, 411

ellipse
apoapsis, 157
arc length, 234
area, 242
center, 146

850

Index

circumference, 234
construction, 151, 153
definition, 145
description, 331
directrix, 145
eccentricity, 145
focal chord, 146
focal chord length, 156
focus, 145
from quadratic, 180
general equation, 147
latus rectum, 146
major axis, 146
minor axis, 146
overview, 18
parametric equations, 155
periapsis, 157
polar equation, 157
rational equations, 155
sector area, 244
segment area, 243
similar, 157
standard equation, 147
tangent line, 274, 281
vertex equation, 187
vertices, 146
Ellipse2D
Angle2D, 423
ArcLength2D, 397
Area2D, 401
Circumference2D, 397
construction, 425, 426
description, 331
Directrices2D, 413
Eccentricity2D, 412
equation, 422
evaluation, 422
example, 146, 152-155
FocalChords2D, 414
Foci2D, 412
graphics, 422
help, 346
IsValid2D, 423

Line2D, 425

Line2D, polar, 425
Parameters2D, 455
Point2D, 424
Point2D, pole, 425
Reflect2D, 424
representation, 421
Rotate2D, 424
Scale2D, 424
SectorArea?2D, 401
SegmentArea2D, 401
SemiMajorAxis2D, 423
SemiMinorAxis2D, 423
Translate2D, 424
usage, 421

validation, 422, 423
Vertices2D, 412

entry direction

biarc, 114

equation

circle, 85, 88
conic arc, 194
conic, vertex, 186
definition, 41

graph, 41
hyperbola, 161, 166
locus, 46, 47

overview, 10

parabola, 135, 136, 139
parametric, 47

polar, 47, 49
rectangular, 47

reflect, 224
Reflect2D, 540

root, 41

rotate, 220

Rotate2D, 541

scale, 222

Scale2D, 542

solution, 41

solving, 42
TangentEquation2D, 532
translate, 218

Index

851

Translate2D, 543

Equation2D

example, 41, 76
help, 347

Line2D, 428
Quadratic2D, 428
usage, 427

exit direction

biarc, 114

Exploration

apollon.nb, 102, 557
arccent.nb, 115, 559
arcentry.nb, 114, 561
arcexit.nb, 114, 563
archimed.nb, 289, 565
arcmidpt.nb, 115, 567
caarclen.nb, 236, 569
caareal.nb, 250, 571
caarea?2.nb, 251, 573
cacenter.nb, 200, 575
cacircle.nb, 199, 577
camedian.nb, 200, 579
caparam.nb, 200, 581
carlyle.nb, 103, 583
castill.nb, 103, 585
catnln.nb, 200, 589
center.nb, 192, 591
chdlen.nb, 101, 593
cir3pts.nb, 102, 595
circarea.nb, 251, 597
cirptmid.nb, 102, 599
cramer?2.nb, 49, 601
cramer3.nb, 49, 603
deter.nb, 48, 605
elfocdir.nb, 157, 607
elimlin.nb, 191, 609
elimxyl.nb, 190, 611
elimxy2.nb, 191, 613
elimxy3.nb, 191, 615
elldist.nb, 157, 617
ellfd.nb, 157, 619
ellips2a.nb, 156, 623
elllen.nb, 156, 625

ellrad.nb, 157, 627
ellsim.nb, 157, 629
ellslp.nb, 281, 631
eqarea.nb, 251, 633
eyeball.nb, 280, 637
gergonne.nb, 129, 639
heron.nb, 249, 641
hyp2a.nb, 173, 643
hyp4pts.nb, 310, 645
hyparea.nb, 250, 647
hypeccen.nb, 173, 651
hypfd.nb, 173, 653
hypinv.nb, 173, 657
hyplen.nb, 173, 659
hypslp.nb, 281, 661
hyptrig.nb, 173, 663
intrsct.nb, 81, 665
inverse.nb, 227, 667
johnson.nb, 101, 671
knotin.nb, 322, 675
1ndet.nb, 82, 677
Indist.nb, 82, 679
Inlndist.nb, 82, 681
1nquad.nb, 280, 685
1nsdst.nb, 81, 687
Insegint.nb, 83, 689
Ilnsegpt.nb, 82, 691
lnsperp.nb, 82, 693
Intancir.nb, 280, 695
Intancon.nb, 281, 697
mdcircir.nb, 213, 699
mdlncir.nb, 213, 703
mdlnln.nb, 213, 705
mdptcir.nb, 212, 707
mdptln.nb, 212, 711
mdptpt.nb, 212, 713
mdtype.nb, 214, 715
monge.nb, 281, 717
narclen.nb, 236, 719
normal.nb, 281, 721
pb3pts.nb, 143, 723
pb4pts.nb, 310, 725
pbang.nb, 144, 727

852

Index

pbarch.nb, 143, 729
pbarclen.nb, 236, 731
pbdet.nb, 143, 733
pbfocchd.nb, 142, 735
pbslp.nb, 280, 737
pbtancir.nb, 144, 739
pbtnlns.nb, 280, 743
polarcir.nb, 101, 745
polarcol.nb, 38, 747
polarcon.nb, 192, 749
polardis.nb, 38, 751
polarell.nb, 157, 753
polareqn.nb, 49, 755
polarhyp.nb, 173, 757
polarpb.nb, 144, 759
polarunqg.nb, 38, 761
pquad.nb, 192, 763
ptscol.nb, 37, 765
radaxis.nb, 102, 767
radcntr.nb, 101, 769
raratio.nb, 103, 771
reccir.nb, 310, 773
recptln.nb, 310, 775
recquad.nb, 310, 777
reflctpt.nb, 226, 779
rtangcir.nb, 101, 781
rttricir.nb, 128, 783
shoulder.nb, 200, 785
stewart.nb, 38, 787
tancirl.nb, 290, 789
tancir2.nb, 290, 791
tancir3.nb, 290, 793
tancir4.nb, 291, 795
tancirb5.nb, 291, 797
tancirpt.nb, 281, 799
tetra.nb, 251, 801
tncirtri.nb, 291, 803
tnlncir.nb, 102, 807
triallen.nb, 129, 809
trialt.nb, 129, 811
triarea.nb, 249, 813
triarlns.nb, 250, 815
tricent.nb, 129, 817

tricev.nb, 130, 819
triconn.nb, 129, 823
tridist.nb, 38, 827
trieuler.nb, 128, 829
trirad.nb, 130, 833
trisides.nb, 130, 835

focal chord
ellipse, 146
hyperbola, 159
parabola, 135
FocalChords2D
Ellipse2D, 414
help, 347
Hyperbola2D, 414
Parabola2D, 414
usage, 411
FocalLength2D
help, 347
Parabola2D, 481
usage, 479
Foci2D
Ellipse2D, 412
example, 140, 151
help, 347
Hyperbola2D, 412
Parabola2D, 412
usage, 411
focus
ellipse, 145
hyperbola, 159
parabola, 135
FullSimplify
Line2D, 460
Quadratic2D, 499
function
definition, 39
graph, 46
multiple-valued, 39
periodic, 39
real-valued, 39

Gergonne Point
of a triangle, 129

Index

Heron’s formula
triangle area, 238, 249

horizontal
line, 61

hyperbola
arc length, 234
area, 250
asymptote, 159
center, 159
conjugate, 164
conjugate axis, 160
construction, 167-169, 310
definition, 159
description, 332
directrix, 159
eccentricity, 159, 173
equilateral, 166, 310
focal chord, 159
focal chord length, 173
focus, 159
from quadratic, 180
general equation, 161
latus rectum, 159
overview, 19
parametric equations, 170, 173
polar equation, 173
rational equations, 172
rectangular, 166
sector area, 245
segment area, 245
standard equation, 161, 166
tangent line, 277, 281
transverse axis, 159
vertex equation, 187
vertices, 159

Hyperbola2D
Angle2D, 448
ArcLength2D, 397
Asymptotes2D, 413
Conjugate2D, 450
construction, 450, 451
description, 332
Directrices2D, 413

Eccentricity2D, 412
evaluation, 446
example, 160, 164, 168-171
FocalChords2D, 414
Foci2D, 412

graphics, 446

help, 347

IsValid2D, 447

Line2D, 449

Line2D, polar, 450
Parameters2D, 456
Point2D, 449

Point2D, pole, 449
Quadratic2D, 446
Reflect2D, 448
representation, 445
Rotate2D, 448
Scale2D, 449
SectorArea?2D, 402
SegmentArea2D, 402
SemiConjugateAxis2D, 448
SemiTransverseAxis2D, 448
Translate2D, 449
usage, 445
validation, 447
Vertices2D, 413

inclination
line, 53
Inscribed2D
example, 123
help, 348
usage, 545
installation
Acrobat Reader, 839
Descarta2D, 840
Help Browser, 840
Mathematica, 839
MathReader, 839
intersection
line and circle, 91
line and conic, 189
two circles, 92
two conics, 189

854

Index

two line segments, 82, 83

two lines, 69, 81
inversion

transformation, 227
Is2D

definition, 472

help, 348

usage, 471
IsApproximate2D

help, 348

query, 431

usage, 429
IsCoincident2D

circles, 439

coordinates, 439

example, 87

help, 348

lines, 439

list of objects, 440

points, 439

quadratics, 439

usage, 437
IsCollinear2D

example, 37

help, 349

list of points, 440

points, 440

usage, 437
IsComplex2D

help, 349

query, 431

usage, 429
IsConcentric2D

circles, 440

example, 87

help, 349

list of circles, 440

usage, 437
IsConcurrent2D

example, 75

help, 349

lines, 441

list of lines, 441

usage, 437
IsDisplay2D

default, 512

help, 349

usage, 511
IsNegative2D

help, 350

query, 434

usage, 429
IsNumeric2D

help, 350

query, 432

usage, 429
IsObject2D

usage, 471
IsOn2D

example, 52, 86, 256

help, 350

point on circle, 441

point on line, 441

point on quadratic, 441

usage, 437
IsParallel2D

example, 55

help, 350

lines, 442

list of lines, 442

usage, 437
IsPerpendicular2D

example, 55

help, 351

lines, 442

list of lines, 443

usage, 437
IsReal2D

help, 351

query, 433

usage, 429
IsScalar2D

help, 351

query, 433

usage, 429
IsScalarPair2D

Index 855
help, 351 center, 317
query, 434 knot point
usage, 429 biarc, 314, 318
IsTangent2D
help, 351 latus rectum

line and circle, 443

line and quadratic, 443

two circles, 443
usage, 437
IsTinyImaginary2D
help, 352
query, 434
usage, 429
IsTripleParallel2D
help, 352
lines, 442
list of lines, 442
usage, 437
IsValid2D
Arc2D, 389
Circle?2D, 406
ConicArc2D, 417
default, 472
Ellipse2D, 423
help, 352
Hyperbola2D, 447
Line2D, 459
Parabola2D, 481
Point2D, 490
Quadratic2D, 498
Segment2D, 506
Triangle2D, 546
usage, 471
IsZero2D
help, 352
query, 432, 435
usage, 429
IsZeroOrNegative2D
help, 353
query, 435, 436
usage, 429

knot circle
biarc, 314, 316

ellipse, 146
hyperbola, 159
parabola, 135

length

chord, intersecting circles, 101

line, 229
line segment, 230

Length2D

line

example, 230
help, 353
Segment2D, 507
usage, 505

angle, 55

angle bisectors, 73
coincident, 54
concurrent, 74
definition, 51
description, 333
determinant form, 82
distance, 82

from quadratic, 176, 177

horizontal, 61
inclination, 53
intercept form, 64
length, 229

normal form, 65
offset from a line, 68
overview, 12
parallel, 54, 60

parametric equations, 78

pencil, 75

perpendicular, 54, 60, 72, 82

perpendicular form, 65
point—slope form, 58
quadratic normal, 280
reciprocal, 310

slope, 53
slope—intercept form, 62

856 Index

two—point form, 56 Slope2D, 460
vertical, 61 Translate2D, 461
line segment Triangle2D, 552
definition, 51 usage, 457
description, 335 validation, 459
end point, 51 Line2D, polar
length, 230 Ellipse2D, 425
overview, 13 Hyperbola2D, 450
parametric equations, 80 Parabola2D, 483
slope, 53 Quadratic2D, 463
start point, 51 Loci2D
Line?2D ConicArc2D, 419
Angle2D, 460 construction, 465, 468
ArcLength2D, 397 example, 88, 139, 150, 151, 165, 167,
construction, 462, 463, 508 176-180, 182, 183, 188, 195, 297
description, 333 help, 354
Ellipse2D, 425 usage, 465
equation, 458 locus _
Equation2D, 428 equation, 46, 47

evaluation, 458
example, 40, 57, 59, 60, 62, 64, 66, 68,
72, 76, 77, 79, 98, 119, 140, 267,

major axis
ellipse, 146

MakePrimitives2D

270 command, 513
FullSimplify, 460 help, 355
graphics, 458 usage, 511
help, 353 MaxSeconds2D
Hyperbola2D, 449 help, 355
IsValid2D, 459 option, 516
normalize, 461 usage, 515
offset, 462 medial curve
Parabola2D, 483 circle—circle, 210, 213
Parallel?2D, 463 definition, 201
Pencil2D, 485 line—circle, 207, 213
Perpendicular2D, 463 line-line, 206, 213
polar (circle), 408 point—circle, 204, 212
Polynomial2D, 428 point-line, 202, 212
radical axis, 408 point-point, 201, 212
Reflect2D, 461 MedialEquations2D
representation, 458 conic, 473
Rotate2D, 461 help, 355
Scale?2D, 461 usage, 473
Simplify, 460 MedialLoci2D

slope, 462 circle—circle, 475

Index 857

construction, 474 D2DArc2D, 387
example, 73, 202-205, 207-209, 211 D2DArcLength2D, 395
help, 355 D2DArea2D, 399
line—circle, 475 D2DCircle2D, 405
line-line, 475 D2DConic2D, 411
point—circle, 474 D2DConicArc2D, 415
point-line, 474 D2DE1lipse2D, 421
point—point, 474 D2DEquations2D, 427
usage, 473 D2DExpressions2D, 429
median D2DGeometry2D, 437
triangle, 120, 128, 130 D2DHyperbola2D, 445
midpoint D2DIntersect2D, 453
arc, 115 D2DLine2D, 457
Point2D, 493, 508 D2DLoci2D, 465
minor axis D2DMaster2D, 469
ellipse, 146 D2DMedial?2D, 473
Monge’s Theorem D2DNumbers?2D, 477
tangent lines, 281 D2DParabola?2D, 479

D2DPencil2D, 485

names . D2DPoint2D, 489

general conventions, 326 D2DQuadratic2D, 497
normal _ D2DSegment2D, 505

quadratic, 281 D2DSketch2D, 511
norma.hze D2DSolve2D, 515

Line2D, 461 D2DTangentCircles2D, 519
Inungz;frat102Da500 D2DTangentConics2D, 523

D2DTangentLines2D, 531

D2DTangentPoints2D, 537

D2DTransform2D, 539

D2DTriangle?2D, 545
parabola

arc length, 234, 236

complex, 27
conjugate complex, 27
imaginary, 27
integers, 27

rational, 27

real, 27 construction, 140, 143, 310
ObjectNames2D definition, 135

definition, 472 description, 334

help, 355 directrix, 135
offset eccentricity, 135

Line?2D, 462 focal chord, 135

Point2]’), 493 focal chord length, 142
orthocenter focus, 135

triangle, 129 from quadratic, 178, 179

general equation, 135
package latus rectum, 135

858

Index

overview, 17
parametric equations, 141
polar equation, 144
segment area, 246
standard equation, 136, 139
tangent line, 273, 280
vertex, 135
vertex equation, 186
Parabola2D
Angle2D, 481
ArcLength2D, 398
construction, 483
description, 334
Directrices2D, 413
Eccentricity2D, 412
equation, 480
evaluation, 480
example, 137, 138, 141, 142
FocalChords2D, 414
FocalLength2D, 481
Foci2D, 412
graphics, 480
help, 355
IsValid2D, 481
Line2D, 483
Line2D, polar, 483
Parameters2D, 456
Point2D, 482
Point2D, pole, 482
Reflect2D, 481
representation, 479
Rotate2D, 482
Scale2D, 482
SegmentArea2D, 402
Translate?2D, 482
usage, 479
validation, 480, 481
Vertices2D, 413
parallel
line, 54, 60
tangent line, 261, 279
Parallel2D
example, 60, 262, 279

help, 356
Line2D, 463
usage, 457

parameters

chord, 235

Parameters2D

Circle2D, 455
Ellipse2D, 455
example, 235
help, 356
Hyperbola2D, 456
Parabola2D, 456
usage, 453

parametric equations

arc, 111, 112
circle, 99
conic arc, 198, 200
definition, 47
ellipse, 155
hyperbola, 170
line, 78

line segment, 80
parabola, 141
quadratic, 192

pencil

circle, 96
conic, 189
line, 75
quadratic, 294

Pencil2D

Circle?2D, 486
example, 76, 77, 96
help, 356

Line2D, 485
Quadratic2D, 486, 487
usage, 485

perimeter

polygon, 231
triangle, 230

Perimeter2D

example, 230
help, 356
Triangle2D, 398

Index

usage, 395
periodic
function, 39
perpendicular
line, 54, 60, 82
tangent line, 262, 279
Perpendicular2D
example, 60, 72, 262, 279
help, 356
Line2D, 463
usage, 457
pi, 7
definition, 232
point
arc center, 105
arc centroid, 115
arc end point, 105
arc start point, 105
biarc knot point, 314
center, conic, 192
center, quadratic, 192
circle, radical center, 98, 101
collinear, 36, 38, 58
conic center, 184
division point, 33
Gergonne point, 129
knot circle center, 317
midpoint, 33
midpoint of arc, 115
offset, 35
offset along line, 67
orthocenter, 129
overview, 9
polar coordinates, 38
projected on line, 70
reciprocal, 310
shoulder point, 200
tangency, 259, 281
Point2D
Arc2D, 391
Circle?2D, 408
ConicArc2D, 419
construction, 492—-494

Coordinates2D, 490
Ellipse2D, 424

example, 30, 33, 35, 36, 67, 70, 71, 117,
121, 151, 185, 197, 263, 268, 270,

274, 275, 277

graphics, 490
help, 356
Hyperbola2D, 449
IsValid2D, 490
midpoint, 493, 508
offset, 493
Parabola2D, 482
point of division, 493
quadratic center, 494
Quadratic2D, 491
Reflect2D, 492
representation, 490
Rotate2D, 492
Scale2D, 492
translate, 492
Triangle2D, 551, 552
usage, 489
validation, 490
XCoordinate2D, 491
YCoordinate?2D, 491

Point2D, pole
Ellipse2D, 425
Hyperbola2D, 449
Parabola2D, 482
Quadratic2D, 494

Points2D
circle/circle, 454
curve/curve, 454
example, 92, 94, 190
help, 358
line/circle, 454
line/line, 453
usage, 453

polar
Circle2D, 408

polar (line)
definition, 269

polar equation

860

Index

circle, 101

conic, 192

ellipse, 157

hyperbola, 173

parabola, 144
pole

definition, 267

polygon

approximating a curve, 231

area, 231
perimeter, 231
polynomial
definition, 39
linear, 39
quadratic, 39
Polynomial2D
example, 40, 260
help, 358
Line2D, 428
Quadratic2D, 428
usage, 427
PrimaryAngle2D
computation, 478
help, 358
usage, 477
PrimaryAngleRange2D
Arc2D, 390
computation, 478
help, 358
usage, 477
projective discriminant
conic arc, 193, 196

quadratic
center point, 184, 192
circle, 178
classification, 184
description, 335
distance to a point, 281
ellipse, 180
hyperbola, 180
linear polynomial, 176
lines, 176, 177
normal, 280, 281

parabola, 178, 179
parametric equations, 192
pencil, 294

reciprocal, 310

rotation, 182, 190, 191
standard conic, 175
tangent, 293, 296, 298, 301
translation, 181

Quadratic2D

Circle2D, 405, 409
ConicArc2D, 416
construction, 500-502
description, 335
Equation2D, 428

example, 40, 88, 91, 186, 195, 260, 297

FullSimplify, 499
help, 358
IsValid2D, 498
Line2D, polar, 463
normalize, 500
Pencil2D, 486, 487
Point2D, 491
Point2D, pole, 494
Polynomial2D, 428
Reflect2D, 498
representation, 497
Rotate2D, 499
Scale?2D, 499
Simplify, 499
Translate2D, 499
usage, 497
validation, 498
vertex equation, 502

query

IsApproximate2D, 431
IsComplex2D, 431
IsNegative2D, 434
IsNumeric2D, 432
IsReal2D, 433
IsScalar2D, 433
IsScalarPair2D, 434
IsTinyImaginary2D, 434
IsZero2D, 432, 435

Index

861

IsZeroOrNegative2D, 435, 436
query, object

Is2D, 336

IsDisplay2D, 336

IsValid2D, 336

ObjectNames2D, 336

radical axis
circle, 97, 102
radical center
circle, 98, 101
radius
arc, 105
biarc, radii ratio, 313
circle, 85
Radius2D
Arc2D, 390
Circle2D, 407
help, 359
usage, 405
rational equations
ellipse, 155
hyperbola, 172
rational parameterization
circle, 100
ray points
arc, 113
reciprocal
circle, 310
line, 310
point, 310
quadratic, 310
rectangle
area, 237
rectangular coordinates
abscissa, 28
ordinate, 28
origin, 28
quadrants, 28
reflect
definition, 224
equation, 224
in a point, 226
Reflect2D

Arc2D, 390
Circle2D, 407
ConicArc2D, 418
coordinates, 540
Ellipse2D, 424
equation, 540
example, 226
help, 360
Hyperbola2D, 448
Line2D, 461
list of objects, 540
Parabola?2D, 481
Point2D, 492
Quadratic2D, 498
Segment2D, 507
Triangle2D, 550
usage, 539

ReflectAngle2D
command, 540
help, 360
usage, 539

rho, p
conic arc, 193, 196

Rho2D
ConicArc2D, 417
help, 360
usage, 415

rotate
definition, 219
equation, 220

rotate
list of objects, 541
Rotate2D
about origin, 541
Arc2D, 390

Circle2D, 407
ConicArc2D, 418
coordinates, 541
Ellipse2D, 424
equation, 541
example, 222
help, 360
Hyperbola2D, 448

862

Index

Line2D, 461
Parabola?2D, 482
Point2D, 492
Quadratic2D, 499
Segment2D, 507
Triangle2D, 551
usage, 539

scale
definition, 222
equation, 222

Scale2D
Arc2D, 391
Circle2D, 407
ConicArc2D, 418
coordinates, 542
Ellipse2D, 424
equation, 542
example, 223
from origin, 541
help, 361
Hyperbola2D, 449
Line2D, 461
list of objects, 542
Parabola?2D, 482
Point2D, 492
Quadratic2D, 499
Segment2D, 507
Triangle2D, 551
usage, 539

sector
arc, 106
arc, area of, 241
ellipse, area of, 244
hyperbola, area of, 245, 250

SectorArea2D
Circle2D, 400
Ellipse2D, 401
example, 242, 245, 246
help, 361
Hyperbola2D, 402
usage, 399

segment
arc, area of, 242

ellipse, area of, 243
hyperbola, area of, 245, 250
parabola, area of, 246
Segment2D
ArcLength2D, 397
construction, 508
description, 335
evaluation, 505
example, 80, 119
graphics, 506
help, 361
IsValid2D, 506
Length2D, 507
Reflect2D, 507
representation, 505
Rotate2D, 507
Scale?2D, 507
Slope2D, 507
Translate2D, 508
Triangle2D, 552
usage, 505
validation, 506
SegmentArea2D
Circle2D, 400
Ellipse2D, 401
example, 244, 246, 247
help, 361
Hyperbola2D, 402
Parabola2D, 402
usage, 399
semicircle
definition, 105
inscribed angle, 101
SemiConjugateAxis2D
help, 362
Hyperbola2D, 448
usage, 445
SemiMajorAxis2D
Ellipse2D, 423
example, 151
help, 362
usage, 421
SemiMinorAxis2D

Index

863

Ellipse2D, 423
example, 151
help, 362
usage, 421
SemiTransverseAxis2D
help, 362
Hyperbola2D, 448
usage, 445
SetDisplay2D
command, 512
help, 362
usage, 511
Simplify
Line2D, 460
Quadratic2D, 499
SimplifyCoefficients2D
function, 427
help, 362
usage, 427
Sketch2D
command, 513
example, 7, 30, 51
help, 362
usage, 511
slope
line, 53
line segment, 53
Line2D, 462
Slope2D
example, 53
help, 363
Line2D, 460
Segment?2D, 507
usage, 457
Solve2D
command, 516
help, 363
usage, 515
SolveTriangle2D
example, 126, 127
help, 363
usage, 545
span

arc, 105, 232
Span2D

Arc2D, 395

ConicArc2D, 396

example, 233

help, 363

usage, 395
square

area, 237
Stewart’s Theorem

triangle, 38

tangent
Archimedes’ circles, 289

circle, 283, 285-288, 290, 291
conic, 293, 296, 298, 301

overview, 21

quadratic, 293, 296, 298, 301

reciprocal polars, 306
tangent line
circle, 255, 280
conic, 266, 273
contact points, 259
definition, 255
ellipse, 274, 281
eyeball theorem, 280
hyperbola, 277, 281

line segment length, 260

Monge’s Theorem, 281

parabola, 273, 280

parallel, 261, 279

perpendicular, 262, 279

polar, 269

pole, 267

two circles, 264

two conics, 271
tangent line segment

two conics, 272
TangentCircles2D

construction, 521, 522

example, 283, 285288

help, 363

usage, 519
TangentConics2D

864

Index

construction, 526
example, 297, 299, 301, 303, 305, 306,

308, 309
help, 364
usage, 523

TangentEquation2D

equation, 532
example, 269
help, 364
usage, 531
TangentLines2D

construction, 532-534
example, 256, 259, 262, 265, 272, 274,
275, 277, 279

help, 364
usage, 531
TangentPoints2D

construction, 537, 538

example, 259
help, 365
usage, 537

TangentQuadratics2D
construction, 526

example, 299
help, 365
usage, 523

TangentSegments2D
construction, 534

example, 273
help, 365
usage, 531
transformation
definition, 217
inversion, 227
reflect, 224
rotate, 219
scale, 222
translate, 217
translate
definition, 217
equation, 218
Translate2D
Arc2D, 391

Circle?2D, 408
ConicArc2D, 418
coordinates, 542
Ellipse2D, 424
equation, 543
example, 217, 219
help, 365
Hyperbola2D, 449
Line2D, 461

list of objects, 543
Parabola2D, 482
Point2D, 492
Quadratic2D, 499
Segment2D, 508
Triangle?2D, 551
usage, 539

transverse axis

hyperbola, 159

triangle

altitude, 128-130

angle bisector, 128, 130
area, 237, 238, 249-251
centroid, 120, 129
cevian, 128, 130
circumscribed circle, 122, 130
definition, 117
description, 336
equilateral, 117

Euler’s formula, 128
Gergonne point, 129
hypotenuse, 117
inscribed circle, 123, 128, 130
isosceles, 117

Law of Cosines, 126
Law of Sines, 126
median, 120, 128, 130
orthocenter, 129
overview, 16
perimeter, 230

right, 117

scalene, 117

solve, 124

Stewart’s Theorem, 38

Index 865
vertex, 117 help, 366
vertex angle, 117 Hyperbola2D, 413
Triangle2D Parabola2D, 413
Angle2D, 547 usage, 411
Area2D, 403
Circle2D, 553 XCoordinate2D
construction, 548, 553, 554 coords, 491
description, 336 help, 366
example, 117, 119, 126 Point2D, 491
graphics, 546 usage, 489
help, 365
IsValid2D, 546 YCoordinate2D
Line2D, 552 coords, 491
Perimeter2D, 398 help, 366
Point2D, 551, 552 Point2D, 491
usage, 489

Reflect2D, 550
representation, 546
Rotate2D, 551
Scale?2D, 551
Segment2D, 552
Translate2D, 551
usage, 545
validation, 546

variable
definition, 39
dependent, 39
independent, 39
vertex
parabola, 135
triangle, 117
vertex equation
ellipse, 187
hyperbola, 187
parabola, 186
Quadratic2D, 502
vertical
line, 61
vertices
ellipse, 146
hyperbola, 159
Vertices2D
Ellipse2D, 412
example, 151

